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1.1 Simplifying with Exponents 
 

Exponential Notation:  

Let 𝑎 be a real number, variable, or algebraic expression, and let 𝑛 be a positive integer. Then  

𝑎𝑛 = 𝑎 ∙ 𝑎 ∙ 𝑎 ∙∙∙ 𝑎 

          𝑛 factors 

where 𝑛 is the exponent and 𝑎 is the base. The expression 𝑎𝑛 is read “𝑎 to the 𝑛-th power”.  

Properties of Exponents: 

Let 𝑎 and 𝑏 be real numbers, variables, or algebraic expressions, and let 𝑚 and 𝑛 be rational 

numbers (assume all denominators and bases are nonzero). 

Example Property 

70 = 1, (−√3)
0

= 1 
 

𝑎0 = 1 

3−5 =
1

35
, (−2)−3 =

1

(−2)3
= −

1

8
 

 

𝑎−𝑛 =
1

𝑎𝑛
 

32 ∙ 33 = 3 ∙ 3 ∙ 3 ∙ 3 ∙ 3 = 35 = 243 
 

𝑎𝑚 ∙ 𝑎𝑛 = 𝑎𝑚+𝑛 

(22)4 = (2 ∙ 2)4 = 24 ∙ 24 = 28 = 256 
 

(𝑎𝑚)𝑛 = 𝑎𝑚𝑛 

(10)3 = (2 ∙ 5)3 = 23 ∙ 53 = 8 ∙ 125 = 1000 
 

(𝑎𝑏)𝑛 = 𝑎𝑛𝑏𝑛 

(
2

3
)

3

=
23

33
=

8

27
 

 

(
𝑎

𝑏
)

𝑛

=
𝑎𝑛

𝑏𝑛
 

27

23
= 27−3 = 24 = 16 

23

27
=

1

27−3
=

1

24
= 1/16 

 

if 𝑚 > 𝑛 then
𝑎𝑚

𝑎𝑛
= 𝑎𝑚−𝑛 

if 𝑚 < 𝑛 then
𝑎𝑚

𝑎𝑛
=

1

𝑎𝑛−𝑚
 

2−3

3−4
=

1
23

1
34

=
1

23
∙

34

1
=

34

23
=

81

8
 

 

𝑎−𝑚

𝑏−𝑛
=

𝑏𝑛

𝑎𝑚
 

(
2

3
)

−3

=
2−3

3−3
=

33

23
=

27

8
 

 

(
𝑎

𝑏
)

−𝑛

= (
𝑏

𝑎
)

𝑛
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Simplifying Expressions Containing Exponents:  

Use the properties of exponents to simplify each expression: 

Example 1: Simplify 

(4𝑥3𝑦5)(3𝑥2𝑦4) 
 

Rearrange factors 

(3)(4)𝑥3𝑥2𝑦5𝑦4 
 

Multiply numbers, add exponents 

12𝑥5𝑦9 
 

Final answer 

 

Example 2: Simplify 

(4𝑎2𝑏3𝑐)1/2 
 

½ as exponent on each factor 

41/2𝑎2/2𝑏3/2𝑐1/2 
 

Simplify, recall 41/2 = √4 = 2 

2𝑎𝑏3/2𝑐1/2 
 

Final answer 

 

Example 3: Simplify 

(
2𝑟2

5
)

3

(
5

𝑟3
)

3

 

 

Exponents on numerator and denominator 

(2𝑟2)3

53
∙

53

(𝑟3)3
 

 

Exponents on each factor in parentheses 

23𝑟6

53
∙

53

𝑟9
 

 

Divide out the 53, simplify 23 = 8 

8𝑟6

𝑟9
 

 

Subtract exponents, denominator is larger 

8

𝑟3
 

 

Final answer 
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Example 4: Simplify  

(𝑢−3𝑣2)−3 
 

Exponent on each factor in parentheses 

(𝑢−3)−3(𝑣2)−3 
 

Multiply exponents 

𝑢9𝑣−6 
 

Move negative exponent 

𝑢9

𝑣6
 

 

Final answer 

 

 Example 5: Simplify 

9𝑥2𝑦−4

3𝑥−1𝑦2
 

 

Rearrange with negative exponents in one fraction 

9𝑥2

3𝑦2
∙

𝑦−4

𝑥−1
 

 

Move negative exponents and make positive 

9𝑥2

3𝑦2
∙

𝑥1

𝑦4
 

 

Add exponent, reduce numbers 

3𝑥3

𝑦6
 

Final answer 

 

Example 6: Simplify 

(
𝑢3

8𝑣
)

−1/3

 

 

Factor 8 = 23, negative exponent switches the fraction 

(
23𝑣

𝑢3
)

1/3

 

 

Exponent on each factor in parentheses 

(23)1/3𝑣1/3

(𝑢3)1/3
 

 

Multiply exponents 

2𝑣1/3

𝑢
 

 

Final answer 
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Example 7: Simplify 

(2𝑥1/3 − 𝑦1/3)(4𝑥2/3 + 2𝑥1/3𝑦1/3 + 𝑦2/3) Multiply 2𝑥1/3 and −𝑦1/3  

by trinomial 

 

8𝑥 + 4𝑥2/3𝑦1/3 + 2𝑥1/3𝑦2/3 − 4𝑥2/3𝑦1/3 − 2𝑥1/3𝑦2/3 − 𝑦 
 

Combine like terms 

8𝑥 − 𝑦 
 

Final answer 

Example 8: Simplify 

𝑥𝑛𝑥3𝑛−1(𝑥2𝑛+3)2 
 

Multiply exponent through parenthesis 

𝑥𝑛𝑥3𝑛−1𝑥4𝑛+6 
 

Add exponents 

𝑥8𝑛+5 
 

Final answer 

Example 9: Simplify 

(3𝑥𝑘+3)2

𝑥2(𝑘+1)
∙

𝑥𝑘

(𝑥𝑘)3
 

 

Multiply exponents through parenthesis 

32𝑥2𝑘+6

𝑥2𝑘+2
∙

𝑥𝑘

𝑥3𝑘
 

 

Add exponents in numerator and denominator 

9𝑥3𝑘+6

𝑥5𝑘+2
 

 

Subtract exponents, denominator is larger 

9

𝑥2𝑘−4
 

 

Final answer 
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Example 10: Simplify 

[(
𝑥𝑎

𝑦𝑏
)

3

(
𝑥2𝑎

𝑦3𝑏
)

−3

]

−4

 

 

3 and −3 as exponents on each factor 

[
𝑥3𝑎

𝑦3𝑏
∙

𝑥−6𝑎

𝑦−9𝑏
]

−4

 

 

Add exponents 

(
𝑥−3𝑎

𝑦−6𝑏
)

−4

 

 

−4 as exponent on each factor 

𝑥12𝑎

𝑦24𝑏
 

 

Final answer 

Example 11: 

(
𝑥4𝑘+1𝑦−𝑘−1

𝑥−2𝑘+1𝑦−10𝑘−1
)

1
3𝑘

 

 

Subtract exponents 

(𝑥6𝑘𝑦9𝑘)1/3𝑘 1

3𝑘
 as exponent on each factor 

 

𝑥2𝑦3 
 

Final answer 

Example 12: 

(
𝑥1/2𝑛𝑥1/6𝑛

𝑥−1/3𝑛
)

𝑛
2

 

 

Add exponents in numerator 

(
𝑥2/3𝑛

𝑥−1/3𝑛
)

𝑛
2

 

 

Subtract exponents in denominator 

(𝑥1/𝑛)
𝑛/2

 
𝑛

2
 as exponent on the factor  

 

𝑥1/2 
 

Final answer 
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Example 13: 

(
𝑥2𝑘+1𝑦𝑘+1

𝑥3𝑘+1𝑦1−𝑘
) ÷ (

𝑥3(𝑘+1)𝑦3−3𝑘

𝑥3(𝑘−1)𝑦−3𝑘
)

𝑘
2

 

 

Distribute through parenthesis in exponents 

(
𝑥2𝑘+1𝑦𝑘+1

𝑥3𝑘+1𝑦1−𝑘
) ÷ (

𝑥3𝑘+3𝑦3−3𝑘

𝑥3𝑘−3𝑦−3𝑘
)

𝑘
2

 

 

Subtract exponents 

(
𝑦2𝑘

𝑥𝑘
) ÷ (𝑥6𝑦3)𝑘/2 

 

𝑘

2
 as exponent on each factor 

(
𝑦2𝑘

𝑥𝑘
) ÷ (𝑥3𝑘𝑦3𝑘/2) 

 

Multiply by reciprocal 

(
𝑦2𝑘

𝑥𝑘
) ∙ (

1

𝑥3𝑘𝑦3𝑘/2
) 

 

Add exponents for multiplying,  

subtract exponents for dividing 

𝑦𝑘/2

𝑥4𝑘
 

 

Final answer 
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1.1 Simplifying with Exponents Practice 
 

Simplify the following expressions 

1. (−3𝑥3𝑦−2𝑧)−2  2. (√5
6

𝑥7/4𝑦−2/3)
12

 

 

3. 
(

𝑥−2𝑦6

9
)

−1/2

 

 

4. 𝑎−2/3𝑏1/2

𝑏−2/3 √𝑎
3  

5. 
3 (

9

4
)

3/2

∙ 4√81
3

∙ 243−1/5 

 

6. (4𝑚2𝑛1/2𝑟)(−2𝑚𝑛2/3𝑟−1) 

7. (8𝑥3𝑦3/2)
2/3

 8. 
(

𝑥−1𝑦

𝑥1/2𝑦−2/3
) ÷ (

𝑥−3

𝑦−1
)

−1/2

 

 

9. 
(

𝑧−2/3

5−1𝑧1/3
)

−2

 

 

10. (3𝑎2𝑏2/3𝑐3)(−2𝑎5𝑏1/3𝑐−2) 

11. 
(

𝑎1/2𝑏2/3

2−1𝑐−2
)

6

 

 

12. 
(−4𝑥2𝑦5/2) (

𝑥−1𝑦−1/2

−2
) 

13. (125𝑥2𝑦1/3𝑎)
2/3

(−2𝑥𝑦1/6𝑎−2/3) 14. 
(

3𝑥2/3𝑦3

2𝑥5/2𝑧−3
) (

16𝑥4𝑦5

𝑥2𝑧4
)

1/2

 

 

15. 
(

𝑚2𝑝

64𝑚−3𝑝1/3
)

−1/3

 

 

16. 
(

8𝑦1/3𝑦−1/4

𝑦−1/12
)

2

 

17. 
(

9𝑥1/3𝑥1/2

𝑥−1/6
)

1/2

 

 

18. 
(

16𝑥1/3𝑦−2/3

9𝑥−2/3𝑦−1/3
)

3/2

(
8𝑥−3/2𝑦3/2

27𝑥1/2𝑦−5/2
)

−2/3

 

19. 
(

𝑥3/4𝑦−3/2

𝑥−1/4𝑦−3/2
)

1/2

÷ (
𝑥−1/2𝑦−1/2

𝑥1/2𝑦−3/2
)

3/2

 

 

20. 𝑥𝑘𝑥2𝑘+1(𝑥3𝑘+2)2 

21. (𝑥3𝑘+2𝑥4𝑘−3)2

𝑥14𝑘
 

22. (𝑎𝑘𝑏𝑘+1)2

(𝑎2+𝑘𝑏3+𝑘)2
 

 

23. (𝑥2𝑘+3𝑦3𝑘+11)3

(𝑥𝑘+1𝑦𝑘+4)6
 

 

24. 𝑥2𝑛−3

𝑥3𝑛+1
∙

𝑥𝑛+5

𝑥𝑛−2
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25. (2𝑥𝑛+1)2

𝑥2(𝑛+1)
∙

𝑥3−𝑛

(𝑥𝑛)2
 

 

26. (𝑐𝑛 − 𝑘3𝑛)(𝑐2𝑛 + 𝑐𝑛𝑘3𝑛 + 𝑘6𝑛) 

27. (3𝑥𝑛+1)2

𝑥2(𝑛+1)
∙

𝑥𝑛

(𝑥𝑛)3
 

 

28. 𝑎6𝑛+1𝑏5𝑛−2

𝑎6𝑛−1𝑏5𝑛+2
 

29. (3𝑎𝑘𝑏4𝑘)3

(5𝑎𝑘+1𝑏2𝑘+1)2
 

 

30. 𝑎2𝑛 ∙ 𝑎𝑛+1 

31. (𝑎𝑛 − 1)(𝑎2𝑛 + 1) 
 

32. (𝑥𝑛 + 1)2 

33. 𝑥2𝑛+1

𝑥𝑛𝑦
 

 

34. (𝑥𝑎𝑦𝑏 ∙ 𝑥𝑏𝑦𝑎)𝑐 

35. (𝑚𝑥−𝑏 ∙ 𝑛𝑥+𝑏)𝑥(𝑚𝑏𝑛−𝑏)𝑥 36. 
[

(3𝑥𝑎𝑦𝑏)3

(−3𝑥𝑎𝑦𝑏)2
]

2

 

 

37. 

[(
𝑥𝑟

𝑦𝑡
)

2

(
𝑥2𝑟

𝑦4𝑡
)

−2

]

−3

 

 

38. 

(
𝑥5𝑛−1𝑦−𝑛+1

𝑥−3𝑛−1𝑦−5𝑛+1
)

1
2𝑛

 

39. 

(
𝑎−4(𝑛+2)𝑏3𝑛−6

𝑎(2𝑛−8)𝑏−3(𝑛+2)
)

1
3𝑛

 

 

40. 
(

𝑦1/3𝑛𝑦−1/4𝑛

𝑦−1/12𝑛
)

2𝑛

 

41. 

(
𝑥1/3𝑛𝑥1/2𝑛

𝑥−1/6𝑛
)

𝑛
2

 

 

42. 

(
𝑥2𝑛−1𝑦3−𝑛

𝑥3𝑛−1𝑦3−2𝑛
)

1
𝑛

 

43. 

(
𝑥2(𝑛−1)𝑦3−𝑛

𝑥3𝑛−2𝑦3−2𝑛
)

2
𝑛

 

 

44. 

(
𝑥2(2𝑛+1)𝑦2−𝑛

𝑥2(𝑛+1)𝑦2+𝑛
)

−
1
2

 

45. 𝑥2𝑛+1𝑦𝑛+1

𝑥3𝑛+1𝑦1−𝑛
÷ (

𝑥𝑛+1𝑦1−𝑛

𝑥𝑛−1𝑦−𝑛
)

𝑛

 

 

46. 

(
𝑥2𝑛+1𝑦𝑛+1

𝑥3𝑛+1𝑦1−𝑛
) ÷ (

𝑥2(𝑛+1)𝑦2(1−𝑛)

𝑥2(𝑛−1)𝑦−2𝑛
)

𝑛
2

 

47. (𝑥1/3 − 𝑦1/3)(𝑥2/3 + 𝑥1/3𝑦1/3 + 𝑦2/3) 

 

48. (𝑥1/3 + 𝑦1/3)(𝑥2/3 − 𝑥1/3𝑦1/3 + 𝑦2/3) 

 

49. (𝑥1/2 − 4𝑥1/4 − 4)(𝑥1/2 + 4𝑥1/4 − 4) 

 

50. (𝑥1/2 − 2𝑥1/4𝑦1/4 − 𝑦1/2)(𝑥1/2 + 2𝑥1/4𝑦1/4 − 𝑦1/2) 
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51. (𝑥1/2 − 2𝑥1/4𝑦1/4 + 𝑦1/2)(𝑥1/2 + 2𝑥1/4𝑦1/4 + 𝑦1/2) 

 

52. (𝑥1/2 − 2𝑥1/4𝑦1/4 − 2𝑦1/2)(𝑥1/2 + 2𝑥1/4𝑦1/4 − 2𝑦1/2) 

 

53. (𝑥 − 𝑦)(𝑥𝑛−1 + 𝑥𝑛−2𝑦 + 𝑥𝑛−3𝑦2 + ⋯ + 𝑥3𝑦𝑛−4 + 𝑥2𝑦𝑛−3 + 𝑥𝑦𝑛−2 + 𝑦𝑛−1) 

 

  



16 
 

1.2 Radical Expressions and Equations 
 

Principle 𝒏-th root √𝒂
𝒏

:  

Let 𝑛 be a positive integer greater than 1, and let 𝑎 be a real number.  

(1) If 𝑎 = 0 then √𝑎
𝑛

= 0 

(2) If 𝑎 > 0 then √𝑎
𝑛

 is the positive real number 𝑏 such that 𝑏𝑛 = 𝑎 

(3) (a) If 𝑎 < 0 and 𝑛 is odd, then √𝑎
𝑛

 is the negative real number 𝑏 such that 𝑏𝑛 = 𝑎 

 

(b) If 𝑎 < 0 and 𝑛 is even, then √𝑎
𝑛

 is not a real number. 

The expression √𝑎
𝑛

 is a radical, the number 𝑎 is the radicand, and 𝑛 is the index of the radical. 

The symbol √  is called a radical sign.  

If √𝑎 = 𝑏, then 𝑏2 = 𝑎. If √𝑎
3

= 𝑏, then 𝑏3 = 𝑎 

Properties of √𝒂
𝒏

: (where 𝑛 is a positive integer) 

Example Property 

(√7)
2

= 7, (√−5
3

)
3

= −5 
 

( √𝑎
𝑛

)
𝑛

= 𝑎 if √𝑎
𝑛

 is a real number 

√32 = 3, √233
= 2 

 

√𝑎𝑛𝑛
= 𝑎 if 𝑎 ≥ 0 

√(−2)33
= −2, √(−3)55

= −3 
 

√𝑎𝑛𝑛
= 𝑎 if 𝑎 < 0 and  𝑛 is odd 

√(−2)2 = |−2| = 2, √(−3)44
= |−3| = 3 

 

√𝑎𝑛𝑛
= |𝑎| if 𝑎 < 0 and 𝑛 is even 

 

√𝑥2 = |𝑥| = {
𝑥 if 𝑥 ≥ 0

−𝑥 if 𝑥 < 0
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Laws of Radicals: 

Example Law 

√98 = √49 ∙ 2 = √49 ∙ √2 = 7√2 

√−54
3

= √(−27)(2)
3

= √−27
3

√2
3

= −3√2
3

 
 

√𝑎𝑏
𝑛

= √𝑎
𝑛

∙ √𝑏
𝑛

 

√
3

8

3

=
√3
3

√8
3 =

√3
3

2
 

 

√
𝑎

𝑏

𝑛
=

√𝑎
𝑛

√𝑏
𝑛  

√√64
3

= √64
(2)(3)

= √64
6

= √266
= 2 

 

√ √𝑎
𝑛𝑚

= √𝑎
𝑚𝑛

 

 

Warning:  If 𝑎 ≠ 0 and 𝑏 ≠ 0 

Warning Example 

√𝑎2 + 𝑏2 ≠ 𝑎 + 𝑏 
 

√32 + 42 = √25 = 5 ≠ 3 + 4 = 7 

√𝑎 + 𝑏 ≠ √𝑎 + √𝑏 
 

√4 + 9 = √13 ≠ √4 + √9 = 2 + 3 = 5 

 

Simplifying Radicals 

An expression involving radicals is in simplest form when the following conditions are satisfied: 

1. All possible factors have been removed from the radical 

2. All fractions have radical-free denominators (accomplished by a process called 

rationalizing the denominator) 

3. The index of the radical is reduced. 

To simplify a radical, we factor the radicand into factors whose exponents are multiples of the 

index. The roots of these factors are written outside the radical and the “leftover” factors make 

up the new radicand.  
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Example 1: Simplify 

√135
3

 
 

Factor 135 

√27 ∙ 5
3

 
 

Split into two radicals 

√333
√5
3

 
 

Simplify the first radical 

3√5
3

 
 

Final answer 

Example 2: Simplify 

√16𝑎3𝑏8𝑐43
 

 

Factor into multiples of the index 

√(23𝑎3𝑏6𝑐3)(2𝑏2𝑐)
3

 
 

Divide a 3 (the index) out of each exponent 

√(2𝑎𝑏2𝑐)3(2𝑏2𝑐)
3

 
 

Split into two radicals 

√(2𝑎𝑏2𝑐)33 √2𝑏2𝑐
3

 
 

Simplify first radical 

2𝑎𝑏2𝑐 √2𝑏2𝑐
3

 Final answer 

 

Example 3: Simplify 

√3𝑥2𝑦3√6𝑥5𝑦 
 

Multiply radicals together, factor the 6 

√3𝑥2𝑦3 ∙ 2 ∙ 3𝑥5𝑦 
 

Combine bases 

√32 ∙ 2𝑥7𝑦4 
 

Factor into multiples of the index 

√(32𝑥6𝑦4)(2𝑥) 
 

Divide a 2 (the index) out of each exponent 

√(3𝑥3𝑦2)2(2𝑥) 
 

Split into two radicals 

√(3𝑥3𝑦2)2√2𝑥 
 

Simplify the first radical 

3𝑥3𝑦2√2𝑥 
 

Final answer 
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Rationalizing Denominators of Quotients (𝑎 > 0) 

Factor in  

denominator 

Multiply numerator  

and denominator by 

Resulting factor 

√𝑥 √𝑥 √𝑥√𝑥 = √𝑥2 = 𝑥 
 

√𝑥
3

 √𝑥23
 √𝑥

3 √𝑥23
= 𝑥 

 

√𝑥37
 √𝑥47

 √𝑥37
√𝑥47

= 𝑥 
 

 

Example 4: Simplify 

1

√3
 

 

Multiply numerator and denominator by √3 

1

√3
(

√3

√3
) 

 

Multiply 

√3

√32
 

 

Simplify denominator 

√3

3
 

Final answer 

 

Example 5: Simplify 

1

√𝑎
3  

 

