

MASTER COURSE OUTLINE

Prepared By: Bill Autry

Date: May 2014

COURSE TITLE Introduction to Refrigeration & Air Conditioning

GENERAL COURSE INFORMATION

Dept.: IST CIP Code: 47.0303 Credits: 5 Total Contact Hrs Per Qtr.: 77 Lecture Hrs: 33 Distribution Designation:

Lab Hrs: 44

Course Num: 130

Intent Code: 21

(Formerly:) Program Code: 768

Other Hrs:

COURSE DESCRIPTION (as it will appear in the catalog) Fundamental physical, chemical, engineering, and mechanical aspects of the refrigeration process.

PREREQUISITES

IST 100, IST 102, IST 106, and MAP 103/MAP 117, or Instructor Permission

TEXTBOOK GUIDELINES

Appropriate textbook as determined by faculty (Example: *Modern Refrigeration & Air Conditioning*, by Althouse, Turnquist, and Bracciano)

COURSE LEARNING OUTCOMES

Upon successful completion of the course, students should be able to demonstrate the following knowledge or skills.

- 1. Demonstrate a working knowledge of refrigeration processes
- 2. Demonstrate knowledge of thermodynamic principles
- 3. Diagnose & troubleshoot simple refrigeration or air conditioning problems

INSTITUTIONAL OUTCOMES

COURSE CONTENT OUTLINE

- 1) Physical Properties
 - a) Heat & heat flow
 - b) Temperature measurement
 - c) BTU's
 - d) Temperature/pressure relationship
 - e) States of Matter
 - f) Latent Heat
 - g) Humidity
 - h) Enthalpy
- 2) Refrigeration Tools

- a) Working with tubing
- b) Pipe fittings
- c) Flares
- d) Service valves
- e) Gauge manifold
- f) Evacuation
- 3) Basic Refrigeration Systems
 - a) Evaporative refrigeration
 - b) Flooded systems
 - c) Expansion valves
 - d) Multiple evaporators
 - e) Compound systems
 - f) Cascade systems
 - g) Absorption systems
 - h) Defrost systems
- 4) Compression Systems and Components
 - a) Compression cycle
 - b) Evaporators
 - c) Accumulators
 - d) Filter dryers
 - e) Oil separation
 - f) Condensers and receivers
 - g) Compressor types
- 5) Refrigerant Controls
 - a) Automatic expansion valves
 - b) Thermostatic expansion valves
 - c) Flash gas
 - d) Super heating
 - e) Floats
 - f) Solenoids
 - g) EPR's
- 6) Refrigerants
 - a) Refrigerant identification
 - b) Expendable refrigerants
 - c) Cryogenic fluids
 - d) Freon family
 - e) Ammonia
 - f) Refrigerant oils
 - d) Recovery
- 7) Heat Loads & Piping
 - a) Computing heat loads
 - b) Compacities of Evaporators, condensers, and related equipment
 - c) Effective latent heat
 - d) Saturated vapor & superheat
 - e) Engineering system capacities
- 8) Absorption Systems

- a) Principles and applications
- b) Residential air conditioning
- c) Commercial type
- d) Servicing Lithium Bromide systems
- 9) Fundamentals of Air Conditioning
 - a) Air and its properties
 - b) Humidity
 - c) Air handling
 - d) Psychometric charts
 - e) Heat pumps

DEPARTMENTAL GUIDELINES (optional)

DIVISION CHAIR APPROVAL

DATE