

MASTER COURSE OUTLINE
Prepared By: Arthur Wanner/Tom Willingham Date: September 2017

COURSE TITLE
Advanced Programming with C++

GENERAL COURSE INFORMATION
Dept.: CS Course Num: 132 (Formerly:)
CIP Code: 11.0201 Intent Code: 11 Program Code: 515
Credits: 5
Total Contact Hrs Per Qtr.: 88
Lecture Hrs: 22 Lab Hrs: 66 Other Hrs:
Distribution Designation: General Elective (GE)

COURSE DESCRIPTION (as it will appear in the catalog)
This course expands on the fundamentals covered in CS& 131. Students learn to develop procedural and object-oriented
C++ programs of increasing complexity using advanced algorithm design and data abstraction techniques. Language
concepts explored include pointers, dynamic memory allocation, classes, inheritance, polymorphism, operator
overloading, templates, and exception handling.

PREREQUISITES
CS& 131

TEXTBOOK GUIDELINES
Textbook and materials to be determined by CS Faculty

COURSE LEARNING OUTCOMES
Upon successful completion of the course, students should be able to demonstrate the following knowledge or
skills:

1. Create C++ programs of intermediate to advanced complexity using procedural and object-oriented design
techniques, structured problem solving and data abstraction.

2. Utilize recursion as a problem solving technique and define simple recursive functions.
3. Use pointers and indirection to dynamically allocate memory, arrays and objects.
4. Solve problems involving 2 dimensional arrays or vectors.
5. Sort an array by implementing the Bubble Sort and Insertion Sort algorithms.
6. Implement the binary search algorithm to efficiently search a sorted array.
7. Compose object-oriented programs using concepts such as classes, objects, composition, inheritance, and

polymorphism.
8. Explore advanced techniques such as operator overloading and templates.
9. Create custom exception classes and use exception handling to throw and catch common errors.
10. Use pointers to explore and implement the linked list data structure

INSTITUTIONAL OUTCOMES
IO1 Communication: Students will be able to communicate clearly and effectively within a workplace context
IO2 Quantitative Reasoning: Analyze and solve computational problems using a modern program language

COURSE CONTENT OUTLINE

1. 2D Arrays / 2D Vectors
2. Recursion
3. Pointers & Dynamic Memory Allocation
4. Classes & Objects
5. Inheritance & Polymorphism
6. Operator Overloading & Templates
7. Exception Handling
8. Linked Lists

DEPARTMENTAL GUIDELINES (optional)

_______________________________ ________________
DIVISION CHAIR APPROVAL DATE

	/
	MASTER COURSE OUTLINE
	Prepared By: Arthur Wanner/Tom Willingham Date: September 2017
	COURSE TITLE
	Advanced Programming with C++
	GENERAL COURSE INFORMATION
	Dept.: CS Course Num: 132 (Formerly:)
	CIP Code: 11.0201 Intent Code: 11 Program Code: 515
	Credits: 5
	Total Contact Hrs Per Qtr.: 88
	Lecture Hrs: 22 Lab Hrs: 66 Other Hrs:
	Distribution Designation: General Elective (GE)
	COURSE DESCRIPTION (as it will appear in the catalog)
	This course expands on the fundamentals covered in CS& 131. Students learn to develop procedural and object-oriented C++ programs of increasing complexity using advanced algorithm design and data abstraction techniques. Language concepts explored include pointers, dynamic memory allocation, classes, inheritance, polymorphism, operator overloading, templates, and exception handling.
	PREREQUISITES
	CS& 131
	TEXTBOOK GUIDELINES
	Textbook and materials to be determined by CS Faculty
	COURSE LEARNING OUTCOMES
	Upon successful completion of the course, students should be able to demonstrate the following knowledge or skills:
	1. Create C++ programs of intermediate to advanced complexity using procedural and object-oriented design techniques, structured problem solving and data abstraction.
	2. Utilize recursion as a problem solving technique and define simple recursive functions.
	3. Use pointers and indirection to dynamically allocate memory, arrays and objects.
	4. Solve problems involving 2 dimensional arrays or vectors.
	5. Sort an array by implementing the Bubble Sort and Insertion Sort algorithms.
	6. Implement the binary search algorithm to efficiently search a sorted array.
	7. Compose object-oriented programs using concepts such as classes, objects, composition, inheritance, and polymorphism.
	8. Explore advanced techniques such as operator overloading and templates.
	9. Create custom exception classes and use exception handling to throw and catch common errors.
	10. Use pointers to explore and implement the linked list data structure
	INSTITUTIONAL OUTCOMES
	IO1 Communication: Students will be able to communicate clearly and effectively within a workplace context
	IO2 Quantitative Reasoning: Analyze and solve computational problems using a modern program language
	COURSE CONTENT OUTLINE
	1. 2D Arrays / 2D Vectors
	2. Recursion
	3. Pointers & Dynamic Memory Allocation
	4. Classes & Objects
	5. Inheritance & Polymorphism
	6. Operator Overloading & Templates
	7. Exception Handling
	8. Linked Lists
	DEPARTMENTAL GUIDELINES (optional)
	_______________________________ ________________
	DIVISION CHAIR APPROVAL DATE