Multiply numerator and denominator by √𝑎23
 

1

√𝑎
3 (

√𝑎23

√𝑎23 ) 

 

Multiply 

√𝑎23

√𝑎33  

 

Simplify denominator 

√𝑎23

𝑎
 

 

Final answer 
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Example 6: Simplify 

√
3

2
 

 

Square root of numerator and denominator 

√3

√2
 

 

Multiply numerator and denominator by √2 

√3

√2
(

√2

√2
) 

 

Multiply 

√6

√22
 

 

Simplify denominator 

√6

2
 

 

Final answer 

Example 7: Simplify 

√
𝑥

𝑦2

5

 

 

Take root of numerator and denominator 

√𝑥
5

√𝑦25
 

 

Multiply numerator and denominator by √𝑦35
 

√𝑥
5

√𝑦25
(

√𝑦35

√𝑦35
) 

 

Multiply 

√𝑥𝑦35

√𝑦55
 

 

Simplify denominator 

√𝑥𝑦35

𝑦
 

 

Final answer 
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Definition of Rational Exponents: 

Let 
𝑚

𝑛
 be a rational number where 𝑛 is a positive integer greater than 1. If 𝑎 is a real number such 

that √𝑎
𝑛

 exists, then 

(1) 𝑎1/𝑛 = √𝑎
𝑛

 

(2) 𝑎𝑚/𝑛 = √𝑎𝑚𝑛
= ( √𝑎

𝑛
)

𝑚
 

(3) 𝑎𝑚/𝑛 = (𝑎1/𝑛)
𝑚

= (𝑎𝑚)1/𝑛 

 

Example 8: Simplify 

(−125)2/3(4)−5/2 
 

Convert to radicals 

(√(−5)33
)

2

(√4)
−5

 

 

Take roots 

(−5)2(2)−5 
 

Move negative exponent and make it positive 

(−5)2

25
 

 

Evaluate exponents 

25

32
 

 

Final answer 

Example 9: Simplify 

(𝑎2𝑏9)1/3 
 

Put exponent on each factor 

(𝑎2)1/3(𝑏9)1/3 
 

Multiply exponents 

𝑎2/3 𝑏3 
 

Final answer 
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Example 10: Simplify 

(
2𝑥2/3

𝑦1/2
)

2

(
3𝑥−1/6

𝑦1/3
) 

 

Put exponent on each factor, squaring 2 to get 4 

(
4𝑥4/3

𝑦
) (

3𝑥−1/6

𝑦1/3
) 

 

Multiply bases, add exponents 

(4 ∙ 3)𝑥4/3−1/6

𝑦1+1/3
 

 

Common denominators on exponents 

12𝑥8/6−1/6

𝑦3/3+1/3
 

 

Add exponents 

12𝑥7/6

𝑦4/3
 

Final answer 

 

Addition and Subtraction with Radicals 

We add or subtract radicals just as we add or subtract like terms 

Example 11: Add 

7√5 + 3√5 
 

Add like radicals, radical remains unchanged 

10√5 
 

Final answer 

Example 12: Add 

9√2
3

− 7𝑥 √2
3

+ 4√2
3

 
 

Add like radicals, note 7𝑥 √2
3

 is not like others 

13√2
3

− 7𝑥 √2
3

 
 

Final answer 

  

Example 13: Add 

8√4𝑥
5

+ 2√4𝑥
5

− √4𝑥
3

 
 

Add like radicals, note index must match 

10√4𝑥
5

− √4𝑥
3

 
 

Final answer 
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Example 14: Add 

5√16𝑦43
+ 7𝑦 √2𝑦3  
 

Factor first radical 

5√23𝑦33
√2𝑦3 + 7𝑦 √2𝑦3

  Simplify first radical 

  

5 ∙ 2𝑦 √2𝑦3 + 7𝑦 √2𝑦3  
 

Multiply 

10𝑦 √2𝑦3 + 7𝑦 √2𝑦3  
 

Add like terms 

17𝑦 √2𝑦3  
 

Final answer 

Radical Equations 

The principle of powers: If an equation 𝑎 = 𝑏 is true, then 𝑎𝑛 = 𝑏𝑛 is true for any rational 

number 𝑛 for which 𝑎𝑛 and 𝑏𝑛 exist. This means we will have to check our solutions in the 

original equation to be sure they work. If a value does not work it is called an extraneous 

solution and not included in the final answer 

Example 15: Solve  

√5𝑥 + 3 = 7 
 

Square both sides 

5𝑥 + 3 = 49 
 

Subtract 3 from both sides 

5𝑥 = 46 
 

Divide both sides by 5 

𝑥 =
46

5
 

 

Check solution 

√5 (
46

5
) + 3 = 7 

√46 + 3 = 7 

√49 = 7 

7 = 7 
 

 

 

 

 

 

It works! 

𝑥 =
46

5
 

 

Final answer 
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Example 16: Solve 

√4𝑥 − 9 − √2𝑥 = 0 
 

Add √2𝑥 to isolate one radical term 

√4𝑥 − 9 = √2𝑥 
 

Square both sides 

4𝑥 − 9 = 2𝑥 
 

Subtract 2𝑥 and add 9 to both sides 

2𝑥 = 9 
 

Divide by 2 

𝑥 =
9

2
 

 

Check solution 

√4 (
9

2
) − 9 − √2 (

9

2
) = 0 

√18 − 9 − √9 = 0 

√9 − 3 = 0 

3 − 3 = 0 

0 = 0 
 

 

 

 

 

 

 

It works! 

𝑥 =
9

2
 

 

Final answer 
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Example 17: Solve 

√3 − 𝑥 − 𝑥 = 3 
 

Add 𝑥 to isolate the radical 

√3 − 𝑥 = 𝑥 + 3 
 

Square both sides 

3 − 𝑥 = 𝑥2 + 6𝑥 + 9 
 

Subtract 3 and add 𝑥 

0 = 𝑥2 + 7𝑥 + 6 
 

Factor 

0 = (𝑥 + 6)(𝑥 + 1) 
 

Set each factor equal to zero 

𝑥 + 6 = 0     or     𝑥 + 1 = 0 
 

Solve both equations 

𝑥 = −6, −1 
 

Check both solutions 

√3 − (−6) − (−6) = 3 

√9 + 6 = 3 
3 + 6 = 3 

9 ≠ 3 
 

Checking 𝑥 = −6 

 

 

Extraneous solution, not included in final answer 

√3 − (−1) − (−1) = 3 

√4 + 1 = 3 

2 + 1 = 3 

3 = 3 
 

Checking 𝑥 = −1 

 

 

It works! 

𝑥 = −1 
 

Final answer 
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Example 18: Solve 

√4𝑦 + 1 − √𝑦 − 2 = 3 
 

Adding √𝑦 − 2 isolates one of the radical terms 

√4𝑦 + 1 = 3 + √𝑦 − 2 
 

Square both sides 

(√4𝑦 + 1)
2

= (3 + √𝑦 − 2)
2

 
 

Simplify, recall (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 

4𝑦 + 1 = 9 + 6√𝑦 − 2 + 𝑦 − 2 
 

Combine like terms 

4𝑦 + 1 = 7 + 𝑦 + 6√𝑦 − 2 
 

Subtract 7 and y to isolate the term with radical 

3𝑦 − 6 = 6√𝑦 − 2 
 

Divide by common factor of 3 

𝑦 − 2 = 2√𝑦 − 2 
 

Square both sides 

(𝑦 − 2)2 = (2√𝑦 − 2)
2

 
 

Simplify, recall (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 

𝑦2 − 4𝑦 + 4 = 4(𝑦 − 2) 
 

Distribute 

𝑦2 − 4𝑦 + 4 = 4𝑦 − 8 
 

Subtract 4y, add 8 to make equal to zero 

𝑦2 − 8𝑦 + 12 = 0 
 

Factor 

(𝑦 − 6)(𝑦 − 2) = 0 
 

Set each factor equal to zero 

𝑦 − 6 = 0 or 𝑦 − 2 = 0 
 

Solve 

𝑦 = 6,2 
 

We need to check these answers 

√4(6) + 1 − √(6) − 2 = 3 

√24 + 1 − √6 − 2 = 3 

√25 − √4 = 3 

5 − 2 = 3 

3 = 3 
 

Checking 𝑦 = 6 

 

 

 

It works! 

√4(2) + 1 − √(2) − 2 = 3 

√8 + 1 − √2 − 2 = 3 

√9 − √0 = 3 

3 − 0 = 3 

3 = 3 

Checking 𝑦 = 2 

 

 

 

It works! 

𝑦 = 6,2 
 

Final answer 
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1.2 Radical Expressions and Equations Practice 
 

Simplify each expression. 

1. √50 + 2√8 
 

2. √63 − 2√7 + √27 

3. 2√2
3

− √54
3

+ √250
3

 
 

4. 𝑥√2𝑥 + 4√18𝑥3 

5. 

√
1

2
+ √8 

6. 

√48 − 2√
1

3
 

 

7. √75 + 4√18 + 2√12 − 2√8 
 

8. 3√2𝑎3 + 𝑎√18𝑎 − 2√8𝑎3 

9. √125 + 2√27 − √20 + 3√12 10. 

2√12𝑥 − 3√
1

3
𝑥 

 

11. √3𝑎 + 5√27𝑎3 − 𝑎√3𝑎 12. 

√
1

3
+ 3√27 − 2√12 

 

13. 

√
3

5
+ 5√60 − 3√15 

 

14. 3√50 − 4√8 + √27 − √3 

15. √𝑥4𝑦 − 𝑥√9𝑥2𝑦 + 𝑥2√16𝑦 
 

16. 𝑎2√8𝑎3𝑏 − 2𝑎3√18𝑎𝑏 + 3𝑎√50𝑎5𝑏 

17. √16𝑎𝑏3 − √9𝑎𝑏3 + √25𝑎3𝑏3 18. 
√25𝑥

𝑥
+ √

9

𝑥
−

5

√𝑥
 

 

19. 

√32 + √
1

2
+ √

2

9
 

 

20. 

12√
7

3
− √189 

21. 
1

2
√

3

4
+

1

2
√

1

3
− 7√75 

 

 

 

22. 

√125 + 17√
1

5
− (

5

4
)

−
1
2

+ √
25

16

4
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23. 

6√
3

2
− √24 + 3√

2

3
 

 

24. 

2√
5

3
− √60 

25. 
√36
4

+ 8(4)−3/2 − √−27
3

− (
2

√2
)

2

 

 

26. 

√9
4

− √
1

3
 

27. 
𝑥

√𝑥
− 𝑥√

1

𝑥
 

 

28. √144
4

+ 3√9
4

− 5√48 

29. 4

√4
3 − √4

6
 

 

30. 
6

√3
− 18√

1

3
+ 121/2 

31. 

√
5

4

3

+ √
1

100

3

 

 

32. 

√54
3

+ √
1

2
− √250

3
−

3

4
√

2

9
 

33. 

√
2

3
+ √

3

2
+

1

√6
− 241/2 − 481/3 

 

34. 

𝑎2√
𝑏

𝑎
− √

𝑎3𝑏

4
 

35. 

√
𝑎 + 𝑏

𝑎 − 𝑏
− √

𝑎 − 𝑏

𝑎 + 𝑏
 

 

36. 

√
𝑎 + 1

𝑎 − 1
+ 2√1 −

1

𝑎2
− √(𝑎 −

1

𝑎
) (

1

𝑎
) 

37. 

√1 −
𝑥

𝑦
+ 2√

𝑦2 − 𝑥𝑦

𝑦2
 

 

38. √3𝑥2𝑦3 − √12𝑥3𝑦 + √27𝑥5𝑦 − √75𝑦 
 

39. 
6

√3
− 18√

1

3
−

1

6
√108 + 121/2 + 33/2 + 5√3 

 

40. 

√24 − 6√
1

6
+

1

2
√96 − √66

2

3
+

2

5
√

25

6
 

 

41. 

√
5

4
+

1

√3
+ 3(8)2/3 −

1

2
√43 −

7

6
√27 +

1

3
(−27)2/3 + √147 
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Solve each equation. 

42. √7𝑥 + 2 = 4 
 

43. √2𝑥 + 3 − 3 = 0 

44. √3𝑥 + 12 − 6 = 0 
 

45. √5𝑥 + 1 − 4 = 0 

46. √3𝑥 − 8 − √𝑥 = 0 
 

47. √6𝑥 − 5 − 𝑥 = 0 

48. √5𝑥 + 1 − 1 = 𝑥 
 

49. √𝑥 + 2 − √𝑥 = 2 

50. 𝑥 + √4𝑥 + 1 = 5 
 

51. 3 + 𝑥 = √6𝑥 + 13 

52. √5𝑥 + 1 − √4𝑥 + 4 = 0 
 

53. 𝑥 − 1 = √7 − 𝑥 

54. √6𝑥 − 8 − √3𝑥 + 4 = 0 
 

55. √3 − 3𝑥 − 1 = 2𝑥 

56. √2𝑥 + 1 − √𝑥 = 1 
 

57. √2𝑥 + 2 = 3 + √2𝑥 − 1 

58. √3𝑥 − 2 − √𝑥 = 2 
 

59. √4𝑥 + 5 − √𝑥 + 4 = 2 

60. √3𝑥 + 1 = 4 + √𝑥 + 3 
 

61. √3𝑥 + 4 − √𝑥 + 2 = 2 

62. √𝑥 + 2 + 5 = √3𝑥 + 3 
 

63. √2𝑥 + 4 − √𝑥 + 3 = 1 

64. √4𝑥 + 4 − √𝑥 − 2 = √2𝑥 + 3 
 

65. √3𝑥 + 4 − √2𝑥 + 1 = √𝑥 − 3 

66. √4𝑥 + 1 + √𝑥 − 1 = √7𝑥 + 2 
 

67. √2𝑥 − 1 + √𝑥 − 1 = 𝑥 

68. √6𝑥 + 2 + √2𝑥 + 6 = √15𝑥 + 17 
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1.3 Quadratic Expressions and Equations 
 

Algebraic Expressions 

It is convenient to use letters such as 𝑥 or 𝑦 to represent numbers. Such a symbol is called a 

variable. An algebraic expression is the result of performing a finite number of additions, 

subtractions, multiplications, divisions, or roots on a collection of variables and real numbers. 

The following are examples of algebraic expressions: 

𝑥3 + 3𝑥2 − √𝑥 − 𝜋,
4𝑥𝑦 − 𝑥

𝑥 + 𝑦
, √

7𝑥 − 3

𝑥5𝑦−2 + 𝑧

3

 

Polynomials 

If 𝑥 is a variable, then a monomial in 𝑥 is an expression of the form 𝑎𝑥𝑛, where 𝑎 is a real 

number and 𝑛 is a nonnegative integer. A binomial is a sum of two monomials, and a trinomial is 

a sum of three monomials. 

Definition of a polynomial: 

A polynomial in 𝑥 is the sum of the form: 

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 

Where 𝑛 is a nonnegative integer and each coefficient 𝑎 is a real number. If 𝑎𝑛 ≠ 0, then the 

polynomial is said to have degree 𝑛. Each expression 𝑎𝑘𝑥𝑘 in the sum is a term of the 

polynomial. The coefficient 𝑎𝑘 of the highest power of 𝑥 is called the leading coefficient of the 

polynomial.  

Example Leading Coefficient Degree 

2𝑥5 + 3𝑥4 + (−7)𝑥 + 3 
 

2 5 

𝑥7 + 8𝑥2 + (−3)𝑥 
 

1 7 

−5𝑥2 + 1 
 

−5 2 

8 
 

8 0 
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Example 1: Add 

(𝑥3 − 4𝑥2 + 5𝑥 − 9) + (2𝑥3 + 𝑥2 − 3𝑥) 
 

Distribute “+” 

𝑥3 − 4𝑥2 + 5𝑥 − 9 + 2𝑥3 + 𝑥2 − 3𝑥 
 

Combine like terms 

3𝑥3 − 3𝑥2 + 2𝑥 − 9 
 

Final answer 

Example 2: Subtract 

(𝑥3 + 5𝑥2 − 10𝑥 + 6) − (2𝑥3 − 3𝑥 − 4) 
 

Distribute “−“ 

𝑥3 + 5𝑥2 − 10𝑥 + 6 − 2𝑥3 + 3𝑥 + 4 
 

Combine like terms 

−𝑥3 + 5𝑥2 − 7𝑥 + 10 
 

Final answer 

Example 3: Multiply 

(7𝑥 + 5𝑦)(3𝑥 − 2𝑦) 
 

Use FOIL to multiply 

(7𝑥)(3𝑥) = 21𝑥2 
 

F – First terms 

(7𝑥)(−2𝑦) = −14𝑥𝑦 
 

O – Outside terms 

(5𝑦)(3𝑥) = 15𝑥𝑦 
 

I – Inside terms 

(5𝑦)(−2𝑦) = −10𝑦2 
 

L – Last terms 

21𝑥2 − 14𝑥𝑦 + 15𝑥𝑦 − 10𝑦2 
 

Combine like terms 

21𝑥2 + 𝑥𝑦 − 10𝑦2 
 

Final answer 

Example 4: Multiply 

(3𝑥 − 7)(2𝑥3 + 3𝑥 − 1) Distribute  

3𝑥 and −7 

(3𝑥)(2𝑥3) + (3𝑥)(3𝑥) + (3𝑥)(−1) + (−7)(2𝑥3) + (−7)(3𝑥) + (−7)(−1) 
 

Multiply 

6𝑥4 + 9𝑥2 − 3𝑥 − 14𝑥3 − 21𝑥 + 7 Combine  

like terms 

6𝑥4 − 14𝑥3 + 9𝑥2 − 24𝑥 + 7 
 

Final answer 

Special Products 

Certain products of binomials occur so frequently that you should learn to recognize them 
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Special Product/Factor Formulas: 

Name Property 

Difference of two squares 

 
(𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏2 

Sum of squares 𝑎2 + 𝑏2 = 𝑃𝑟𝑖𝑚𝑒 
 

Perfect square trinomial (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 

(𝑎 − 𝑏)2 = 𝑎2 − 2𝑎𝑏 + 𝑏2 
 

Sum of cubes (𝑎 + 𝑏)(𝑎2 − 𝑎𝑏 + 𝑏2) = 𝑎3 + 𝑏3 
 

Difference of cubes (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏2) = 𝑎3 − 𝑏3 
 

Binomial cubes (𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3 

(𝑎 − 𝑏)3 = 𝑎3 − 3𝑎2𝑏 + 3𝑎𝑏2 − 𝑏3 
 

 

Example 5: Find the product 

(2𝑥 + 3)2 
 

Use perfect square formula 

(2𝑥)2 + 2(2𝑥)(3) + (3)2 
 

Simplify each term 

4𝑥2 + 12𝑥 + 9 
 

Final answer 

Example 6: Find the product 

(2𝑥 + 𝑦)(2𝑥 − 𝑦)(4𝑥2 + 𝑦2) Multiply first two binomials with  

difference of squares formula 

(4𝑥2 − 𝑦2)(4𝑥2 + 𝑦2) Multiply solution by last binomial with  

difference of squares formula 

16𝑥4 − 𝑦4 
 

Final answer 

Factoring Polynomials 

To factor a polynomial means to do the reverse of multiplying, that is to find an equivalent 

expression that is a product. Factoring is an important algebraic skill and in this section we study 

the types of factorization that will commonly arise in your study of mathematics.  

Terms with common factors: 

When factoring, you should always look for factors common to all the terms of an expression. 
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Example 7: Factor  

4𝑦2𝑛 − 8 
 

Factor out common factor of 4 

4(𝑦2𝑛 − 2) 
 

Final answer 

Example 8: Factor 

5𝑥4𝑛 − 20𝑥3𝑛 
 

Factor out common factor of 5𝑥3𝑛 

5𝑥3𝑛(𝑥𝑛 − 4) 
 

Final answer 

Example 9: Factor 

8𝑝5𝑛𝑞2𝑛 − 4𝑝4𝑛𝑞3𝑛 + 2𝑝4𝑛𝑞4𝑛 
 

Factor out common factor of 2𝑝4𝑛𝑞2𝑛 

2𝑝4𝑛𝑞2𝑛(4𝑝𝑛 − 2𝑞𝑛 + 𝑞2𝑛) 
 

Final answer 

Factor by grouping 

In more complicated expressions, there may be a common binomial factor 

Example 10: Factor 

(𝑎 − 𝑏)(𝑥 + 7) + (𝑎 − 𝑏)(𝑥 − 𝑦2) 
 

Factor out common binomial factor of (𝑎 − 𝑏) 

(𝑎 − 𝑏)[(𝑥 + 7) + (𝑥 − 𝑦2)] 
 

Combine like terms in second factor 

(𝑎 − 𝑏)(2𝑥 + 7 − 𝑦2) 
 

Final answer 

Example 11: Factor 

𝑎𝑥2 − 𝑎 − 𝑥2 + 1 
 

Factor GCF out of first and second group 

𝑎(𝑥2 − 1) − 1(𝑥2 − 1) 
 

Factor common binomial factor 

(𝑥2 − 1)(𝑎 − 1) 
 

Factor difference of squares 

(𝑥 + 1)(𝑥 − 1)(𝑎 − 1) 
 

Final answer 
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Factor difference of squares 

Example 12: Factor 

25𝑥2𝑛 − 49𝑦2𝑛 
 

Use difference of squares formula 

(5𝑥𝑛 + 7𝑦𝑛)(5𝑥𝑛 − 7𝑦𝑛) 
 

Final answer 

Example 13: Factor 

(𝑟 − 3)2 − (𝑠 − 3)2 
 

Difference of squares on groups 

[(𝑟 − 3) + (𝑠 − 3)][(𝑟 − 3) − (𝑠 − 3)] 
 

Distribute negative through parentheses 

(𝑟 − 3 + 𝑠 − 3)(𝑟 − 3 − 𝑠 + 3) 
 

Combine like terms in each factor 

(𝑟 + 𝑠 − 6)(𝑟 − 𝑠) 
 

Final answer 

Example 14: Factor 

81𝑥4 − (𝑦 − 3𝑧)2 
 

Difference of squares formula 

[9𝑥2 + (𝑦 − 3𝑧)][9𝑥2 − (𝑦 − 3𝑧)] 
 

Distribute negative through parentheses 

(9𝑥2 + 𝑦 − 3𝑧)(9𝑥2 − 𝑦 + 3𝑧) 
 

Final answer 

Factor sum and difference of two cubes 

Example 15: Factor 

𝑢3 + 8𝑣3 
 

Sum of cubes formula 

(𝑢 + 2𝑣)(𝑢2 − 2𝑢𝑣 + (2𝑣)2) 
 

Simplify 

(𝑢 + 2𝑣)(𝑢2 − 2𝑢𝑣 + 4𝑣2) 
 

Final answer 

Example 16: Factor: 

64𝑐3 − 27𝑑6 
 

Identify cube roots 

(4𝑐)3 − (3𝑑2)3 
 

Difference of cubes formula 

(4𝑐 − 3𝑑2)((4𝑐)2 + (4𝑐)(3𝑑2) + (3𝑑)2) 
 

Simplify 

(4𝑐 − 3𝑑2)(16𝑐2 + 12𝑐𝑑2 + 9𝑑4) 
 

Final answer 

 



35 
 

Factor trinomials 

A factorization of a trinomial 𝑝𝑥2 + 𝑞𝑥 + 𝑟 (also called quadratic expression) where 𝑝 and 𝑞 are 

integers, must be of the form  

𝑝𝑥2 + 𝑞𝑥 + 𝑟 = (𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑) 

Where 𝑎, 𝑏, 𝑐, and 𝑑 are integers. It falls that 𝑎𝑐 = 𝑝, 𝑏𝑑 = 𝑟, and 𝑎𝑑 + 𝑏𝑐 = 𝑞. Only a limited 

number of choices for 𝑎, 𝑏, 𝑐, and 𝑑 satisfy these conditions. If none of the choices work, then 

𝑝𝑥2 + 𝑞𝑥 + 𝑟 is irreducible. Trying the various possibilities, as we will see in the next example, 

is called the method of trial and error. This method is also applicable to trinomials of the form 

𝑝𝑥2 + 𝑞𝑥𝑦 + 𝑟𝑦2, in which case the factorization must be of the form(𝑎𝑥 + 𝑏𝑦)(𝑐𝑥 + 𝑑𝑦). 

Example 17: Factor 

6𝑥2 + 7𝑥 − 20 Identify relationships  

of (𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑) 

𝑎𝑐 = 6 

𝑏𝑑 = −20 

𝑎𝑑 + 𝑏𝑐 = 7 
 

Assume 𝑎 and 𝑐 are both positive, 

consider possible combinations  

for each 

𝑎 1 6 2 3 

𝑐 6 1 3 2 

 

 

This gives the following possibilities 

6𝑥2 + 7𝑥 − 20 = (𝑥 + 𝑏)(6𝑥 + 𝑑) 
6𝑥2 + 7𝑥 − 20 = (6𝑥 + 𝑏)(𝑥 + 𝑑) 

6𝑥2 + 7𝑥 − 20 = (3𝑥 + 𝑏)(2𝑥 + 𝑑) 
6𝑥2 + 7𝑥 − 20 = (2𝑥 + 𝑏)(3𝑥 + 𝑑) 

 

Next consider possible values for 

 𝑏 and 𝑑, as 𝑏𝑑 = −20 we list possible 

combinations 

𝑏 1 −1 2 −2 4 −4 5 −5 
𝑑 −20 20 −10 10 −5 5 −4 4 

 

 

Trying various values we find 

𝑏 = −4, 𝑑 = 5, 𝑎 = 3, and 𝑐 = 2 

(3𝑥 − 4)(2𝑥 + 5) 
 

Final answer 

As a check, you should multiply the final factorization to see whether the original polynomial is 

obtained. 
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Factoring with GCF 

Example 18: Factor 

−2𝑥2 − 4𝑥 + 2𝑥3 
 

Reorder 

2𝑥3 − 2𝑥2 − 4𝑥 
 

Factor GCF of 2𝑥 

2𝑥(𝑥2 − 𝑥 − 2) 
 

Factor trinomial 

2𝑥(𝑥 − 2)(𝑥 + 1) 
 

Final answer 

Example 19: Factor 

2𝑥2 + 20𝑥 + 50 
 

Factor GCF of 2 

2(𝑥2 + 10𝑥 + 25) 
 

Note form of perfect square trinomial 

2(𝑥2 + 2(5)(𝑥) + 52 ) 
 

Perfect square formula 

2(𝑥 + 5)2 
 

Final answer 

Example 20: Factor 

63 − 2𝑥𝑛 − 𝑥2𝑛  
 

Using the 𝑎𝑐 method, split middle term 

Product = 𝑎𝑐 Sum = 𝑏 

−63 
(−9)(7) = −63 

−2 

−9 + 7 = −2 

  

Split middle term using −9 and 7 

63 − 9𝑥𝑛 + 7𝑥𝑛 − 𝑥2𝑛 
 

Factor by grouping 

9(7 − 𝑥𝑛) + 𝑥𝑛(7 − 𝑥𝑛) 
 

Factor binomial GCF 

(7 − 𝑥𝑛)(9 + 𝑥𝑛) 
 

Final answer 

Solving Quadratic Equations 

Definition of a Quadratic Equation: A quadratic equation in 𝑥 is an equation that can be written 

in the standard form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎, 𝑏, and 𝑐 are real numbers with 𝑎 ≠ 0. A 

quadratic equation in 𝑥 is also known as a second-degree polynomial in 𝑥. We will discuss four 

methods for solving quadratic equations: factoring, extracting square roots, completing the 

square, and the quadratic formula.  
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The first technique is based on the zero-factor property.  

If 𝑎𝑏 = 0 then 𝑎 = 0 or 𝑏 = 0. 

Solving by factoring 

Example 21: Solve 

𝑥2 − 3𝑥 − 10 = 0 
 

Factor 

(𝑥 − 5)(𝑥 + 2) = 0 
 

Set each factor to zero 

𝑥 − 5 = 0   or   𝑥 + 2 = 0 
 

Solve each equation 

𝑥 = 5, −2 
 

Final answer 

Example 22: Solve 

2𝑥2 + 9𝑥 + 7 = 3 
 

Make equal to zero, subtract 3 

2𝑥2 + 9𝑥 + 4 = 0 
 

Factor 

(2𝑥 + 1)(𝑥 + 4) = 0 
 

Set each factor to zero 

2𝑥 + 1 = 0   or   𝑥 + 4 = 0 
 

Solve each equation 

𝑥 = −
1

2
, −4 

 

Final answer 

Example 23: Solve 

9𝑥2 − 3𝑥 = 0 
 

Factor GCF 

3𝑥(3𝑥 − 1) = 0 
 

Set each factor to zero 

3𝑥 = 0   or   3𝑥 − 1 = 0 
 

Solve each equation 

𝑥 = 0,
1

3
 

 

Final answer 
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Example 24: Solve 

49𝑥2 − 14𝑥 + 1 = 0 
 

Factor 

(7𝑥 − 1)2 = 0 
 

Set factor to zero 

7𝑥 − 1 = 0 
 

Solve the equation 

𝑥 =
1

7
 

 

Final answer 

Extracting square roots 

The equation 𝑢2 = 𝑑, where 𝑑 > 0, has exactly two solutions: 𝑢 = ±√𝑑. 

Example 25: Solve 

4𝑥2 = 20 
 

Isolate exponent by dividing by 4 

𝑥2 = 5 
 

Square root of both sides 

𝑥 = ±√5 
 

Final answer 

Example 26: Solve 

(𝑥 − 4)2 = 7 
 

Square root of both sides 

𝑥 − 4 = ±√7 
 

Add 4 

𝑥 = 4 ± √7 
 

Final answer 
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Completing the square 

Example 27: Solve 

𝑥2 + 2𝑥 − 7 = 0 Isolate terms with 𝑥2 and 𝑥.  

Make sure coefficient of 𝑥2 is 1 

 

𝑥2 + 2𝑥 = 7 
 

Half of coefficient of 𝑥 term 

(
1

2
∙ 2)

2

= 12 = 1 

 

Add 1 to both sides 

𝑥2 + 2𝑥 + 1 = 7 + 1 
 

  Factor perfect square trinomial 

(𝑥 + 1)2 = 8 
 

Square root of both sides 

𝑥 + 1 = ±√8 
 

Subtract 1 from both sides 

𝑥 = −1 ± √8 
 

Simplify square root 

𝑥 = 1 ± 2√2 
 

Final answer 

The quadratic formula 

Example 28: Solve 

2𝑥2 + 5𝑥 − 11 = 0 
 

Solve using the quadratic formula 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

 

𝑎 = 2, 𝑏 = 5, 𝑐 = −11 

𝑥 =
−5 ± √52 − 4(2)(−11)

2(2)
 

 

Evaluate exponent and multiplication 

𝑥 =
−5 ± √25 + 88

4
 

 

Add under root 

𝑥 =
−5 ± √113

4
 

 

Final answer 
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Equations of quadratic type 

Example 29: Solve 

𝑥4 − 25𝑥2 + 144 = 0 
 

Factor trinomial 

(𝑥2 − 16)(𝑥2 − 9) = 0 
 

Differences of squares 

(𝑥 + 4)(𝑥 − 4)(𝑥 + 3)(𝑥 − 3) = 0 
 

Set each factor to zero and solve 

𝑥 = −4, 4, 3, −3 
 

Final answer 

Example 30: Solve 

3𝑥2/3 + 4𝑥1/3 − 4 = 0 
 

Let 𝐴 = 𝑥1/3 and 𝐴2 = 𝑥2/3 

3𝐴2 + 4𝐴 − 4 = 0 
 

Factor 

(3𝐴 − 2)(𝐴 + 2) = 0 
 

Set each factor to zero 

3𝐴 − 2 = 0   or   𝐴 + 2 = 0 
 

Solve each equation 

𝐴 =
2

3
   or   𝐴 = −2 

 

Replace 𝐴 with 𝑥1/3 

𝑥1/3 =
2

3
   or   𝑥1/3 = −2 

 

Cube both sides 

𝑥 =
8

27
, −8 

 

Final answer 
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Example 31: Solve 

(
𝑥 + 1

𝑥 + 3
)

2

+ (
𝑥 + 1

𝑥 + 3
) = 6 

 

Let 𝐴 = (
𝑥+1

𝑥+3
) and 𝐴2 = (

𝑥+1

𝑥+3
)

2

 

𝐴2 + 𝐴 = 6 
 

Subtract 6 

𝐴2 + 𝐴 − 6 = 0 
 

Factor 

(𝐴 + 3)(𝐴 − 2) = 0 
 

Set each factor to zero 

𝐴 + 3 = 0     or     𝐴 − 2 = 0 
 

Solve each equation 

𝐴 = −3     or     𝐴 = 2 Replace 𝐴 with (
𝑥+1

𝑥+3
) 

 
𝑥 + 1

𝑥 + 3
= −3     or     

𝑥 + 1

𝑥 + 3
= 2 

 

Multiply by (𝑥 + 3) 

𝑥 + 1 = −3(𝑥 + 3)     or     𝑥 + 1 = 2(𝑥 + 3) 
 

Distribute 

𝑥 + 1 = −3𝑥 − 9     or     𝑥 + 1 = 2𝑥 + 6 
 

Move 𝑥 terms to left and number to right 

4𝑥 = −10     or     − 𝑥 = 5 
 

Divide to isolate 𝑥 

𝑥 = −
5

2
     or     𝑥 = −5 

 

Final answer 
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1.3 Quadratic Expressions and Equations Practice 
 

Factor 

1. 𝑥2𝑛+1 + 2𝑥𝑛+1 
 

2. 𝑥2𝑛 − 𝑦2𝑛 

3. (𝑎𝑏)2𝑛 − 𝑐4𝑛 
 

4. 𝑎2𝑛 − 4 

5. 𝑥4𝑛 − 𝑦2𝑛 
 

6. 𝑥4𝑛 − 1 

7. 16 − 𝑥4𝑛 
 

8. 𝑦𝑎+2 + 𝑦2 

9. 𝑥4𝑦2 + 2𝑥3𝑦 + 3𝑥2𝑦 
 

10. 2𝑎 + 𝑎𝑥𝑛 − 3𝑎𝑥2𝑛 

11. (𝑎 − 𝑏)(𝑥 − 8) + (𝑎 − 𝑏)(𝑥 + 𝑥2) 
 

12. 3𝑥3𝑛𝑦 − 18𝑥2𝑛𝑦 + 27𝑥𝑛𝑦 

13. (𝑎 + 𝑏)(𝑥 − 3) + (𝑎 + 𝑏)(𝑥 − 4) 
 

14. 𝑥2 − (𝑎 + 1)2 

15. 𝑥2 − 1 − 𝑥(𝑥 − 1) 
 

16. 𝜋𝑅2 − 𝜋𝑟2 

17. 𝑛2 + 2𝑛 + 𝑛𝑝 + 2𝑝 18. 1

3
𝜋𝑟2ℎ +

1

3
𝜋𝑅2ℎ −

2

3
𝜋𝑟𝑅ℎ 

 

19. 2𝑥2 − 4𝑥 + 𝑥𝑧 − 2𝑧 
 

20. 45 − 12𝑥𝑛 − 𝑥2𝑛 

21. 18𝑚4𝑛 + 12𝑚3𝑛 + 2𝑚2𝑛 
 

22. 3𝑎(𝑥 − 𝑦) + 2𝑏(𝑦2 − 𝑥2) 

23. (𝑥 − 𝑎)2 − (𝑦 − 𝑏)2 
 

24. 𝑎3 + 𝑎2 − 𝑏3 − 𝑏2 

25. (𝑏 − 4)2 − 𝑎2 
 

26. 56 − 𝑥𝑛 − 𝑥2𝑛 

27. 9𝑎2 − (𝑎 + 3𝑏)2 
 

28. 15 − 𝑥𝑛 − 2𝑥2𝑛 

29. (𝑠 − 2)2 − (𝑡 − 2)2 
 

30. 36 − 3𝑥𝑛 − 3𝑥2𝑛 

31. 𝑎2𝑦 − 𝑎 − 𝑎𝑦2 + 𝑦 
 

32. 36 − 13𝑥𝑛 + 𝑥2𝑛 

33. 10𝑝6𝑞2 − 4𝑝5𝑞3 − 6𝑝4𝑞4 
 

34. 4𝑥4𝑛 − 13𝑥2𝑛 + 9 

35. 𝑎𝑥2 + 𝑎𝑦 + 𝑏𝑥2 + 𝑏𝑦 
 

36. 𝑥3 − 𝑥2 − 𝑥 + 1 

37. 5𝑐(𝑎3 + 𝑏3) − (𝑎3 + 𝑏3) 
 

38. 𝑥5 + 32 

39. 𝑥2 + 𝑥 + 𝑥𝑦 + 𝑦 40. 3𝑥2

𝑎2
+ 7 −

6𝑎2

𝑥2
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41. 𝑎2 − 3𝑎 + 𝑎𝑦 − 3𝑦 
 

42. 𝑎3 − 𝑏2 + 2𝑎𝑏 − 𝑏3 − 𝑎2 

43. 6𝑦2 − 3𝑦 + 2𝑝𝑦 − 𝑝 
 

44. 𝑎4 + 𝑏4 − 2𝑎2𝑏2 − 𝑎2 + 𝑏2 

45. (𝑎 + 𝑏)2 − 𝑐2 
 

46. 64𝑎6 − 729𝑏6 

47. 𝑎𝑦2 − 𝑎 − 𝑦2 + 1 
 

48. 𝑥3 + 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3 

49. 15𝑥2𝑦 − 20𝑥𝑦 − 35𝑦 
 

50. 𝑎4 − (𝑎 − 2)2 

51. (𝑎 − 3)2 − (𝑏 − 3)2 
 

52. 𝑥4 + 𝑥3𝑦 − 𝑥𝑦3 − 𝑦4 

53. 𝑐2𝑥𝑦 − 𝑐3 − 𝑥2𝑦 + 𝑐𝑥 
 

54. 𝑥(𝑥 + 1)(4𝑥 − 5) − 6(𝑥 + 1) 

55. 𝑥𝑦 − 𝑥2𝑦2 + 𝑥2𝑦 − 𝑥 
 

56. 3(2𝑥 − 𝑦)2 + 5(2𝑥 − 𝑦) − 12 

57. 8𝑥3 − 27𝑦3 
 

58. 2(𝑤2 − 1) − 7(1 − 𝑤2) 

59. 𝑎4 − 2𝑎2𝑏2 + 𝑏4 
 

60. (𝑟2 − 1)2 − (𝑟 − 1)2 

61. 24𝑥2𝑛 − 6𝑥𝑛𝑦𝑛 − 18𝑦2𝑛 
 

62. 3𝑥2 − 27𝑥 − (9 − 𝑥)2 

63. 𝑥2 + 6𝑦 − 9 − 𝑦2 
 

64. 64𝑦2 − 𝑝2 − 4 − 4𝑝 

65. 𝑎2 − 𝑏2 − 2𝑏 − 1 
 

66. 2𝑥(1 − 𝑥) + 3(𝑥 − 1) 

67. 5𝑝4 − 80 
 

68. (𝑎 − 2)2 − 5𝑏(𝑎 − 2) − 24𝑏2 

69. 6𝑥2𝑛 + 11𝑥𝑛 − 10 
 

70. (𝑎 − 3𝑏)2 − (2𝑏 − 3𝑎)2 

71. 𝑥2(𝑥 + 1) − 4𝑥 − 4 
 

72. 3𝑎𝑥 + 6𝑎𝑦 − 4𝑎𝑥2 − 8𝑎𝑥𝑦 

73. 4𝑎2𝑏2 − (𝑎2 + 𝑏2 − 𝑐2)2 
 

74. (𝑎 + 3𝑏)3 + (2𝑎 + 𝑏)3 

75. 2𝑥2𝑛 − 6𝑥𝑛𝑦𝑛 + 4𝑦2𝑛 
 

76. 6𝑎2𝑏 − 9𝑎𝑐 + 8𝑎𝑏𝑐 − 12𝑐2 

77. 𝑥6 − 𝑦6 
 

78. 16𝑥3𝑦 − 24𝑥2𝑦2 + 6𝑥𝑦 − 9𝑦2 

79. 𝑎𝑐 − 6𝑏𝑑 + 2𝑎𝑑 − 3𝑏𝑐 
 

80. 𝑥4 + 4 

81. 20𝑥2𝑛 − 𝑥𝑛 − 12 
 

82. 𝑥2 − 𝑦2 + 6𝑦𝑧 − 9𝑧2 

83. 𝑥4 − (𝑦2 − 9)2 
 

84. 𝑎5 + 𝑏5 − 𝑎2𝑏3 − 𝑎3𝑏2 

85. 4𝑥2 − 25𝑦2 + 2𝑥 + 5𝑦 
 

86. 𝑥2 + 4𝑦2 + 𝑧2 + 4𝑥𝑦 + 2𝑥𝑧 + 4𝑦𝑧 
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87. 9𝑥3(2𝑎 + 𝑏) − 𝑥(2𝑎 + 𝑏) 
 

88. 𝑎2 + 9𝑏2 + 4𝑐2 − 6𝑎𝑏 + 4𝑎𝑐 − 12𝑏𝑐 

89. 2𝑥2𝑛 − 𝑥𝑛𝑦𝑛 − 3𝑦2𝑛 
 

90. 4𝑘2 − 12𝑘𝑙 + 16𝑚2 − 24𝑙𝑚 + 9𝑙2 + 16𝑘𝑚 

91. 2𝑎𝑥3𝑛 − 2𝑎𝑥2𝑛 − 12𝑎𝑥𝑛 
 

92. 𝑥4 − 𝑥2𝑦2 + 16𝑦4 

93. 𝑘2𝑛 − 2𝑘𝑛 − 48 
 

94. 𝑎2 + 4𝑏2 + 9𝑐2 + 4𝑎𝑏 − 6𝑎𝑐 − 12𝑏𝑐 

95. 3𝑥3𝑛 − 3𝑥2𝑛𝑦𝑛 − 6𝑥𝑛𝑦2𝑛 
 

96. 4𝑥4𝑦2 − 2𝑥2𝑦 + 6𝑥2𝑦3 

97. 1 − 6𝑚𝑛 − 9𝑛2 − 𝑚2 
 

98. 𝑥4 + 2𝑥2𝑦2 + 9𝑦4 

99. (𝑎 + 𝑏 + 𝑐)3 − (𝑎3 + 𝑏3 + 𝑐3) 
 

100. (𝑎 − 𝑏)3 + (𝑏 − 𝑐)3 − (𝑎 − 𝑐)3 

 

Solve each of the following equations. Some equations will have complex roots 

101. 𝑥4 − 5𝑥2 + 4 = 0 
 

102. 𝑦4 − 9𝑦2 + 20 = 0 

103. 𝑚4 − 7𝑚2 − 8 = 0 
 

104. 𝑦4 − 29𝑦2 + 100 = 0 

105. 𝑎4 − 50𝑎2 + 49 = 0 
 

106. 𝑏4 − 10𝑏2 + 9 = 0 

107. 𝑥4 − 25𝑥2 + 144 = 0 
 

108. 𝑦4 − 40𝑦2 + 144 = 0 

109. 𝑚4 − 20𝑚2 + 64 = 0 
 

110. 𝑥6 − 35𝑥3 + 216 = 0 

111. 𝑧6 − 216 = 19𝑧3 
 

112. 𝑦4 − 2𝑦2 = 24 

113. 6𝑧4 − 𝑧2 = 12 
 

114. 𝑥−2 − 𝑥−1 − 12 = 0 

115. 𝑥2/3 − 35 = 2𝑥1/3 
 

116. 5𝑦−2 − 20 = 21𝑦−1 

117. 𝑦−6 + 7𝑦−3 = 8 
 

118. 𝑥4 − 7𝑥2 + 12 = 0 

119. 𝑥4 − 2𝑥2 − 3 = 0 
 

120. 𝑥4 + 7𝑥2 + 10 = 0 

121. 2𝑥4 − 5𝑥2 + 2 = 0 
 

122. 2𝑥4 − 𝑥2 − 3 = 0 

123. 𝑥4 − 9𝑥2 + 8 = 0 
 

124. 𝑥6 − 10𝑥3 + 16 = 0 

125. 8𝑥6 − 9𝑥3 + 1 = 0 
 

126. 8𝑥6 + 7𝑥3 − 1 = 0 

127. 𝑥8 − 17𝑥4 + 16 = 0 
 

128. (𝑥 − 1)2 − 4(𝑥 − 1) = 5 
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129. (𝑦 + 𝑏)2 − 4(𝑦 + 𝑏) = 21 
 

130. (𝑥 + 1)2 + 6(𝑥 + 1) + 9 = 0 

131. (𝑦 + 2)2 − 6(𝑦 + 2) = 16 
 

132. (𝑚 − 1)2 − 5(𝑚 − 1) = 14 

133. (𝑥 − 3)2 − 2(𝑥 − 3) = 35 
 

134. (𝑎 + 1)2 + 2(𝑎 + 1) = 15 

135. (𝑟 − 1)2 − 8(𝑟 − 1) = 20 
 

136. 2(𝑥 − 1)2 − (𝑥 − 1) = 3 

137. 3(𝑦 + 1)2 − 14(𝑦 + 1) = 5 
 

138. (𝑥2 − 3)2 − 2(𝑥2 − 3) = 3 

139. (3𝑥2 − 2𝑥)2 + 5 = 6(3𝑥2 − 2𝑥) 
 

140. (𝑥2 + 𝑥 + 3)2 + 15 = 8(𝑥2 + 𝑥 + 3) 

141. 2(3𝑥 + 1)2/3 − 5(3𝑥 + 1)1/3 = 88 
 

142. (𝑥2 + 𝑥)2 − 8(𝑥2 + 𝑥) + 12 = 0 

143. (𝑥2 + 2𝑥)2 − 2(𝑥2 + 2𝑥) = 3 
 

144. (2𝑥2 + 3𝑥)2 = 8(2𝑥2 + 3𝑥) + 9 

145. (2𝑥2 − 𝑥)2 − 4(2𝑥2 − 𝑥) + 3 = 0 
 

146. (3𝑥2 − 4𝑥)2 = 3(3𝑥2 − 4𝑥) + 4 

147. (𝑦 − 2)6 − 19(𝑦 − 2)3 = 216 
 

148. 𝑥 − √𝑥 − 30 = 0 

149. 5𝑥 + 12 = 5√5𝑥 + 12 
 

150. 𝑥2 − 7√𝑥2 − 4𝑥 + 11 = 4𝑥 − 23 

151. √𝑚2 + 3𝑚 − 3 = 𝑚2 + 3𝑚 − 23 
 

152. 2𝑟2 + 4𝑟 − √𝑟2 + 2𝑟 − 3 = 9 

153. 𝑐2 − 8𝑐 + √𝑐2 − 8𝑐 + 16 + 14 = 0 
 

154. 𝑥2 − 3𝑥 − 2√𝑥2 − 3𝑥 + 7 = 8 

155. √𝑥2 + 3 − 5𝑥2 − 9 = 0 
 

156. 2𝑦2 − 𝑦 + √2𝑦2 − 𝑦 − 3 = 5 

157. 𝑥2 + 2𝑥 + 3 − 2√𝑥2 + 2𝑥 + 6 = 0 
 

158. 3𝑥2 + 𝑥 + 5√3𝑥2 + 𝑥 − 1 = 25 

159. 5

2𝑥 + 1
+

12

(2𝑥 + 1)2
= 3 

 

160. 
(𝑦 −

6

𝑦
)

2

− 4𝑦 +
22

𝑦
= 5 

161. 
(

𝑥2 − 8

2𝑥
)

2

− 4 (
𝑥2 − 8

2𝑥
) + 3 = 0 

 

162. 𝑥2 + 12

𝑥
+

56𝑥

𝑥2 + 12
= 15 

163. 
(

𝑥2 + 8

𝑥
)

2

− 11 (
𝑥2 + 8

𝑥
) + 18 = 0 

 

164. 
(

𝑥2 − 36

𝑥
)

2

− 4 (
𝑥2 − 36

𝑥
) = 45 

165. 𝑥

𝑥 − 1
− 6√

𝑥

𝑥 − 1
= 40 

166. 
2𝑥 + 1

𝑥
− 30 = 7√

2𝑥 + 1

𝑥
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167. 
5 (

𝑥 + 2

𝑥 − 2
)

2

= 3 (
𝑥 + 2

𝑥 − 2
) + 2 

 

168. 
(

𝑥 + 1

𝑥 + 3
)

2

+ (
𝑥 + 1

𝑥 + 3
) = 6 

169. 
(

𝑥2 + 12

𝑥
)

2

− (
𝑥2 + 12

𝑥
) = 56 

 

170. 
(

𝑥 + 8

𝑥 − 8
)

2

− 6 = 5 (
𝑥 + 8

𝑥 − 8
) 

171. 
(

𝑥2 − 40

𝑥
)

2

− 9 (
𝑥2 − 40

𝑥
) + 20 = 2 

 

172. 
(

𝑥2 − 45

𝑥
)

2

− 8 (
𝑥2 − 45

𝑥
) = 48 

173. 
2 (

𝑥2 − 3

𝑥
)

2

+ 5 (
𝑥2 − 3

𝑥
) + 2 = 0 

 

174. 
(

𝑥2 − 8

𝑥
)

2

− 9 (
𝑥2 − 8

𝑥
) + 14 = 0 

175. 
2 (

𝑥2 − 18

𝑥
)

2

− 7 (
𝑥2 − 18

𝑥
) = −3 

 

176. 
(

𝑥2 − 20

𝑥
)

2

+ 9 (
𝑥2 − 20

𝑥
) + 8 = 0 

177. √𝑥 − 3 − √𝑥 − 3
4

= 2 
 

178. (𝑥2 − 5𝑥 − 2)2 − 5(𝑥2 − 5𝑥 − 2) = −4 

179. 
𝑥1/2 +

1

𝑥1/2
=

13

6
 

 

180. 
(𝑦 +

2

𝑦
)

2

+ 3𝑦 +
6

𝑦
= 4 

181. 𝑥2 + 3𝑥 + 1 − √𝑥2 + 3𝑥 + 1 = 8 
 

182. 
2𝑥 + 1

𝑥
= 3 + 7√

2𝑥 + 1

𝑥
 

183. 𝑥2 − 𝑥 + 2

𝑥2 + 𝑥 + 2
+

𝑥2 + 𝑥 + 2

𝑥2 − 𝑥 + 2
=

5

2
 

 

184. 2𝑥2 − 4𝑥 + 6

𝑥2 − 3𝑥 + 2
+

9𝑥2 − 27𝑥 + 18

𝑥2 − 2𝑥 + 3
= 9 
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1.4 Simplifying Rational Expressions 
 

A rational expression is a quotient 
𝑝

𝑞
 of two polynomials 𝑝 and 𝑞. Since division by zero is not 

allowed, the domain of 
𝑝

𝑞
 consists of all real numbers except those that make the denominator 

zero. 

Rational Expressions: 

Quotient Denominator is zero if Domain 

2𝑥2 − 5𝑥 + 4

𝑥2 − 25
 

 

𝑥 = ±5 All 𝑥 ≠ ±5 

 

To simplify rational expressions we remove the common factors 

𝑎𝑑

𝑏𝑑
=

𝑎

𝑏
 

In simple terms: 
Factor numerator

Factor denominator
= Reduce 

Products and Quotients of Rational Expressions 

Example 1: Simplify 

𝑥2 − 10𝑥 + 25

𝑥2 − 1
∙

2𝑥 − 2

𝑥 − 5
 

 

Property of quotients 

(𝑥2 − 10𝑥 + 25)(2𝑥 − 2)

(𝑥2 − 1)(𝑥 − 5)
 

 

Factor all polynomials 

(𝑥 − 5)2(2)(𝑥 − 1)

(𝑥 + 1)(𝑥 − 1)(𝑥 − 5)
 

 

Note the domain, denominator can’t be zero 

𝑥 ≠ ±1,5 
 

Divide out common factors 

2(𝑥 − 5)

𝑥 + 1
 

 

Final answer 
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Example 2: Simplify 

𝑥 + 3

2𝑥 − 3
÷

𝑥2 − 9

2𝑥2 − 3𝑥
 

 

Multiply by reciprocal 

𝑥 + 3

2𝑥 − 3
∙

2𝑥2 − 3𝑥

𝑥2 − 9
 

 

Property of quotients 

(𝑥 + 3)(2𝑥2 − 3𝑥)

(2𝑥 − 3)(𝑥2 − 9)
 

 

Factor all polynomials 

(𝑥 + 3)(𝑥)(2𝑥 − 3)

(2𝑥 − 3)(𝑥 + 3)(𝑥 − 3)
 

 

Note the domain, denominator can’t be zero 

𝑥 ≠
3

2
, ±3 

 

Divide out common factors 

𝑥

𝑥 − 3
 

 

Final answer 

Add and Subtract Rational Expressions 

To add or subtract two rational expressions we usually find a common denominator and use the 

following properties of quotients: 

𝑎

𝑑
+

𝑐

𝑑
=

𝑎 + 𝑐

𝑑
     and     

𝑎

𝑑
−

𝑐

𝑑
=

𝑎 − 𝑐

𝑑
 

If the denominators of the expression are not the same, we may obtain a common denominator 

by multiplying the numerator and denominator of each fraction by a suitable expressions. We 

usually use the least common denominator (LCD) of the two quotients. 
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Example 3: Add and subtract 

𝑡

𝑡 + 3
+

4𝑡

𝑡 − 3
−

18

𝑡2 − 9
 

 

Factor denominators 

𝑡

𝑡 + 3
+

4𝑡

𝑡 − 3
−

18

(𝑡 + 3)(𝑡 − 3)
 

 

Note LCD 

LCD = (𝑡 + 3)(𝑡 − 3) 

 

Multiply the first numerator  

and denominator by (𝑡 − 3) and  

the second by (𝑡 + 3) 

 
(𝑡 − 3)

(𝑡 − 3)
∙

𝑡

𝑡 + 3
+

(𝑡 + 3)

(𝑡 + 3)
∙

4𝑡

𝑡 − 3
−

18

(𝑡 + 3)(𝑡 − 3)
 

 

Multiply/distribute 

𝑡2 − 3𝑡

(𝑡 − 3)(𝑡 + 3)
+

4𝑡2 + 12𝑡

(𝑡 − 3)(𝑡 + 3)
−

18

(𝑡 + 3)(𝑡 − 3)
 

 

Add numerators 

5𝑡2 + 9𝑡 − 18

(𝑡 + 3)(𝑡 − 3)
 

 

Factor numerator 

(5𝑡 − 6)(𝑡 + 3)

(𝑡 + 3)(𝑡 − 3)
 

 

Note the domain, denominator can’t be zero 

𝑡 ≠ ±3 
 

Divide out common factor 

5𝑡 − 6

𝑡 − 3
 

 

Final answer 

Complex Fractions 

A complex fraction is a quotient in which the numerator and/or the denominator is a fractional 

expression. 
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Example 4: Simplify 

3
𝑥 + 2 −

3
𝑎 + 2

𝑥 − 𝑎
 

 

First subtract numerators by finding  

a common denominator of (𝑥 + 2)(𝑎 + 2) 

(
3(𝑎 + 2) − 3(𝑥 + 2)

(𝑥 + 2)(𝑎 + 2)
)

𝑥 − 𝑎
 

 

Simplify numerator, distribute 

3𝑎 + 6 − 3𝑥 − 6
(𝑥 + 2)(𝑎 + 2)

𝑥 − 𝑎
 

 

Simplify numerator, combine like terms 

3𝑎 − 3𝑥
(𝑥 + 2)(𝑎 + 2)

𝑥 − 𝑎
 

 

Multiply by reciprocal of denominator 

3𝑎 − 3𝑥

(𝑥 + 2)(𝑎 + 2)
∙

1

𝑥 − 𝑎
 

 

Property of quotients 

(3𝑎 − 3𝑥)

(𝑥 + 2)(𝑎 + 2)(𝑥 − 𝑎)
 

 

Factor polynomials 

3(𝑎 − 𝑥)

(𝑥 + 2)(𝑎 + 2)(𝑥 − 𝑎)
 

 

Note the domain, denominator can’t be zero 

𝑥 ≠ −2, 𝑎 Replace 
𝑎−𝑥

𝑥−𝑎
 with −1 

 
−3

(𝑥 + 2)(𝑎 + 2)
 

 

Final answer 

An alternate method is to multiply the numerator and denominators of the given expression by 

(𝑥 + 2)(𝑎 + 2), the LCD of the numerator and denominator, and then simplify the result. 
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Example 5: Simplify if ℎ ≠ 0 

1
(𝑥 + ℎ)2 −

1
𝑥2

ℎ
 

 

Multiply by LCD of 𝑥2(𝑥 + ℎ)2 

𝑥2(𝑥 + ℎ)2

1 ∙
1

(𝑥 + ℎ)2 −
1

𝑥2 ∙
𝑥2(𝑥 + ℎ)2

1

ℎ ∙ 𝑥2(𝑥 + ℎ)2 
 

 

Reduce denominators 

𝑥2 − (𝑥 + ℎ)2

ℎ𝑥2(𝑥 + ℎ)2
 

 

Square (𝑥 + ℎ) 

𝑥2 − (𝑥2 + 2ℎ𝑥 + ℎ2)

ℎ𝑥2(𝑥 + ℎ)2
 

 

Distribute negative 

𝑥2 − 𝑥2 − 2ℎ𝑥 − ℎ2

ℎ𝑥2(𝑥 + ℎ)2
 

 

Combine like terms 

−2ℎ𝑥 − ℎ2

ℎ𝑥2(𝑥 + ℎ)2
 

 

Factor numerator (GCF of ℎ) 

ℎ(−2𝑥 − ℎ)

ℎ𝑥2(𝑥 + ℎ)2
 

 

Divide out ℎ 

−2𝑥 − ℎ

𝑥2(𝑥 + ℎ)2
 

 

Final answer 

Some problems have multiple ways they can be simplified, as shown in examples 6, 7, and 8.  
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Example 6: Simplify by using definition of negative exponents 

(1 − 𝑥2)1/2(2𝑥) − 𝑥2 (
1
2) (1 − 𝑥2)−1/2(−2𝑥)

[(1 − 𝑥2)1/2]2
 

 

Definition of a negative exponent 

 and multiply 𝑥2 (
1

2
) by −2𝑥  

and multiplying exponents in denominator 

(1 − 𝑥2)1/2(2𝑥) +
𝑥3

(1 − 𝑥2)1/2

1 − 𝑥2
 

 

Getting a common denominator in the numerator, 

multiplying the first fraction by (1 − 𝑥2)1/2 

2𝑥(1 − 𝑥2)
(1 − 𝑥2)1/2 +

𝑥3

(1 − 𝑥2)1/2

1 − 𝑥2
 

 

Multiply numerator 

2𝑥 − 2𝑥3

(1 − 𝑥2)1/2 +
𝑥3

(1 − 𝑥2)1/2

1 − 𝑥2
 

 

Add numerators 

−𝑥3 + 2𝑥
(1 − 𝑥2)1/2

1 − 𝑥2
 

 

Multiply by reciprocal 

−𝑥3 + 2𝑥

(1 − 𝑥2)1/2
∙

1

1 − 𝑥2
 

 

Multiply 

−𝑥3 + 2𝑥

(1 − 𝑥2)3/2
 

 

Final answer 
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Example 7: Simplify by eliminating negative exponents 

(1 − 𝑥2)1/2(2𝑥) − 𝑥2 (
1
2) (1 − 𝑥2)−1/2(−2𝑥)

[(1 − 𝑥2)1/2]2
 

Eliminate negative powers by multiplying by 

(1 − 𝑥2)1/2 

and multiply 𝑥2 (
1

2
) by −2𝑥 

and multiplying exponents in denominator 

 

(1 − 𝑥2)1/2(2𝑥) + 𝑥3(1 − 𝑥2)−1/2

(1 − 𝑥2)

∙
(1 − 𝑥2)1/2

(1 − 𝑥2)1/2
 

 

Simplify 

2𝑥(1 − 𝑥2) + 𝑥3

(1 − 𝑥2)3/2
 

 

Distribute in numerator 

2𝑥 − 2𝑥3 + 𝑥3

(1 − 𝑥2)3/2
 

 

Combine like terms in numerator 

−𝑥3 + 2𝑥

(1 − 𝑥2)3/2
 

Final answer 

Example 8: Simplify by factoring the GCF first 

(1 − 𝑥2)1/2(2𝑥) − 𝑥2 (
1
2) (1 − 𝑥2)−1/2(−2𝑥)

[(1 − 𝑥2)1/2]2
 

 

Factor GCF of 𝑥(1 − 𝑥2)−1/2 

and multiply 
1

2
 by −2 

and multiply exponents in denominator 

𝑥(1 − 𝑥2)−1/2[2(1 − 𝑥2) + 𝑥2]

1 − 𝑥2
 

 

Distribute 2 in numerator 

and move negative exponent to denominator 

𝑥(2 − 2𝑥2 + 𝑥2)

(1 − 𝑥2)3/2
 

 

Combine like terms in numerator 

𝑥(−𝑥2 + 2)

(1 − 𝑥2)3/2
 

 

Distribute 𝑥 in numerator 

−𝑥3 + 2𝑥

(1 − 𝑥2)3/2
 

 

Final answer 
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1.4 Simplifying Rational Expressions Practice 
 

Simplify each of the following fractional expressions 

1. 𝑥2 − 𝑎2

(𝑥 + 𝑎)2
∙

2𝑥 + 2𝑎

3𝑥
 

 

2. 4𝑚2 − 1

𝑚2 − 16
∙

𝑚 + 4

2𝑚 + 1
 

3. 𝑐4 − 𝑑4

(𝑐 − 𝑑)4
÷

𝑐2 + 𝑑2

𝑐 − 𝑑
 

 

4. 𝑥𝑦2 − 𝑦3

𝑥3 + 𝑥2𝑦
∙

𝑥2 − 𝑥𝑦 − 2𝑦2

𝑥2 − 2𝑥𝑦 + 𝑦2
 

5. 3𝑡

𝑦2 − 6𝑦 + 8
÷

2𝑡

𝑦2 − 𝑦 − 12
 

 

6. 𝑟3 − 𝑠3

𝑟 − 𝑠
÷

2𝑟2 + 2𝑟𝑠 + 2𝑠2

2𝑟 + 2𝑠
 

7. 𝑥2 − 1

2𝑥 − 4
∙

𝑥2 − 4

𝑥2 − 𝑥 − 2
÷

𝑥2 + 𝑥 − 2

3𝑥 − 6
 

 

8. 𝑚2 − 1

16𝑚2 − 9𝑛2
∙

4𝑚 − 3𝑛

2𝑚2 + 1
÷

𝑚 − 1

4𝑚 + 3𝑛
 

9. 𝑥
𝑦 +

𝑦
𝑥

𝑥4 − 𝑦4
 

 

10. 𝑥 − 𝑦
𝑥
𝑦 −

𝑦
𝑥

 

11. 1 +
1
𝑥

1 −
1

𝑥2

 

 

12. 𝑎2 −
𝑎
𝑏

𝑏 −
1
𝑎

 

13. 𝑥
1 + 𝑥 +

1 − 𝑥
𝑥

𝑥
1 + 𝑥 −

1 − 𝑥
𝑥

 

 

14. 𝑎
𝑎 − 𝑏

− 1

𝑎
𝑎 + 𝑏

− 1
 

15. 1 −
𝑎

𝑎 − 𝑏

1 +
𝑎

𝑎 − 𝑏

 

 

16. 𝑥−2 − 𝑦−2

𝑥−1 + 𝑦−1
 

17. 𝑥−2𝑦 + 𝑥𝑦−2

𝑥−2𝑦−2
 

 

18. 𝑥−2𝑦 + 𝑥𝑦−2

𝑥−2 − 𝑦−2
 

19. 𝑥−1𝑦 + 2 + 𝑥𝑦−1

𝑥 + 𝑦
 

 

20. 𝑥−3𝑦 − 𝑥𝑦−3

𝑥−2 − 𝑦−2
 

21. 𝑥−2 + 𝑥−1 − 2

𝑥−1 − 1
 

 

22. (𝑥 + 1)−1 − (𝑥 + 1)

𝑥
 

23. (𝑥 − 1)−2 − 1

(𝑥 − 1)−2 + 1
 

 

24. (𝑥 + 1)−1 − (𝑥 − 1)−1

(𝑥 + 1)−1 + (𝑥 − 1)−1
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25. (𝑥 + 𝑦)−1 + (𝑥 + 𝑦)−2

(𝑥 + 𝑦)−2 − (𝑥 + 𝑦)−1
 

 

26. 4 − 4𝑥−1 + 𝑥−2

4 − 𝑥−2
 

27. 𝑥−2 − 6𝑥−1 + 9

𝑥−2 − 9
 

 

28. 𝑥−3 + 𝑦−3

𝑥−2 − 𝑥−1𝑦−1 + 𝑦−2
 

29. 
(

1

𝑥2
−

1

𝑦2
) ÷ (

𝑥

𝑦
−

𝑦

𝑥
) 

 

30. 
(

𝑦

𝑥 − 𝑦
− 1) ÷ (

𝑥

𝑦 − 𝑥
) 

31. 
(

𝑚

3
−

3

𝑚
) ÷ (

2𝑚 − 6

3𝑚
) 

 

32. 
(

𝑥2

𝑦
− 𝑦) ÷ (

𝑥

𝑦
− 1) 

33. 
(1 −

𝑥

𝑥 + 𝑦
) ÷ (

𝑦

𝑥 + 𝑦
) 

 

34. 
(

1

𝑎 + 𝑥
−

1

𝑥 − 𝑎
) ÷ (

1

𝑎 − 𝑥
−

1

𝑥 + 𝑎
) 

35. 
(4 −

6

𝑎 + 1
) ÷ (8 −

4𝑎 − 8

𝑎2 − 1
) 

 

36. 
(

2𝑥

𝑥 − 2
−

𝑥

𝑥 − 1
) ÷ (

3𝑥

𝑥 − 3
+

2𝑥

2 − 𝑥
) 

37. 
(

𝑎

𝑎 + 𝑏
+

𝑏

𝑎 − 𝑏
) ÷ (

𝑎

𝑎 + 𝑏
−

𝑏

𝑎 − 𝑏
) 

 

38. 1

𝑥
(𝑥 −

1

𝑥
) ÷

𝑥2 − 1

𝑥2
 

39. 
(𝑎 +

1

𝑏
) (𝑏 −

1

𝑎
) ÷

𝑎2𝑏2 − 1

3𝑎𝑏
 

 

40. 
(𝑥 −

9

𝑥
) (

6

𝑥2
+

1

𝑥
− 1) (

2 − 𝑥2

3𝑥 − 𝑥2
+ 1) 

41. 1
𝑥2 −

1
(𝑥 − ℎ)2

ℎ
 

 

42. 
𝑥 (

𝑥

𝑦
−

𝑦

𝑥
) ÷ (1 − [

𝑥

𝑦
]

2

) 

43. 𝑎 + 𝑥
𝑎 − 𝑥 −

𝑎2 + 𝑥2

𝑎2 − 𝑥2

𝑎 + 𝑥
𝑥 − 𝑎 +

𝑎2 + 𝑥2

𝑎2 − 𝑥2

 

 

44. 𝑥2

√𝑥2 + 1
− √𝑥2 + 1 

45. 1
(𝑥 + ℎ)2 −

1
𝑥2

ℎ
 

 

46. 𝑥 + ℎ
𝑥 + ℎ + 1

−
𝑥

𝑥 + 1
ℎ

 

47. 
√𝑥 −

1

2√𝑥

√𝑥
 

 

48. 3𝑥1/3 − 𝑥−2/3

3𝑥−2/3
 

49. 𝑡2

√𝑡2 + 1
− √𝑡2 + 1

𝑡2
 

 

50. −𝑥3(1 − 𝑥2)−1/2 − 2𝑥(1 − 𝑥2)1/2

𝑥4
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51. 𝑥(𝑥 + 1)−3/4 − (𝑥 + 1)1/4

𝑥2
 

52. (2𝑥 + 1)1/3 −
4𝑥

3(2𝑥 + 1)2/3

(2𝑥 + 1)3/2
 

 

53. 
√2𝑥 − 1 −

𝑥 + 2

√2𝑥 − 1
2𝑥 − 1

 

 

54. 𝑦 + 1

𝑦 − 1
 where 𝑦 =

𝑥

𝑥 − 1
 

55. 𝑦2 − 𝑦 + 1

𝑦 + 1
 where 𝑦 = 1 +

1

𝑥
 

 

56. 𝑥 − 𝑎

𝑥
√𝑥2 − 4 where 𝑥 = 𝑎 +

1

𝑎
 

57. 
𝑎2 + 𝑎𝑥 where 𝑥 = 𝑎 +

1

𝑎
 and 𝑎 =

1

√2 − 1
 

 

58. 𝑎3 + 𝑏3

𝑎2 + 3𝑎𝑏 + 2𝑏2
∙

3𝑎 − 6𝑏

3𝑎2 − 3𝑎𝑏 + 3𝑏2
÷

𝑎2 − 4𝑏2

𝑎 + 2𝑏
 

 

59. 𝑎2 + 7𝑎𝑏 + 10𝑏2

𝑎2 + 6𝑎𝑏 + 5𝑏2
∙

𝑎 + 𝑏

𝑎2 + 4𝑎𝑏 + 4𝑏2
÷

1

𝑎 + 2𝑏
 

 

60. 𝑥2𝑛 + 3𝑥𝑛 + 9

𝑥2𝑛 + 𝑥𝑛 − 12
∙

𝑥2𝑛 + 2𝑥𝑛 − 8

𝑥3𝑛 − 27
÷

𝑥2𝑛 − 4

𝑥2𝑛 − 6𝑥𝑛 + 9
 

 

61. 2𝑥2𝑛 + 7𝑥𝑛 − 15

2𝑥2𝑛 − 3𝑥𝑛 − 14
∙

2𝑥2𝑛 − 19𝑥𝑛 + 42

2𝑥𝑛 − 3
÷

𝑥2𝑛 − 𝑥𝑛 − 30

𝑥𝑛 + 2
 

 

62. 𝑥2𝑎 + 3𝑥𝑎 − 10

𝑥2𝑎 + 6𝑥𝑎 + 5
∙

2𝑥2𝑎 − 𝑥𝑎 − 3

𝑥2𝑎 + 𝑥𝑎 − 6
÷

8𝑥𝑎 + 20

6𝑥𝑎 + 15
 

 

63. 
(𝑥 −

9

𝑥
) (

2 − 𝑥2

3𝑥 − 𝑥2
+ 1) ÷ (

6

𝑥2
+

1

𝑥
− 1) 

 

64. −4𝑥(𝑥2 − 3)−3(6𝑥 + 1)3 − 18(6𝑥 + 1)2(𝑥2 − 3)−2

(6𝑥 + 1)6
 

 

65. −6𝑥(3𝑥 + 2)5(𝑥2 + 1)−4 − 15(3𝑥 + 2)4(𝑥2 + 1)−3

(3𝑥 + 2)10
 

 

66. (6𝑥 + 1)3(27𝑥2 + 2) − 16(27𝑥3 + 2𝑥)(6𝑥 + 1)2

(6𝑥 + 1)3(27𝑥2 + 2)
 

 

67. 2(4𝑥2 + 9)1/2 − 4𝑥(2𝑥 + 3)(4𝑥2 + 9)−1/2

4𝑥2 + 9
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68. 2(3𝑥 + 2)3/4(2𝑥 + 3)−2/3 − 3(3𝑥 + 2)−1/4(2𝑥 + 3)1/3

(3𝑥 + 2)3/2
 

 

69. 2(3𝑥 − 1)1/3 − (2𝑥 + 1)(3𝑥 − 1)−2/3

(3𝑥 − 1)2/3
 

 

70. 1
2

(𝑥 + 1)(2𝑥 − 3𝑥2)−1/2(2 − 6𝑥) − (2𝑥 − 3𝑥2)1/2

(𝑥 + 1)2
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1.5 Complex Numbers 
 

In the real number system, negative numbers do not have square roots. Mathematicians have 

invented a larger number system that contain the real number system but is such that negative 

numbers do have square roots. That system is called the complex number system and makes use 

of the number 𝑖. 

We define the number 𝑖 so that 𝑖2 = −1. Thus 𝑖 = √−1. 

Example 1: Express in terms of 𝑖 

√−7 
 

Factor out −1 

√(−1)(7) 
 

Make two radicals 

√−1√7 
 

Use definition: √−1 = 𝑖 

𝑖√7 
 

Final answer 

Example 2: Express in terms of 𝑖 

√−4 
 

Factor out −1 

√(−1)(4) 
 

Make two radicals 

√−1√4 
 

Take roots 

𝑖 ∙ 2 
 

Rewrite 

2𝑖 
 

Final answer 

Example 3: Express in terms of 𝑖 

−√−11 
 

Factor out −1 

−√(−1)(11) 
 

Make two radicals 

−√−1√11 
 

Take root 

−𝑖√11 
 

Final answer 
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Example 4: Express in terms of 𝑖 

−√−64 
 

Factor out −1 

−√(−1)(64) 
 

Make two radicals 

−√−1√64 
 

Take roots 

−𝑖 ∙ 8 
 

Rewrite 

−8𝑖 
 

Final answer 

Example 5: Express in terms of 𝑖 

√−32 
 

Factor 

√(−1)(16)(2) 
 

Make three radicals 

√(−1)√16√2 
 

Take roots 

𝑖 ∙ 4√2 
 

Rewrite 

4𝑖√2 
 

Final answer 

An imaginary number is a number that can be written 𝑏𝑖 where 𝑏 is some real number and 𝑏 ≠ 0. 

To form the system of complex numbers, we take the imaginary numbers and the real numbers, 

as well as all possible sums of real and imaginary numbers. These are complex numbers: 

4 − 7𝑖, −𝜋 + 11𝑖, 47, 𝑖√7 

A complex number is any number that can be written 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real numbers. 

(Note that 𝑎 and/or 𝑏 can be 0) 

Addition and Subtraction 

Complex numbers follow the commutative and associative laws of addition. Thus we can add 

and subtract them as we do binomials in real numbers.  
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Example 6: Add 

(7 + 5𝑖) + (3 + 4𝑖) 
 

Collect real and imaginary parts 

10 + 9𝑖 
 

Final answer 

Example 7: Subtract 

(4 + 3𝑖) − (2 − 2𝑖) 
 

 

Collect real and imaginary parts 

(4 − 2) + (3𝑖 − (−2𝑖)) 
 

Note that both 2 and the −2𝑖 are being subtracted 

2 + 5𝑖 
 

Final answer 

Multiplying 

Complex numbers also obey the commutative and associative laws of multiplication. However, 

the property √𝑎√𝑏 = √𝑎𝑏 does not hold for imaginary numbers. That is, all square roots of 

negatives must be expressed in terms of 𝑖 before we multiply. For example: 

Correct: √−2√−5 = 𝑖√2 ∙ 𝑖√5 = 𝑖2√10 = −√10 

Incorrect: √−2√−5 = √(−2)(−5) = √10   (Note, this is incorrect, missing the negative) 

Example 8: Multiply 

√−9√−49 
 

Express in terms of 𝑖 

𝑖√9 ∙ 𝑖√49 
 

Take square roots 

𝑖 ∙ 3 ∙ 𝑖 ∙ 7 
 

Multiply 

21𝑖2 
 

Use definition, 𝑖2 = −1 

21(−1) 
 

Multiply 

−21 
 

Final answer 
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Example 9: Multiply 

√−3√−5 
 

Express in terms of 𝑖 

𝑖√3 ∙ 𝑖√5 
 

Multiply 

𝑖2√15 
 

Use definition, 𝑖2 = −1 

−√15 
 

Final answer 

Example 10: Multiply 

−2𝑖 ∙ 8𝑖 
 

Multiply 

−16𝑖2 
 

Use definition, 𝑖2 = −1 

−16(−1) 
 

Multiply 

16 
 

Final answer 

Example 11: Multiply 

−3𝑖(4 − 5𝑖) 
 

Distribute 

−12𝑖 + 15𝑖2 
 

Use definition, 𝑖2 = −1 

−12𝑖 − 15 
 

Rewrite in form 𝑎 + 𝑏𝑖 

−15 − 12𝑖 
 

Final answer 

Example 12: Multiply 

(2 + 𝑖)(1 + 3𝑖) 
 

FOIL 

2 + 6𝑖 + 𝑖 + 3𝑖2 
 

Use definition, 𝑖2 = −1 

2 + 6𝑖 + 𝑖 − 3 
 

Combine like terms 

−1 + 7𝑖 
 

Final answer 

Complex Conjugates and Division 

Consider the following multiplication: 

(2 − 3𝑖)(2 + 3𝑖) = 4 + 6𝑖 − 6𝑖 − 9𝑖2 = 4 + 9 = 13 
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Note that the imaginary terms 6𝑖 and −6𝑖 added to 0, so our answer was a real number. This will 

happen any time numbers of the form 𝑎 + 𝑏𝑖 and 𝑎 − 𝑏𝑖 are multiplied. Pairs of numbers like 

2 − 3𝑖 and 2 + 3𝑖 are known as complex conjugates, or simply, conjugates.  

The complex conjugate of a complex number 𝑎 + 𝑏𝑖 is 𝑎 − 𝑏𝑖 

The complex conjugate of a complex number 𝑎 − 𝑏𝑖 is 𝑎 + 𝑏𝑖 

Example 13: Multiply 

(7 + 5𝑖)(7 − 5𝑖) Recognize conjugates, imaginary terms in middle will add to zero.  

 

72 − (5𝑖)2 
 

Square 

49 − 25𝑖2 
 

Use definition, 𝑖2 = −1 

49 + 25 
 

Add 

74 
 

Final answer 

We use conjugates in dividing complex numbers. 

Example 14: Divide 

−3 + 7𝑖

1 − 4𝑖
 

 

Multiply by conjugate 1 + 4𝑖 

−3 + 7𝑖

1 − 4𝑖
∙

1 + 4𝑖

1 + 4𝑖
 

 

FOIL numerator and denominator 

−3 − 12𝑖 + 7𝑖 + 28𝑖2

1 − 16𝑖2
 

 

Use definition, 𝑖2 = −1 

−3 − 12𝑖 + 7𝑖 − 28

1 + 16
 

 

Combine like terms 

−31 − 5𝑖

17
 

 

Write in form 𝑎 + 𝑏𝑖 

−
31

17
−

5

17
𝑖 

 

Final answer 

Note the similarity between this example and rationalizing denominators. The symbol for the 

number 1 was formed using the conjugate of the divisor.  
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Example 15: Divide 

4 + 3𝑖

5 + 4𝑖
 

 

Multiply by the conjugate, (5 − 4𝑖) 

4 + 3𝑖

5 + 4𝑖
∙

5 − 4𝑖

5 − 4𝑖
 

 

FOIL numerator and denominator 

20 − 16𝑖 + 15𝑖 − 12𝑖2

25 − 16𝑖2
 

 

Use definition, 𝑖2 = −1 

20 − 16𝑖 + 15𝑖 + 12

25 + 16
 

 

Combine like terms 

32 − 𝑖

41
 

 

Write in form 𝑎 + 𝑏𝑖 

32

41
−

1

41
𝑖 

 

Final answer 
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1.5 Complex Numbers Practice 
 

Simplify the following expressions. 

1. (3 + 2𝑖) + (4 − 5𝑖) 
 

2. (−7 + 9𝑖) + (2 − 10𝑖) 

3. (5 − 6𝑖) − (3 − 2𝑖) 
 

4. (8 + 5𝑖) − (2 + 3𝑖) 

5. (2 + 3𝑖√7) + (4 − 5𝑖√7) 
 

6. (4 − 2𝑖√5)(3 + 6𝑖√5) 

7. (3 − 2𝑖)2 
 

8. (4 + 𝑖)2 

9. (2 + 𝑖√3)
2

 
 

10. (5 + 2𝑖√2)
2
 

11. (2 + 4𝑖)(3 − 5𝑖) 
 

12. (1 + 2𝑖)(6 + 3𝑖) 

13. (4 − 5𝑖)(2 − 𝑖) 14. (3 + 𝑖√2)(4 + 3𝑖√2) 
 

15. (7 + 𝑖)(7 − 𝑖) 16. (3 + 4𝑖)(3 − 4𝑖) 
 

17. (6 + 2𝑖)(6 − 2𝑖) 18. 6

1 − 𝑖
 

 

19. 1 + 𝑖

1 − 𝑖
 

20. 4 + 3𝑖

2 − 3𝑖
 

 

21. 6 + 𝑖

6 − 𝑖
 

22. 1 − 4𝑖

2 + 4𝑖
 

 

23. 5 + 𝑖√3

5 − 𝑖√3
 

24. 2 + 𝑖√5

1 − 𝑖√5
 

 

25. (1 − 2𝑖)3 26. 
(

1 + 𝑖

1 − 𝑖
)

2

 

 

27. 1

(1 + 𝑖)2
 

 

28. Show that 1 + 𝑖 is a solution of the equation 𝑥2 − 2𝑥 + 2 = 0 

 

29. Show that 2 − 3𝑖 is a solution of the equation 𝑥2 − 4𝑥 + 13 = 0 

 

30. Show that 
1

√2
(1 + 𝑖) = √𝑖 
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1.6 Complete the Square 
 

Equation of the type 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 

When none of the constants 𝑎, 𝑏, or 𝑐 is zero, we can try factoring. Unfortunately, many 

quadratic equations are extremely difficult to solve by factoring. The procedure used in the next 

example enables us to solve an equation for which factoring would not work. 

Example 1: Solve 

𝑥2 + 6𝑥 + 4 = 0 
 

Add −4 on both sides 

𝑥2 + 6𝑥 = −4 
 

Add 9 to both sides (we explain this shortly) 

𝑥2 + 6𝑥 + 9 = −4 + 9 
 

Factoring the trinomial square 

(𝑥 + 3)2 = 5 
 

Square root of both sides (plus or minus!) 

𝑥 + 3 = ±√5 
 

Add −3 on both sides 

𝑥 = −3 ± √5 
 

Final answer 

Complete the Square 

The decision to add 9 on both sides in example 1 was not made arbitrarily. We choose 9 because 

it made the left side a trinomial square. The 9 was obtained by taking half of the coefficient of 𝑥 

and squaring it, that is: 

(
1

2
∙ 6)

2

= 32 = 9 

To help see why this procedure works examine the following diagrams: 

 

 

 

 

 

 

𝑥 

𝑥 

𝑥 

𝑥 

𝑥2 

6 

3𝑥 

3 

3 

3 

3 3𝑥 

𝑥2 

9 

6𝑥   
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Note that both figures represent the same area as 𝑥2 + 6𝑥. However, only the figure on the right 

can be converted into a square with the addition of a constant term. The constant term 9 can be 

interpreted as the area of the missing piece of the diagram on the right. It completes the square. 

Example 2: Complete the square 

𝑥2 − 7𝑥 
 

Half of the 𝑥 coefficient squared 

(
1

2
∙ −7)

2

= (−
7

2
)

2

=
49

4
 

 

Add and subtract (no equals sign so we must balance to zero) 

𝑥2 − 7𝑥 +
49

4
−

49

4
 

 

Factor perfect square trinomial 

(𝑥 −
7

2
)

2

−
49

4
 

 

Final answer 

Example 3: Complete the square 

𝑥2 +
3

2
𝑥 

 

Half of the 𝑥 coefficient squared 

(
1

2
∙

3

2
)

2

= (
3

4
)

2

=
9

16
 

 

Add and subtract 

𝑥2 +
3

2
𝑥 +

9

16
−

9

16
 

 

Factor perfect square trinomial 

(𝑥 +
3

4
)

2

−
9

16
 

 

Final answer 

Quadratic Portion 

When graphing an expression in future sections, it will be helpful to identify a quadratic portion 

of an expression and complete the square.  

Should 𝑥2 have a coefficient we must first factor it out of the 𝑥2 and 𝑥 terms, even if it means 

creating a fraction on the 𝑥 term. When we complete the square and add and subtract, be sure to 

multiply by the coefficient on the subtraction to remain balanced to zero. 
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Example 4: Complete the square on the quadratic portion of the expression 

5𝑥

4𝑥2 + 3𝑥 + 1
 

 

Note the quadratic portion in the denominator 

4𝑥2 + 3𝑥 + 1 Factor 4 out of 𝑥2 and 𝑥 terms 

4 (𝑥2 +
3

4
𝑥) + 1 

 

Half the 𝑥 coefficient squared 

(
1

2
∙

3

4
)

2

= (
3

8
)

2

=
9

64
 

 

Add inside parenthesis, subtract at end, multiplying by 4 

4 (𝑥2 +
3

4
𝑥 +

9

64
) + 1 −

9

64
(4) 

 

Factor parenthesis, combine terms at end 

4 (𝑥 +
3

8
)

2

+
7

16
 

 

Replace in original expression 

5𝑥

4 (𝑥 +
3
8)

2

+
7

16

 

 

Final answer 
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1.6 Complete the Square Practice 
 

Complete the square on the quadratic portion of each of the following expressions 

1. 1

𝑥2 − 4𝑥 − 12
 

 

2. 4

4𝑥2 − 4𝑥 − 3
 

3. √𝑥2 + 2𝑥 − 3 
 

4. √1 − 2𝑥 + 2𝑥2 

5. 1

√6𝑥 − 𝑥2
 

 

6. 1

√16 − 6𝑥 − 𝑥2
 

7. √3𝑥2 − 9𝑥 + 1
3

 8. 2𝑥 − 1

√2𝑥2 − 3𝑥 + 1
 

 

9. 6

2𝑥2 − 4𝑥 − 2
 

 

10. 2√4𝑥2 + 2𝑥 − 2 

11. 3𝑥 − 1

9𝑥2 − 6𝑥 + 4
 

 

12. √9 + 4𝑥 − 6𝑥2 

13. 𝑥

1 − 3𝑥 − 6𝑥2
 

14. 
(

1

2
𝑥2 + 3𝑥 − 2)

2

 

 

15. 2

𝑥4 − 16𝑥2
 

 

16. 6

4𝑥6 + 8𝑥3 + 5
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1.7 Solving Linear Formulas 
 

A formula is a kind of recipe, or rule, for doing a certain kind of calculation and is often stated in 

the form of an equation. For example, 𝑃 = 4𝑆 where 𝑃 represents the perimeter of a square and 

𝑆 the length of a side. Other formulas that you may recall are 𝐴 = 𝜋𝑟2 (for the area 𝐴 of a circle 

of radius 𝑟), 𝐶 = 𝜋𝑑 (for the circumference 𝐶 of a circle of diameter 𝑑), and 𝐴 = 𝑏ℎ (for the area 

𝐴 of a parallelogram of height ℎ and base length 𝑏). 

Solving Formulas 

The formula 𝐴 = 𝑙𝑤 gives the formula for the area of a rectangle 𝐴 in terms of its length 𝑙 and its 

width 𝑤. 

Example 1: Solve for 𝑙 

𝐴 = 𝑙𝑤 
 

We want the 𝑙 alone, so we divide by 𝑤 

𝐴

𝑤
= 𝑙 

 

Final answer 

The formula 𝐼 = 𝑃𝑟𝑡 is used to determine the amount of simple interest 𝐼, earned on 𝑃 dollars, 

when investede for 𝑡 years at an interest rate 𝑟. 

Example 2: Solve for 𝑟 

𝐼 = 𝑃𝑟𝑡 
 

We want the 𝑟 alone, so we divide by 𝑃𝑡 

𝐼

𝑃𝑡
= 𝑟 

 

Final answer 

The formula 𝐴 = 𝑃 + 𝑃𝑟𝑡 tells how much a principal 𝑃, in dollars, will be worth when invested 

at a simple interest rate 𝑟 in 𝑡 years.  

Example 3: Solve for 𝑃 

𝐴 = 𝑃 + 𝑃𝑟𝑡 
 

We need a single P to solve for, factor it out 

𝐴 = 𝑃(1 + 𝑟𝑡) 
 

Divide out (1 + 𝑟𝑡) 

𝐴

1 + 𝑟𝑡
= 𝑃 

 

Final answer 

A trapezoid is a geometric shape with four sides, two of which, the bases, are parallel to each 

other. The formula for calculating the area 𝐴 of a trapezoid with based 𝑏1 and 𝑏2 and height ℎ is 

𝐴 =
ℎ

2
(𝑏1 + 𝑏2). 
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Example 4: Solve for 𝑏2 

𝐴 =
ℎ

2
(𝑏1 + 𝑏2) 

 

Clear fraction by multiplying by 2 

2𝐴 = ℎ(𝑏1 + 𝑏2) 
 

Divide by ℎ 

2𝐴

ℎ
= 𝑏1 + 𝑏2 

 

Subtract 𝑏1 

2𝐴

ℎ
− 𝑏1 = 𝑏2 

 

Final answer. 

To solve a formula for a given letter, identify the letter and: 

1. Multiply on both sides to clear fractions or decimals, or to remove grouping symbols if 

that is needed 

2. Get all terms with the letter for which we are solving on one side of the equation and all 

other terms on the other side, using the addition principle.  

3. Collect like terms on each side where convenient. This may require factoring. 

4. Solve for the letter in question, using the multiplication principle.  
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1.7 Solving Linear Formulas Practice 
 

Solve each of the following formulas for the indicated unknown 

1. 𝑎𝑥 + 𝑦 = 𝑎, for 𝑥 
 

2. 2𝑥 − 𝑎 = 4𝑎 − 3, for 𝑥 

3. 2𝑝 + 𝑞 = 2𝑞 − 𝑝, for 𝑞 
 

4. 3(𝑥 − 𝑎) + 2𝑎 = 4𝑥 + 5𝑎, for 𝑥 

5. 2𝑥 + 𝑦 = 𝑥𝑦, for 𝑥 
 

6. −2(𝑥 − 𝑏) + 2𝑎 = 3𝑏 − 𝑎, for 𝑥 

7. 𝑎𝑏 − 𝑥 = 𝑏𝑥, for 𝑥 
 

8. 2𝑥 + 𝑏 = 3𝑥 − 𝑏, for 𝑥 

9. 𝑎 + 2𝑏 = 3(𝑏 − 2𝑎), for 𝑎, for 𝑏 
 

10. 3(𝑥 + 𝑎) = 𝑥 − 𝑎 + 2𝑏, for 𝑥 

11. 𝑥 + 𝑦 = 𝑥 − 𝑦, for 𝑦 
 

12. 2𝑎(𝑥 + 𝑦) = 𝑎𝑥, for 𝑥 

13. 2𝑦 − 𝑎𝑥 + 𝑎 = 𝑎𝑥 − 𝑎, for 𝑦 
 

14. 2(𝑥 + 𝑦) = 𝑥 + 𝑦 + 4, for 𝑥 

15. 𝑎(𝑚 − 2𝑛) + 𝑎𝑛 = 2𝑎𝑚, for 𝑚 
 

16. 𝑎(𝑥 + 𝑎) = 𝑥 + 𝑎2 + 2𝑎, for 𝑥 

17. 𝑚𝑥 = 𝑛𝑥 − 2𝑛, for 𝑥 
 

18. 2(𝑚 + 𝑛) = 3(𝑚 − 𝑛) + 𝑚𝑛, for 𝑛, 𝑚 

19. 𝑎(𝑥 + 𝑦) = 2𝑎𝑥 + 2𝑦, for 𝑥, 𝑦 
 

20. 2𝑝𝑥 + 𝑝𝑞 = 𝑞𝑥 − 2𝑝, for 𝑥, 𝑝, and 𝑞 

21. (𝑎 + 𝑥)(𝑥 − 𝑦) = 2𝑎𝑥𝑦, for 𝑦 
 

22. 𝑄1 = 𝑃(𝑄2 − 𝑄1), for 𝑄1 

23. 𝐿 = 𝜋(𝑟1 + 𝑟2) + 2𝑑, for 𝑟1 24. 
𝑅 =

𝑘𝐴(𝑇1 + 𝑇2)

𝑑
, for 𝑇1 

 

25. 
𝑃 =

𝑉1(𝑉2 − 𝑉1)

𝑔𝑗
, for 𝑉2 

 

26. 𝑎(𝑚 − 𝑛) = 𝑎𝑚𝑛 + 𝑚 − 𝑛, for 𝑚, 𝑛 

27. 𝑥2 − 2𝑦 = 3𝑥2 + 2𝑦, for 𝑥2, 𝑦 28. 𝑆 = 𝜋𝑟√𝑟2 + ℎ2 for ℎ 
 

29. 

𝑖 = ±√
1

𝐿𝐶
√𝑄2 − 𝑞, for 𝑄 

 

30. 𝑆 =
𝑛

2
[2𝑎 + (𝑛 − 1)𝑑], for 𝑑 

31. 𝑛𝐸 = 𝐼(𝑅 + 𝑛𝑟), for 𝑟 32. 
𝐼 =

𝐸

𝑟 +
𝑅
𝑛

, for 𝑛 

 

33. 𝑣2

2𝑔
+

𝑃

𝑐
= 𝐻, for 𝑐 

 

34. 
𝑇 = 𝑇1 (1 −

𝑛 − 1

𝑛
∙

ℎ

ℎ0
) , for ℎ 
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35. 1

𝐶
=

1

𝐶1
+

1

𝐶2
, for 𝐶 

 

36. 
𝑉 =

𝑞

𝜀0
(

1

𝑟1
−

1

𝑟2
) , for 𝑟1 

37. 𝑥 − 2𝑎 + 3(𝑦 + 2𝑏) = 𝑥 + 𝑦 + 𝑎 + 𝑏, for 𝑦 
 

38. 𝑟 − 3(𝑠 − 𝑟) + 2(𝑠 + 𝑟) = 4(𝑟 − 𝑠), for 𝑟 
 

39. 𝑥(𝑘 + 𝑦) − 𝑘(𝑥 − 𝑦) = 𝑘𝑥, for 𝑥, 𝑦, and 𝑘 
 

40. 2(𝑥 − 𝑦) = 3(𝑥 − 𝑦) + 𝑥 − 𝑦, for (𝑥 − 𝑦) 
 

41. 5(2𝑥 + 𝑦) = 4(2𝑥 + 𝑦 − 1), for (2𝑥 + 𝑦) 
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1.8 Solving Absolute Value Equations and Inequalities 
 

Definition of Absolute Value 

The absolute value of a real number 𝑎, denoted by |𝑎|, is defined as follows: 

|𝑎| = {
𝑎 if 𝑎 ≥ 0

−𝑎 if 𝑎 < 0
 

Solving an equation containing an absolute value 

To solve an equation with an absolute value, we must consider both the positive and negative 

options. 

Example 1: Solve 

|𝑥 − 7| = 5 
 

Inside absolute value could be positive or negative 5 

𝑥 − 7 = 5     or     𝑥 − 7 = −5 
 

Solve both equations 

𝑥 = 12,2 
 

Final answer 

Before removing the absolute value, we must first isolate the absolute value on one side of the 

equation.  

Example 2: Solve 

2|𝑥 − 4| + 3 = 17 
 

Subtract 3 from both sides 

2|𝑥 − 4| = 14 
 

Divide both sides by 2 

|𝑥 − 4| = 7 
 

Consider positive or negative 7 

𝑥 − 4 = 7     or     𝑥 − 4 = −7 
 

Solve both equations 

𝑥 = 11, −3 
 

Final answer 

Inequalities Involving Absolute Value 

|𝑥| represents the distance along the number line from 𝑥 to the origin. Thus |𝑥| < 7 means that 

the distance from 𝑥 to the origin is less than 7.  

 

 

 

-7 7 0 
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We can see in the figure that this is the set of real numbers 𝑥 such that −7 < 𝑥 < 7. On the other 

hand, |𝑥| ≥ 7 means the distance from 𝑥 to the origin is greater than or equal to 7.  

 

 

Therefore the figure shows either 𝑥 ≥ 7 or 𝑥 ≤ −7. 

Properties of Absolute Value 

Ab. Value Equivalent Interval Graph Description 

|𝑎| < 𝑏 
 

 

−𝑏 < 𝑎 < 𝑏 (−𝑏, 𝑏)  Trapped 

|𝑎| ≥ 𝑏 
 

 

𝑎 ≤ −𝑏 or 𝑎 ≥ 𝑏 (−∞, −𝑏] ∪ [𝑏, ∞)  Tails 

 

Example 3: Solve, graph, and give interval notation 

|5𝑥 − 3| < 7 
 

Write equivalent inequality 

−7 < 5𝑥 − 3 < 7 
 

Add 3 to all three parts 

−4 < 5𝑥 < 10 
 

Divide all three parts by 5 

−
4

5
< 𝑥 < 2 

 

Graph 

 

 

 

Give interval notation 

 

 

 

(−
4

5
, 2) 

 

Final answer 

 

 

 

 

 

-7 7 0 

𝑏 

−𝑏 

−𝑏 

𝑏 

−
4

5
 

2 
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Example 4: Solve, graph, and give interval notation 

|3 −
1

2
𝑥| ≥ 12 

 

Write equivalent inequality 

3 −
1

2
𝑥 ≤ −12 or 3 −

1

2
𝑥 ≥ 12 

 

Add −3 to each inequality 

−
1

2
𝑥 ≤ −15 or −

1

2
𝑥 ≥ 9 

 

Multiply each inequality by −2  

and change the inequality symbol 

𝑥 ≥ 30 or 𝑥 ≤ −18 
 

Graph 

 Give interval notation 

 

 

 

(−∞, −18] ∪ [30, ∞) 
 

Final answer 

Just as with equations, before writing our equivalent expression, we must first isolate the 

absolute value 

Example 5: Solve and give interval notation 

2|−11 − 7𝑥| − 2 > 10 
 

Add 2 to both sides 

2|−11 − 7𝑥| > 12 
 

Divide both sides by 2 

|−11 − 7𝑥| > 6 
 

Write equivalent inequality 

−11 − 7𝑥 < −6 or − 11 − 7𝑥 > 6 
 

Add 11 to each inequality 

−7𝑥 < 5 or − 7𝑥 > 17 Divide by −7 

and change the inequality symbol 

 

𝑥 > −
5

7
 or 𝑥 < −

17

7
 

 

Give interval notation (graph first if it helps) 

(−∞, −
17

7
) ∪ (−

5

7
, ∞) 

 

Final answer 

 

 

 

-18 30 
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Example 6: Solve and give interval notation 

−
1

3
|6 − 5𝑥| + 2 ≥ 1 

 

Add −2 to both sides 

−
1

3
|6 − 5𝑥| ≥ −1 

 

Multiply both sides by −3 

and change the inequality 

|6 − 5𝑥| ≤ 3 
 

Write equivalent inequality 

−3 ≤ 6 − 5𝑥 ≤ 3 
 

Subtract 6 from all three parts 

−9 ≤ −5𝑥 ≤ −3 Divide all three parts by -5 

and change the inequality 

 
9

5
≥ 𝑥 ≥

3

5
 

 

Give interval notation (graph first if it helps) 

[
3

5
,
9

5
] 

 

Final answer 
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1.8 Solving Absolute Value Equations and Inequalities Practice 
 

Solve  

1. |2𝑥 + 3| = 5 
 

2. |3 − 𝑥| = 7 

3. |4𝑥 − 3| = 13 
 

4. |5 − 3𝑥| = 2 

5. 
|
3𝑥 + 4

3
| = 5 

 

6. 
|
3𝑥 + 1

4
| = 2 

7. 3 − |5𝑥 − 2| = −7 8. 5

2
− |

2𝑥 + 1

2
| =

3

2
 

 

9. 2

3
− 3 |

𝑥 − 2

2
| =

1

6
 

 

10. 4 − 2|4 − 3𝑥| = −8 

11. |5𝑥 + 3| = |2𝑥 − 1| 
 

12. |2 + 3𝑥| = |4 − 2𝑥| 

13. |3𝑥 − 4| = |2𝑥 + 3| 
 

14. 
|
2𝑥 − 5

3
| = |

3𝑥 + 4

2
| 

 

15. 
|
4𝑥 − 2

5
| = |

6𝑥 + 3

2
| 

 

16. 
|
3𝑥 + 2

2
| = |

2𝑥 − 3

3
| 

Solve. Give answers in interval notation. 

17. |𝑥| < 3 
 

18. |𝑥| > 5 

19. |𝑥| ≤ 8 
 

20. |2𝑥| < 6 

21. |3𝑥| > 5 
 

22. |𝑥 + 3| < 4 

23. |𝑥 − 2| < 6 
 

24. |𝑥 − 4| > 5 

25. |𝑥 − 8| < 12 
 

26. |𝑥 + 3| ≤ 4 

27. |𝑥 + 3| ≥ 3 
 

28. |𝑥 − 1| < 3 

29. 
|
5𝑥

2
| ≤ 5 

 

30. 
|
2𝑥

3
| > 4 

31. |3𝑥 − 2| < 9 
 

32. |2𝑥 − 4| > 6 

33. |3𝑥 − 5| ≥ 3 
 

34. |2𝑥 + 5| < 9 
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35. 
|𝑥 +

2

3
| <

5

3
 

 

36. 
|𝑥 −

1

2
| <

3

2
 

37. 
|𝑥 −

3

4
| <

7

4
 

 

38. 
|
𝑥 − 3

2
| ≥ 3 

39. 
|
𝑥 − 2

2
| < 1 

 

40. 
|
3𝑥 − 2

4
| > 2 

41. 
|
2𝑥 + 1

3
| < 3 

 

42. 
|
2𝑥 − 5

3
| ≥ 3 

43. 1 + 2|𝑥 − 1| ≤ 9 
 

44. 3 − |2 − 𝑥| < 1 

45. 4 + 3|𝑥 − 1| ≥ 10 
 

46. 10 − 3|𝑥 − 2| ≥ 4 

47. 6 − |2𝑥 − 5| ≥ 3 
 

48. 3 − 2|3𝑥 − 1| ≥ −7 

49. 3

2
− 2 |

𝑥 + 4

4
| ≥ −

3

2
 

 

50. 1

3
+ |

2𝑥 + 1

6
| ≥

1

2
 

51. 2

3
− 2 |

2𝑥 − 2

3
| ≥ −2 

 

52. 1

3
− 3 |

3 − 𝑥

2
| ≥ −

1

6
 

53. 2

3
− |

3𝑥 − 2

6
| ≤ −

1

2
 

 

54. 1

4
− |

2𝑥 + 3

3
| < −

5

2
 

 

  



79 
 

 

 

 

 

 

 

Chapter 2: 

Functions and Graphs 
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2.1 Functions 
 

One of the two most important concepts in mathematics is the concept of a function. 

Understanding the concept of a function is central to many of the operations and procedures in 

advanced mathematics. 

Definition of Function 

A function is a rule that relates two groups of objects called the Domain and the Range of the 

function. Under the function rule, an element of the Domain gets paired with one element of the 

Range. 

To give an example of a function it is necessary to give three things, the Domain, the Range, and 

the rule that connects the two. Consider the following example:  

Domain: times of the day 

Range: temperature 

Rule: look at the thermometer 

On a given day we can apply the function with the following results given as a table: 

Time AM 

 

Temperature  Time PM 

 

Temperature 

4:00 35º F  12:00 70 º F 

5:00 40 º F  1:00 72 º F 

6:00 42 º F  2:00 68 º F 

7:00 45 º F  3:00 65 º F 

 8:00 53 º F  4:00 62 º F 

9:00 55 º F  5:00 62 º F 

10:00 60 º F  6:00 60 º F 

11:00 70 º F  7:00 55 º F 

 

Notice that for each time (Domain value) there is only one temperature (Range value) as required 

by the definition. But also notice that the converse does not hold. The same temperature can 

occur at multiple times. For example, the temperature 55 º occurs at both 9:00 AM and at 7:00 

PM. Our definition of a function does not prohibit this from happening. That is, while each 

element of the Domain can be paired with only one element of the Range, each element of the 

range can be paired with multiple elements of the Domain.  

Definition of One-to-One: 

A function where each element of the Range is paired with exactly one element of the Domain is 

called one-to-one. 
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The standard notation for a function is 𝑦 = 𝑓(𝑥) where the letters 𝑥 and 𝑦 stand for the Domain 

and Range variables respectively. The letter 𝑓 stands for the function rule. As in algebra the 

letters 𝑥, 𝑦, and 𝑧 usually represent variables, in function theory they also represent variables. In 

function theory the letters 𝑓, 𝑔, and ℎ usually represent the function rule. Although in 

applications other letters may be used for mnemonic purposes. For example, in economics a 

demand function may be represented by 𝑞 =  𝑑(𝑝) where 𝑞 represents a quantity of a 

commodity, 𝑝 represents the price, and the function 𝑑 represents the demand or relationship 

between the price and the quantity available in the market place. 

The variable, 𝑥, that represents the Domain value is frequently called the independent variable. It 

is called independent because there is a sense of choice involved in picking it. In the above 

example relating time and temperature, the Domain, time, is independent because we can choose 

the time to look at the thermometer. The Range values are called dependent because whatever 𝑦 

value we get from the function is dependent upon two things, the domain value we choose and 

the function we are using. 

In algebra functional relationships are regularly given by algebraic expressions. An example is 

𝑦 = 𝑓(𝑥) = 3𝑥2 − 2𝑥 + 4. The '𝑦 =' at the front is awkward and is frequently left out and we 

write 𝑓(𝑥) = 3𝑥2 − 2𝑥 + 4. But, every function has a range value. It must be remembered that 

the '𝑦 =' is there even if it isn’t written. In some advanced texts you might see 𝑦(𝑥) = 3𝑥2 −

2𝑥 + 4 where the letter 𝑦 represents both the range value and the function name. While a useful 

contraction it should be remembered that the function value, 𝑦, and the function name, 𝑓, are 

different things. 

In this text we will be primarily interested in functions that are represented by algebraic 

relationships. 

Evaluation of a function.  

Evaluating a function is simply a process of substitution. While we might define a function as 

𝑓(𝑥) = 3𝑥2 + 5𝑥 − 2, the 𝑥 in the definition is simply a hole that we fill with the domain letter 

𝑥. This function could also be written as 𝑓( ) = 3
2

+ 5 − 2 where the  is a hole that 

gets filled with something (the same thing in each ).  

To evaluate the function 𝑓(𝑥) = 3𝑥2 + 5𝑥 − 2 with 𝑥 = 2 or 𝑓(2) (read 𝑓 at 2 or 𝑓 of 2) we 

have 𝑓(2) = 3(2)2 + 5(2) − 2. Each of the 𝑥's in 𝑓 have been replaced by 2.  
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Example 1: Evaluate 𝑓(2) given 𝑓(𝑥) = 3𝑥2 + 5𝑥 − 2 

𝑓(𝑥) = 3𝑥2 + 5𝑥 − 2 
 

Substitute a 2 for each 𝑥 

𝑓(2) = 3(2)2 + 5(2) − 2 
 

Simplify exponents 

𝑓(2) = 3(4) + 5(2) − 2 
 

Multiply 

𝑓(2) = 12 + 10 − 2 
 

Add 

𝑓(2) = 20 
 

Final answer 

As shown in example 1, evaluating this expression gives 𝑓(2) = 20 or 𝑦 = 20 when 𝑥 = 2 

(remember, there is always a 𝑦 or range value present even if we don't write it as part of the 

function). 

The advantage of function notation is that it allows us to write more complicated substitutions.  

Example 2: Evaluate 𝑓(𝑎 + 5) if 𝑓(𝑥) = 3𝑥2 + 5𝑥 − 2 

𝑓(𝑥) = 3𝑥2 + 5𝑥 − 2 
 

Substitute (𝑎 + 5) for each 𝑥 

𝑓(𝑎 + 5) = 3(𝑎 + 5)2 + 5(𝑎 + 5) − 2 
 

Simplify exponent 

𝑓(𝑎 + 5) = 3(𝑎2 + 10𝑎 + 25) + 5(𝑎 + 5) − 2 
 

Distribute 

𝑓(𝑎 + 5) = 3𝑎2 + 30𝑎 + 75 + 5𝑎 + 25 − 2 
 

Combine like terms 

𝑓(𝑎 + 5) = 3𝑎2 + 35𝑎 + 98 Final answer 

 

Example 3: Evaluate 𝑓(𝑥 − ℎ) if 𝑓(𝑥) = 3𝑥2 + 5𝑥 − 2 

𝑓(𝑥) = 3𝑥2 + 5𝑥 − 2 
 

Substitute (𝑥 − ℎ) for each 𝑥 

𝑓(𝑥 − ℎ) = 3(𝑥 − ℎ)2 + 5(𝑥 − ℎ) − 2 
 

Simplify exponent 

𝑓(𝑥 − ℎ) = 3(𝑥2 − 2ℎ𝑥 + ℎ2) + 5(𝑥 − ℎ) − 2 
 

Distribute 

𝑓(𝑥 − ℎ) = 3𝑥2 − 6ℎ𝑥 + 3ℎ2 + 5𝑥 − 5ℎ − 2 
 

Final answer 
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Example 4: Evaluate ℎ(𝑥 + 1) if ℎ(𝑥) = 𝑥 +
1

𝑥
 

ℎ(𝑥) = 𝑥 +
1

𝑥
 

 

Substitute (𝑥 + 1) for each 𝑥 

ℎ(𝑥 + 1) = 𝑥 + 1 +
1

𝑥 + 1
 

 

Final answer 

Example 5: Evaluate ℎ (
1

𝑥
) if ℎ(𝑥) = 𝑥 +

1

𝑥
 

ℎ(𝑥) = 𝑥 +
1

𝑥
 

 

Substitute 
1

𝑥
 for each 𝑥 

ℎ (
1

𝑥
) =

1

𝑥
+

1

1
𝑥

 

 

For compound fraction, multiply 2
nd

 term by 

reciprocal of  
1

𝑥
 

ℎ (
1

𝑥
) =

1

𝑥
+ 𝑥 

 

Final answer 

Domain of a Function 

The Domain of a function is the collection of all elements that make sense when the function is 

evaluated with them.  

Example 6: Let 𝑓(𝑥) =
𝑥+1

𝑥−1
. Is 𝑥 = – 1 in the Domain of the function?  

𝑓(𝑥) =
𝑥 + 1

𝑥 − 1
 

 

Substitute −1 for each 𝑥 

𝑓(−1) =
(−1) + 1

(−1) − 1
 

 

Simplify 

𝑓(−1) =
0

−2
= 0 

 

Because this makes sense –1 is in the Domain of the function. 
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Example 7: Let 𝑓(𝑥) =
𝑥+1

𝑥−1
. Is 𝑥 = 1 in the Domain of the function? 

𝑓(𝑥) =
𝑥 + 1

𝑥 − 1
 

 

Substitute 1 for each 𝑥 

𝑓(1) =
(1) + 1

(1) − 1
 

 

Simplify 

𝑓(1) =
2

0
 

Because division by zero is undefined  

this does not make sense  

and x = 1 is not in the Domain. 

 

Example 8: Let 𝑔(𝑥) = √5 − 𝑥
4

.  What is the domain? 

Because this is an even root and even roots have difficulties with negative values the expression 

inside the radical has to be ≥ 0. Or, 5 –  𝑥 ≥  0.  

5 − 𝑥 ≥ 0 
 

Subtract 5 

−𝑥 ≥ −5 
 

Divide by −1, flip inequality 

𝑥 ≤ 5 
 

Final answer 

Example 9: Let ℎ(𝑥) =
√2𝑥+4

𝑥2−𝑥−2
. What is the domain? 

This function has both an even root and a denominator. We know that even roots have 

difficulties with negative values and the denominator cannot equal zero. 

2𝑥 + 4 ≥ 0 
 

First we consider the even root ≥ 0, Subtract 4 

2𝑥 ≥ −4 
 

Divide by 2 

𝑥 ≥ −2 
 

Now consider the denominator 

𝑥2 − 𝑥 − 2 ≠ 0 
 

Factor 

(𝑥 − 2)(𝑥 + 1) ≠ 0 
 

Set each factor equal to zero 

𝑥 − 2 ≠ 0     or     𝑥 + 1 ≠ 0 
 

Solve each equation 

𝑥 ≠ 2, −1 
 

Put both parts together for domain 

𝑥 ≥ −2 and 𝑥 ≠ 2, −1 
 

Final answer 
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Range of a Function 

A value is inside the Range of the function if there is a value in the Domain that gets paired with 

it. Remember, a function rule pairs a Domain value with a Range value. That is, for every value 

in the Domain there is a corresponding value in the Range. So, a value can get in the Range only 

if there is something in the Domain to pair it with. 

Example 10: If 𝑓(𝑥) = 4 − 𝑥2, is the value 𝑦 = 0 in the Range of 𝑓?  

𝑓(𝑥) = 4 − 𝑥2 
 

𝑦 is equivalent to 𝑓(𝑥), substitute 0 for 𝑓(𝑥) 

0 = 4 − 𝑥2 
 

Factor 

0 = (2 − 𝑥)(2 + 𝑥) 
 

Set each factor equal to zero 

2 − 𝑥 = 0     or     2 + 𝑥 = 0 
 

Solve each equation 

𝑥 = ±2 
 

We have a solution, so yes, 𝑦 = 0 is in the Range. 

Example 11: If 𝑓(𝑥) = 4 − 𝑥2, is the value 𝑦 = 5 in the Range of 𝑓? 

𝑓(𝑥) = 4 − 𝑥2 
 

Substitute 5 for 𝑓(𝑥) 

5 = 4 − 𝑥2 
 

Subtract 4 

1 = −𝑥2 
 

Divide by −1 

−1 = 𝑥2 
 

Square root both sides 

±√−1 = 𝑥 This equation has only imaginary roots 

 

 

We must conclude that there are no Domain values that get paired with 5 and that 5 is not in the 

Range of the function. 
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Example 12: If ℎ(𝑥) =
𝑥−1

𝑥+1
, is the value 𝑦 = −1 in the Range of the function? 

ℎ(𝑥) =
𝑥 − 1

𝑥 + 1
 

 

Substitute −1 for ℎ(𝑥) 

−1 =
𝑥 − 1

𝑥 + 1
 

 

Multiply by (𝑥 + 1) to clear the denominator 

−1(𝑥 + 1) = 𝑥 − 1 
 

Distribute 

−𝑥 − 1 = 𝑥 − 1 
 

Add 𝑥 and add 1 to both sides 

0 = 2𝑥 
 

Divide by 2 

0 = 𝑥 Because we found a value of 𝑥 that will get 

paired with – 1, it must be in the range of h(x) 

 

Example 13: If ℎ(𝑥) =
𝑥−1

𝑥+1
, is the value 𝑦 = 1 in the range of the function? 

ℎ(𝑥) =
𝑥 − 1

𝑥 + 1
 

 

Substitute 1 for ℎ(𝑥) 

1 =
𝑥 − 1

𝑥 + 1
 

 

Multiply by (𝑥 + 1) to clear the denominator 

1(𝑥 + 1) = (𝑥 − 1) 
 

Distribute 

𝑥 + 1 = 𝑥 − 1 
 

Subtract 𝑥 

1 ≠ −1 The variable has dropped out of the equation 

and the remaining statement is false 

 

The equation has no solutions. This means that there does not exist a value of 𝑥 that will get 

paired with 1, therefore 1 cannot be in the range of ℎ(𝑥). 

Notice with this example that 𝑥 = −1 is not in the Domain of ℎ(𝑥). This would put a zero in the 

denominator. But 𝑦 = −1 is in the Range of ℎ(𝑥). The fact that a value is or is not in the 

Domain of a function has nothing to do with whether the value is or is not in the Range of the 

function. 
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Difference Quotient 

A common expression used in mathematics is the Difference Quotient. There are three versions 

of the Difference quotient. Given a function 𝑓(𝑥) they are: 

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 

 

The Difference Quotient represents the average rate of 

change between two points on a function, or the slope of the 

secant line connecting two points. This is illustrated in the 

graph to the right. 

 

 

Example 14: Let 𝑓(𝑥) = 2𝑥2 − 3𝑥. Evaluate the difference Quotient 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

We need to find 𝑓(𝑥 + ℎ) 

𝑓(𝑥 + ℎ) = 2(𝑥 + ℎ)2 − 3(𝑥 + ℎ) 
 

Simplify the exponent 

𝑓(𝑥 + ℎ) = 2(𝑥2 + 2ℎ𝑥 + ℎ2) − 3(𝑥 + ℎ) 
 

Distribute 

𝑓(𝑥 + ℎ) = 2𝑥2 + 4ℎ𝑥 + 2ℎ2 − 3𝑥 − 3ℎ Substitute this and 𝑓(𝑥)  

into the Difference Quotient 

 

(2𝑥2 + 4ℎ𝑥 + 2ℎ2 − 3𝑥 − 3ℎ) − (2𝑥2 − 3𝑥)

ℎ
 

 

Distribute the negative 

2𝑥2 + 4ℎ𝑥 + 2ℎ2 − 3𝑥 − 3ℎ − 2𝑥2 + 3𝑥

ℎ
 

 

Combine like terms 

4ℎ𝑥 + 2ℎ2 − 3ℎ

ℎ
 

 

Factor ℎ out of numerator 

ℎ(4𝑥 + 2ℎ − 3)

ℎ
 

 

Divide out ℎ 

4𝑥 + 2ℎ − 3 
 

Final answer 

 

(x, f(x))

(a, f(a)) m = 
f(x) – f(a)

x – a
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Example 15: Let 𝑔(𝑥) = 𝑥3 + 𝑥. Evaluate the Difference Quotient 
𝑔(𝑥+ℎ)−𝑔(𝑥−ℎ)

2ℎ
. 

𝑔(𝑥 + ℎ) − 𝑔(𝑥 − ℎ)

2ℎ
 

We need to find 

𝑔(𝑥 + ℎ) and 

𝑔(𝑥 − ℎ) 
 

𝑔(𝑥 + ℎ) = (𝑥 + ℎ)3 + (𝑥 + ℎ) First, 𝑔(𝑥 + ℎ). 

Simplify exponent 

 

𝑔(𝑥 + ℎ) = 𝑥3 + 3𝑥2ℎ + 3𝑥ℎ2 + ℎ3 + 𝑥 + ℎ 
 

Next, 𝑔(𝑥 − ℎ) 

𝑔(𝑥 − ℎ) = (𝑥 − ℎ)3 + (𝑥 − ℎ) 
 

Simplify exponent 

𝑔(𝑥 − ℎ) = 𝑥3 − 3𝑥2ℎ + 3𝑥ℎ2 − ℎ3 + 𝑥 − ℎ Substitute both into 

Difference Quotient 

 

(𝑥3 + 3𝑥2ℎ + 3𝑥ℎ2 + ℎ3 + 𝑥 + ℎ) − (𝑥3 − 3𝑥2ℎ + 3𝑥ℎ2 − ℎ3 + 𝑥 − ℎ)

2ℎ
 

 

Distribute negative 

𝑥3 + 3𝑥2ℎ + 3𝑥ℎ2 + ℎ3 + 𝑥 + ℎ − 𝑥3 + 3𝑥2ℎ − 3𝑥ℎ2 + ℎ3 − 𝑥 + ℎ

2ℎ
 

 

Combine like terms 

6𝑥2ℎ + 2ℎ3 + 2ℎ

2ℎ
 

 

Factor 2ℎ in 

numerator 

2ℎ(3𝑥2 + ℎ2 + 1)

2ℎ
 

 

Divide out 2ℎ 

3𝑥2 + ℎ2 + 1 
 

Final answer 
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2.1 Functions Practice  
 

1. Specify the domain of each of the following functions 

a.  𝑓(𝑥) = −5𝑥 + 1 
 

b. 𝑓(𝑥) = |𝑥| + 3 c. 𝑓(𝑥) = 𝑥2 − 3𝑥 − 4 

d. 𝑓(𝑥) = √𝑥 
 

e. 𝑓(𝑥) = 𝑥4 f. 𝑓(𝑥) = √𝑥 − 16 

g. 𝑓(𝑥) =
𝑥

𝑥 − 3
 

h. 
𝑓(𝑥) = −

2

𝑥2 − 3𝑥 − 4
 

 

i. 𝑓(𝑥) = 4 

j. 𝑦(𝑥) = 4𝑥 − 5 k. 
𝑦(𝑥) =

𝑥 − 4

𝑥 + 4
 

l. 
ℎ(𝑥) =

√3𝑥 − 12

𝑥2 − 25
 

 

m. 
𝑠(𝑡) =

1

𝑡2
 

n. 𝑦(𝑥) =
𝑥

𝑥2 − 25
 

o. 
𝑝(𝑠) =

1

𝑠2 − 4𝑠
 

 

p. 
𝑠(𝑡) =

1

𝑡2 + 1
 

 

 

 

 

q. 𝑓(𝑥) = √5 − 4𝑥 r. 
𝑧(𝑡) =

𝑡

|𝑡|
 

2. Let 𝑓(𝑥) = 4 − 𝑥2 

a. Is 𝑦 = 2 in the Range of 𝑓? 

b. Is 𝑦 = 13 in the Range of 𝑓? 

 

3. Let 𝑓(𝑥) = √9 + 𝑥2 

a. Is 𝑦 = 9 in the Range of 𝑓? 

b. Is 𝑦 = 1 in the Range of 𝑓? 

4. Let 𝑓(𝑥) =
3𝑥

2+𝑥2  

a. Is 𝑦 = 1 in the Range of 𝑓? 

b. Is 𝑦 = 2 in the Range of 𝑓? 

5. Let 𝑓(𝑥) =
2𝑥−1

𝑥+4
  

a. What is the Domain of 𝑓? 

b. Is 𝑦 = 3 in the Range of 𝑓? 

c. Is 𝑦 = 2 in the Range of 𝑓? 

 

6. Let 𝑓(𝑥) =
𝑥−5

𝑥+5
   

a. What is the Domain of 𝑓? 

b. Is 𝑦 = −2 in the Range of 𝑓? 

c. Is 𝑦 = 1 in the Range of 𝑓? 

7. Let 𝑓(𝑥) =
2𝑥+1

4𝑥−1
   

a. What is the Domain of 𝑓? 

b. Is 𝑦 =
1

2
 in the Range of 𝑓? 

c. Is 𝑦 = 2 in the Range of 𝑓? 

 

8. Let 𝑓(𝑥) =
𝑎𝑥−𝑏2

𝑥−𝑎
  

a. What is the Domain of 𝑓? 

b. Is 𝑦 = 𝑏 in the Range of 𝑓? 

c. Is 𝑦 = 𝑎 in the Range of 𝑓? 
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9. Let 𝑓(𝑥) = 𝑥2 − 3𝑥 + 1. Evaluate each: 

a. 𝑓(1) 
 

b. 𝑓(0) c. 𝑓(−1) 

d. 
𝑓 (

3

2
) 

 

e. 𝑓(𝑧) f. 𝑓(𝑥 + 1) 

g. 𝑓(𝑎 + 1) 
 

h. 𝑓(−𝑥) i. |𝑓(1)| 

j. 𝑓(√3) k. 𝑓(1 + √2) 
 

l. |1 − 𝑓(2)| 

10. Let 𝐻(𝑥) = 1 − 𝑥 − 𝑥2 − 𝑥3 

 a. Which is larger, 𝐻(0) or 𝐻(1)? 

 b. Find 𝐻 (
1

2
). Does 𝐻 (

1

2
) + 𝐻 (

1

2
) = 𝐻(1)? 

11. Let 𝑓(𝑥) = 3𝑥2. Evaluate each: 

a. 𝑓(2𝑥) 
 

b. 2𝑓(𝑥) c. 𝑓(𝑥2) 

d. [𝑓(𝑥)]2 e. 𝑓 (
𝑥

2
) 

 

f. 𝑓(𝑥)

2
 

12. Let 𝑓(𝑥) = 4 − 3𝑥. Evaluate each: 

a. 𝑓(2) 
 

b. 𝑓(3) c. 𝑓(2) + 𝑓(3) 

d. 𝑓(2 + 3) 
 

e. 𝑓(2𝑥) f. 2𝑓(𝑥) 

g. 𝑓(𝑥2) h. 
𝑓 (

1

𝑥
) 

 

i. 𝑓[𝑓(𝑥)] 

j. 𝑥2𝑓(𝑥) k. 1

𝑓(𝑥)
 

 

l. 𝑓(−𝑥) 

m. −𝑓(𝑥) n. −𝑓(−𝑥) 
 

  

13. Let 𝐻(𝑥) = 1 − 2𝑥2. Evaluate each: 

a. 𝐻(0) b. 𝐻(2) c. 𝐻(√2) 
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d. 
𝐻 (

5

6
) 

 

e. 𝐻(1 − √3) f. 𝐻(𝑥2) 

g. 𝐻(𝑥 + 1) h. 𝐻(𝑥 + ℎ) i. 𝐻(𝑥 + ℎ) − 𝐻(𝑥) 

14. Let 𝑅(𝑥) =
2𝑥−1

𝑥−2
. Evaluate each: 

a. 𝑅(2) b. 𝑅(0) c. 
𝑅 (

1

2
) 

 

d. 𝑅(−1) e. 𝑅(𝑥2) f. 
𝑅 (

1

𝑥
) 

 

g. 𝑅(𝑎) h. 𝑅(𝑥 − 1) 
 

  

15. Let 𝑔(𝑥) = 2 for all 𝑥. Evaluate each: 

a. 𝑔(0) 
 

b. 𝑔(5) c.  𝑔(𝑥 + ℎ) 

16. Let 𝑑(𝑡) = −16𝑡2 + 96𝑡 

 a. Compute 𝑑(1), 𝑑 (
3

2
) , 𝑑(2), and 𝑑(𝑡0) 

 b. For which values of 𝑡 is 𝑑(𝑡) = 0? 

 c. For which values of 𝑡 is 𝑑(𝑡) = 1? 

17. Let 𝐴(𝑥) = |𝑥2 − 1|. Compute 𝐴(2), 𝐴(1), and 𝐴(0). 

18. Let 𝑔(𝑡) = |𝑡 − 4|. Find 𝑔(3). Find 𝑔(𝑥 + 4). 

19. Let 𝑓(𝑥) =
𝑥2

|𝑥|
 .  

 a. What is the domain of 𝑓? 

 b. Find 𝑓(2), 𝑓(−2), and 𝑓(−20). 

20. Let 𝐺(𝑥) = 3𝑥 − 5. Compute each: 

a. 𝐺(𝑥) − 𝐺(𝑎)

𝑥 − 𝑎
 

 

b. 𝐺(𝑥) − 𝐺(𝑥0)

𝑥 − 𝑥0
 

21. Let 𝐻(𝑥) = 1 −
𝑥

4
. Compute 

𝐻(𝑥)−𝐻(1)

𝑥−1
  

22. Let 𝑓(𝑥) = 𝑥2. Compute 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
  using the values 𝑎 = 5 and 𝑏 = 3. 
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23. Let 𝑔(𝑥) = 𝑥2 − 2𝑥 + 1. Compute the following: 

a. 𝑔(1 + ℎ) − 𝑔(2)

ℎ
 

 

b. 𝑔(𝑥) − 𝑔(1)

𝑥 − 1
 

c. 𝑔(1 + ℎ) − 𝑔(1 − ℎ)

2ℎ
 

24. Let 𝑓(𝑡) = 𝑡2 + 𝑡. Compute the following: 

a. 𝑓(2 + ℎ) − 𝑓(2)

ℎ
 

 

b. 𝑓(𝑡) − 𝑓(2)

𝑡 − 2
 

c. 𝑓(2 + 𝑡) − 𝑓(2 − 𝑡)

4
 

25. Let 𝑀(𝑥) =
𝑥−𝑎

𝑥+𝑎
. Find 𝑀 (

1

𝑥
)  

26. Let 𝑔(𝑡) = 𝑡4 − 3𝑡2 + 1. Find 𝑔(√𝑡) 

27. Let 𝑘(𝑥) = 5𝑥3 +
5

𝑥3
− 𝑥 −

1

𝑥
. Find 𝑘 (

1

𝑥
)  

28. Let 𝑓(𝑥) =
5𝑥−7

2𝑥+1
. Find 

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
. 

29. Let (𝑡) =
𝑡−𝑥

𝑡+𝑥
 . Find 𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦). 

30. Let (𝑢) =
2𝑢−1

𝑢+3
 . Find 𝐻 (

𝑢

4
).  

31. Let 𝑓(𝑧) =
3𝑧−4

5𝑧−3
. Find 𝑓 (

3𝑧−4

5𝑧−3
). 

32. Let 𝐹(𝑥) =
𝑎𝑥+𝑏

𝑐𝑥−𝑎
.  Find 𝐹 (

𝑎𝑥+𝑏

𝑐𝑥−𝑎
). 

33. If 𝑓(𝑥) = −2𝑥2 + 6𝑥 + 𝑘 and 𝑓(0) = −1, find 𝑘. 

34. If 𝑔(𝑥) = 𝑥2 − 3𝑘𝑥 − 4 and 𝑔(1) = −2, find 𝑘 

35. Let 𝑓(𝑥) = 𝑥2 − 5𝑥 − 6 

 a. Find all values of 𝑥 for which 𝑓(𝑥) = 0 

 b. Find all values of 𝑥 for which 𝑓(𝑥) = 1 

 c. Find all values of 𝑥 for which 𝑓(𝑥) = −15 
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36. Find 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 for each of the following functions 

a. 𝑓(𝑥) = 𝑥2 
 

b. 𝑓(𝑥) = 𝑥2 + 1 c. 𝑓(𝑥) = 𝑥2 + 𝑐 

d. 𝑓(𝑥) = 𝑥3 
 

e. 𝑓(𝑥) = 𝑥3 + 1 f. 𝑓(𝑥) = 𝑥3 + 𝑐 

g. 
𝑓(𝑥) =

1

𝑥
 

 

h. 𝑓(𝑥) = √𝑥 i. 
𝑓(𝑥) =

1

√𝑥
 

j. 𝑓(𝑥) = −3𝑥 + 6 
 

k. 𝑓(𝑥) = 7 l. 𝑓(𝑥) = 2𝑥2 − 3𝑥 + 1 

37. Find 
𝑔(𝑥+ℎ)−𝑔(𝑥−ℎ)

2ℎ
 for each of the following functions 

a. 𝑔(𝑥) = 𝑥 + 1 
 

b. 𝑔(𝑥) = 𝑥2 − 1 c. 𝑔(𝑥) = 𝑥2 − 𝑥 

d. 
𝑔(𝑥) =

1

𝑥
 

 

e. 𝑔(𝑥) = √𝑥 f. 
𝑔(𝑥) =

1

√𝑥
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2.2 Algebra of Functions 
 

Operations on Functions 

Consider the two algebraic expressions 𝑦 = 𝑥2 − 𝑥 − 2 and 𝑧 = 𝑥2 − 4. 

Find each of the following combinations of y and z: 

a. 𝑦 + 𝑧 = (𝑥2 − 𝑥 − 2) + (𝑥2 − 4) = 𝑥2 − 𝑥 − 2 + 𝑥2 − 4 = 2𝑥2 − 𝑥 − 6 

b. 𝑦 − 𝑧 = (𝑥2 − 𝑥 − 2) + (𝑥2 − 4) = 𝑥2 − 𝑥 − 2 − 𝑥2 + 4 = −𝑥 + 2 

c. 𝑦𝑧 = (𝑥2 − 𝑥 − 2)(𝑥2 − 4) = 𝑥4 − 4𝑥2 − 𝑥3 + 4𝑥 − 2𝑥2 + 8 = 𝑥4 − 𝑥3 − 6𝑥2 + 4𝑥 + 8 

d. 
𝑦

𝑧
=

𝑥2−𝑥−2

𝑥2−4
=

(𝑥+1)(𝑥−2)

(𝑥+2)(𝑥−2)
=

𝑥+1

𝑥+2
 

Now consider the two functions, 𝑓(𝑥) = 𝑥2 − 𝑥 − 2 and 𝑔(𝑥) = 𝑥2 − 4. Just as we can add, 

subtract, multiply and divide the algebraic expressions we can add, subtract, multiply and divide 

the functions. Therefore,  

a. 𝑓(𝑥) + 𝑔(𝑥) = (𝑥2 − 𝑥 − 2) + (𝑥2 − 4) = 𝑥2 − 𝑥 − 2 + 𝑥2 − 4 = 2𝑥2 − 𝑥 − 6 
 

b. 𝑓(𝑥) − 𝑔(𝑥) = (𝑥2 − 𝑥 − 2) − (𝑥2 − 4) = 𝑥2 − 𝑥 − 2 − 𝑥2 + 4 = −𝑥 + 2 
 

c. 𝑓(𝑥)𝑔(𝑥) = (𝑥2 − 𝑥 − 2)(𝑥2 − 4) = 𝑥4 − 4𝑥2 − 𝑥3 + 4𝑥 − 2𝑥2 + 8 = 𝑥4 − 𝑥3 − 6𝑥2 + 4𝑥 + 8 
 

d. 
𝑓(𝑥)

𝑔(𝑥)
=

𝑥2−𝑥−2

𝑥2−4
=

(𝑥+1)(𝑥−2)

(𝑥+2)(𝑥−2)
=

𝑥+1

𝑥+2
 

 

In effect, the basic arithmetic operations on functions don't change anything. But there are some 

subtle differences. Because arithmetic expressions deal with static value of the variable and 

functions deal with domains, when dividing our functions we need to be careful that we don't 

divide by zero. That is, if zero is in the range of the denominator we must exclude that value 

from the quotient. In the above example, 
𝑓(𝑥)

𝑔(𝑥)
=

𝑥+1

𝑥+2
 provided that 𝑥 ≠ ±2. For either of these 

two values the denominator in the quotient is zero and the quotient is undefined.  

There is also a small change in the notation. For 𝑓(𝑥) + 𝑔(𝑥) we write the sum function 

(𝑓 + 𝑔)(𝑥) and for the difference 𝑓(𝑥) − 𝑔(𝑥) we write the difference function (𝑓 − 𝑔)(𝑥). 

This is not an application of the distributive property. We are not factoring out the x even though 

it looks that way. We are simply changing the notation putting the emphasis of the operation on 

the 𝑓 and 𝑔. In a similar vein for the product and quotient we write (𝑓𝑔)(𝑥) for 𝑓(𝑥)𝑔(𝑥) and 

(
𝑓

𝑔
) (𝑥) for 

𝑓(𝑥)

𝑔(𝑥)
. Thus, the sum, difference, product and quotient of two functions is given by 

(𝑓 + 𝑔)(𝑥), (𝑓 − 𝑔)(𝑥), (𝑓𝑔)(𝑥) and (
𝑓

𝑔
) (𝑥) and these operations are performed by adding, 

subtracting, multiplying and dividing the two functions.  
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Composition of Two Functions 

Another operation that we perform with functions is called composition of the functions.  To 

introduce this notion, let us recall first the techniques of using functional notation. 

If 𝑓(𝑥) = 𝑥2 − 1 and 𝑔(𝑥) = 𝑥 + 6, then  𝑓(3) means "replace 𝑥 by 3" in 𝑓(𝑥). 

So 𝑓(3) = 32 − 1 = 9 − 1 = 8.  𝑓(𝑎) means "replace 𝑥 by 𝑎" in 𝑓(𝑥), so 𝑓(𝑎) = 𝑎2 − 1.  

𝑓(𝑎 + 𝑏) means "replace 𝑥 by 𝑎 + 𝑏 " in 𝑓(𝑥), so 𝑓(𝑎 + 𝑏) = (𝑎 + 𝑏)2 − 1. 

Now, looking at the above illustrations, what is the only possible meaning of 𝑓(𝑔(𝑥))?  Think 

about it.  It can only mean "replace 𝑥 by 𝑔(𝑥)" in 𝑓(𝑥).  But: 𝑔(𝑥) = 𝑥 + 6. 

Example: Let 𝑓(𝑥) = 𝑥2 − 1 and 𝑔(𝑥) = 𝑥 + 6. Find 𝑓(𝑔(𝑥)) 

𝑓(𝑔(𝑥)) 

 

Replace 𝑥 by 𝑔(𝑥), or (𝑥 + 6) in 𝑓(𝑥) 

𝑓(𝑔(𝑥)) = (𝑥 + 6)2 − 1 

 

Square the binomial 

𝑓(𝑔(𝑥)) = 𝑥2 + 12𝑥 + 36 − 1 

 

Combine like terms 

𝑓(𝑔(𝑥)) = 𝑥2 + 12𝑥 + 35 

 

Final answer 

The symbol, 𝑓(𝑔(𝑥)), means the composition of 𝑓 with 𝑔. 

In like manner, the composition of 𝑔 with 𝑓 would mean 𝑔(𝑓(𝑥)), which tells us to "replace 𝑥 

by 𝑓(𝑥)" in 𝑔(𝑥). 

Example 2: Let 𝑓(𝑥) = 𝑥2 − 1 and 𝑔(𝑥) = 𝑥 + 6. Find 𝑔(𝑓(𝑥)) 

𝑔(𝑓(𝑥)) 

 

Replace 𝑥 by 𝑓(𝑥), or 𝑥2 − 1 in 𝑔(𝑥) 

(𝑥2 − 1) + 6 
 

Combine like terms 

𝑥2 + 5 
 

Final answer 

CAUTION! 

Note that in the foregoing examples 𝑓(𝑔(𝑥)) and 𝑔(𝑓(𝑥)) are two different functions; i.e., 

𝑓(𝑔(𝑥)) ≠ 𝑔(𝑓(𝑥)), and this is usually the case. 
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Example 3: Let 𝑓(𝑥) = √𝑥 + 1 and 𝑔(𝑥) = 𝑥2 − 2𝑥. Find 𝑓(𝑔(𝑥))  

𝑓(𝑔(𝑥)) 

 

Replace 𝑥 by 𝑔(𝑥), or 𝑥2 − 2𝑥 in 𝑓(𝑥) 

𝑓(𝑔(𝑥)) = √(𝑥2 − 2𝑥) + 1 

 

Clear parentheses 

𝑓(𝑔(𝑥)) = √𝑥2 − 2𝑥 + 1  
 

Factor perfect square trinomial 

𝑓(𝑔(𝑥)) = √(𝑥 − 1)2 

 

Clear the inverse radical and exponent 

𝑓(𝑔(𝑥)) = 𝑥 − 1 

 

Final answer 

Example 4: Let 𝑓(𝑥) = √𝑥 + 1 and 𝑔(𝑥) = 𝑥2 − 2𝑥. Find 𝑔(𝑓(𝑥)) 

𝑔(𝑓(𝑥)) 

 

Replace 𝑥 by 𝑓(𝑥), or √𝑥 + 1 in 𝑔(𝑥) 

𝑔(𝑓(𝑥)) = (√𝑥 + 1)
2

− 2(√𝑥 + 1) 

 

Clear inverse radical and exponent 

𝑔(𝑓(𝑥)) = 𝑥 + 1 − 2√𝑥 + 1 

 

Final answer 

Example 5: Let 𝑓(𝑥) = 𝑥2 + 𝑥 and 𝑔(𝑥) =
1

𝑥+2
 . Find 𝑓(𝑔(𝑥)) 

𝑓(𝑔(𝑥)) Replace 𝑥 by 𝑔(𝑥), or 
1

𝑥+2
 in 𝑓(𝑥) 

 

𝑓(𝑔(𝑥)) = (
1

𝑥 + 2
)

2

+
1

𝑥 + 2
 

 

Multiply second fraction by (𝑥 + 2)  

to get common denominator 

𝑓(𝑔(𝑥)) =
1

(𝑥 + 2)2
+

𝑥 + 2

(𝑥 + 2)2
 

 

Add numerators 

𝑓(𝑔(𝑥)) =
𝑥 + 3

(𝑥 + 2)2
 

 

Final answer 

 

 

 

 

 

 



97 
 

Example 6: Let 𝑓(𝑥) = 𝑥2 + 𝑥 and 𝑔(𝑥) =
1

𝑥+2
 . Find 𝑔(𝑓(𝑥)) 

𝑔(𝑓(𝑥)) 

 

Replace 𝑥 by 𝑓(𝑥), or 𝑥2 + 𝑥 in 𝑔(𝑥) 

𝑔(𝑓(𝑥)) =
1

(𝑥2 + 𝑥) + 2
 

 

Clear parentheses 

𝑔(𝑓(𝑥)) =
1

𝑥2 + 𝑥 + 2
 

 

Final answer 

Decomposition 

After one learns to multiply two expressions together they are taught to factor an expression into 

two factors. Similarly, just as we can factor an algebraic expression we can decompose the 

composition of two functions. Consider the function ℎ(𝑥) = (𝑥 + 2)2. We are required to find 

two functions 𝑓(𝑥) and 𝑔(𝑥) such that 𝑓(𝑔(𝑥)) = ℎ(𝑥). The basic process is to look at the 

pattern and determine if there is an obvious outer function or an obvious inner function. By inner 

or outer function we are referring to the fact that in the expression 𝑓(𝑔(𝑥)) the function 𝑔 is 

inside the function 𝑓. For ℎ(𝑥) = (𝑥 + 2)2 the obvious outer function is squaring or 𝑥2. That is, 

we have an expression, 𝑥 + 2, that is being squared. Similarly, the obvious inner function is 

𝑥 + 2. Consequently, we can let the outer function 𝑓(𝑥) = 𝑥2 and the inner function 

𝑔(𝑥) = 𝑥 + 2 Or, ℎ(𝑥) = 𝑓(𝑔(𝑥)) = (𝑥 + 2)2.  

Example 7: Decompose ℎ(𝑥) = √
𝑥+1

𝑥−1
 into two function 𝑓(𝑥) and 𝑔(𝑥) so 𝑓(𝑔(𝑥)) = ℎ(𝑥) 

ℎ(𝑥) = √
𝑥 + 1

𝑥 − 1
 

 

Note outer function is the square root 

𝑓(𝑥) = √𝑥 
 

Everything inside the function, is inner function 

𝑔(𝑥) =
𝑥 + 1

𝑥 − 1
 

 

These are our functions such that 𝑓(𝑔(𝑥)) = ℎ(𝑥) 

Example 8: Decompose ℎ(𝑥) = (𝑥2 − 1)1/3 − (𝑥2 − 1)2/3 into two functions 𝑓(𝑥) and 𝑔(𝑥) so 

that 𝑓(𝑔(𝑥)) = ℎ(𝑥) 

ℎ(𝑥) = (𝑥2 − 1)2/3 − (𝑥2 − 1)1/3 
 

Inside function stands out, 𝑥2 − 1, is repeated 

𝑔(𝑥) = 𝑥2 − 1 
 

Outside function is what happens to this 

𝑓(𝑥) = 𝑥2/3 − 𝑥1/3 These are our functions such that 𝑓(𝑔(𝑥)) = ℎ(𝑥) 
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Example 9: Decompose 𝑝(𝑥) = (
𝑥2+1

𝑥2−1
)

3/4

  into three functions, 𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥) such 

that 𝑓 (𝑔(ℎ(𝑥))) = 𝑝(𝑥) 

𝑝(𝑥) = (
𝑥2 + 1

𝑥2 − 1
)

3
4

 

 

The outer function is clear with the 
3

4
 power 

𝑓(𝑥) = 𝑥3/4 
 

The inner function is repeated, 𝑥2 

ℎ(𝑥) = 𝑥2 
 

The middle function is what happens to 𝑥2 

𝑔(𝑥) =
𝑥 + 1

𝑥 − 1
 

 

These are our functions such that 𝑓 (𝑔(ℎ(𝑥))) = 𝑝(𝑥) 
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2.2 Algebra of Functions Practice 
 

1. Let 𝑓(𝑥) = 2𝑥 − 3 and 𝑔(𝑥) = 𝑥2 + 1. Find: 

a. (𝑓 + 𝑔)(5) 
 

b. (𝑓 − 𝑔)(3) c. (𝑓𝑔)(2) 

d. 
(

𝑓

𝑔
) (4) 

 

e. (𝑓 + 𝑔)(𝑥) f. (𝑓 − 𝑔)(𝑥) 

g. (𝑓𝑔)(𝑥) h. 
(

𝑓

𝑔
) (𝑥) 

 

  

2. Let 𝑓(𝑥) =
𝑥−2

𝑥+1
 and 𝑔(𝑥) = 𝑥2 − 𝑥 − 2. Find: 

a. (𝑓 + 𝑔)(2) 
 

b. (𝑓 − 𝑔)(5) c. (𝑓𝑔)(102) 

d. 
(

𝑓

𝑔
) (99) 

 

e. (𝑓 + 𝑔)(𝑥) f. (𝑓 − 𝑔)(𝑥) 

g. (𝑓𝑔)(𝑥) h. 
(

𝑓

𝑔
) (𝑥) 

 

  

3. Let 𝑓(𝑥) =
2𝑥2−𝑥−3

𝑥−2
 and 𝑔(𝑥) = 𝑥2 − 𝑥 − 2. Find: 

a. (𝑓 + 𝑔)(1) 
 

b. (𝑓 − 𝑔)(3) c. (𝑓𝑔)(2) 

d. 
(

𝑓

𝑔
) (0) 

 

e. (𝑓 + 𝑔)(𝑥) f. (𝑓 − 𝑔)(𝑥) 

g. (𝑓𝑔)(𝑥) h. 
(

𝑓

𝑔
) (𝑥) 

 

  

4. For each of the following pairs of functions, find 𝑓(𝑔(𝑥)) and 𝑔(𝑓(𝑥)). 

a. 
𝑓(𝑥) = 2𝑥 − 3;   𝑔(𝑥) =

𝑥 + 3

2
 

 

b. 𝑓(𝑥) = 𝑥2;   𝑔(𝑥) = 𝑥 − 1 

c. 𝑓(𝑥) = 3𝑥 + 2;   𝑔(𝑥) = 𝑥2 − 8 d. 
𝑓(𝑥) = √𝑥2 + 1;   𝑔(𝑥) =

𝑥2

𝑥2 − 1
 

 

e. 𝑓(𝑥) = 𝑥2 + 1;   𝑔(𝑥) = √𝑥2 − 4𝑥 f. 
𝑓(𝑥) =

𝑥 − 1

𝑥
;   𝑔(𝑥) = 𝑥 +

1

𝑥
 

 

g. 𝑓(𝑥) = 𝑥 + 1;   𝑔(𝑥) = 𝑥 + 4 h. 𝑓(𝑥) = 8𝑥;   𝑔(𝑥) = 8 + 𝑥 
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i. 𝑓(𝑥) = 𝑥3;   𝑔(𝑥) = 𝑥2 + 𝑥 j. 
𝑓(𝑥) = 2𝑥 + 3;   𝑔(𝑥) =

𝑥 − 3

2
 

 

k. 𝑓(𝑥) = 𝑥2 + 3𝑥;   𝑔(𝑥) = 𝑥 − 4 
 

l. 𝑓(𝑥) = √𝑥;   𝑔(𝑥) = 𝑥 − 1 

m. 
𝑓(𝑥) =

1

𝑥
;   𝑔(𝑥) = 3 

 

n. 
𝑓(𝑥) =

1

𝑥
;   𝑔(𝑥) = 𝑥2 − 1 

o. 𝑓(𝑥) = 𝑥2 + 1;   𝑔(𝑥) = 𝑥2 − 1 
 

p. 𝑓(𝑥) = √𝑥 + 1;   𝑔(𝑥) = 𝑥 − 1 

q. 𝑓(𝑥) = 𝑥2 − 𝑥;   𝑔(𝑥) = 𝑥 + 1 
 

r. 𝑓(𝑥) = 𝑥2 − 1;   𝑔(𝑥) = 𝑥2 + 1 

s. 𝑓(𝑥) = √𝑥2 + 1;   𝑔(𝑥) = √𝑥2 − 1 
 

t. 𝑓(𝑥) = √𝑥2 + 1
3

;   𝑔(𝑥) = 𝑥2 − 1 

u. 𝑓(𝑥) = √𝑥 − 1
3

;   𝑔(𝑥) = 𝑥3 + 1 v. 
𝑓(𝑥) =

𝑥

𝑥 − 1
;   𝑔(𝑥) =

𝑥 + 1

𝑥
 

 

w. 
𝑓(𝑥) =

𝑥 + 1

𝑥 − 1
;   𝑔(𝑥) =

𝑥 − 1

𝑥 + 1
 

x. 
𝑓(𝑥) =

2𝑥 + 1

𝑥 − 3
;   𝑔(𝑥) =

3𝑥 + 1

𝑥 + 2
 

 

y. 
𝑓(𝑥) =

3𝑥 + 1

𝑥 − 2
;   𝑔(𝑥) =

𝑥 + 1

𝑥 − 1
 

z. 
𝑓(𝑥) =

2𝑥 + 3

3𝑥 − 1
;   𝑔(𝑥) =

𝑥 + 3

3𝑥 − 2
 

 

5. Let 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = √𝑥, and ℎ(𝑥) = 𝑥 + 1. Find: 

 a. 𝑓 (𝑔(ℎ(𝑥))) 

 b. 𝑓 (ℎ(𝑔(𝑥))) 

 c. 𝑔 (ℎ(𝑓(𝑥))) 

6. For each of the following functions, ℎ(𝑥), find two non-trivial functions 𝑓(𝑥) and 𝑔(𝑥) so that 

ℎ(𝑥) = 𝑓(𝑔(𝑥)). Some problems may have more than one answer. 

a. ℎ(𝑥) = (2𝑥 + 1)2 b. ℎ(𝑥) = (1 − 𝑥)3 c. ℎ(𝑥) = √𝑥2 − 4
3

 
 

d. ℎ(𝑥) = √9 − 𝑥 e. 
ℎ(𝑥) =

1

𝑥 − 2
 

f. 
ℎ(𝑥) =

4

(5𝑥 + 2)2
 

 

g. 
ℎ(𝑥) = (𝑥 + 3)

3
2 

h. 
ℎ(𝑥) =

𝑥3 − 1

𝑥3 + 1
 

i. ℎ(𝑥) = |9𝑥2 + 6𝑥 + 1| 

j. 
ℎ(𝑥) = (

2 + 𝑥3

2 − 𝑥3
)

6

 
k. 

ℎ(𝑥) = √
𝑥 − 5

𝑥 + 2
 

l. 
ℎ(𝑥) = √1 + √1 + 𝑥 

m. ℎ(𝑥) = (𝑥 + 4)2 + 2(𝑥 + 4) n. ℎ(𝑥) = 4(𝑥 − 1)2/3 + 5 − (𝑥 + 3)2 + 4(𝑥 + 3) 



101 
 

2.3 Inverse Functions 
 

The inverse of an operation in mathematics is to undo something that you did. For example, you 

can tie a knot in your shoelaces, which, while inconvenient, can nonetheless be untied. The 

inverse of tying a knot is untying it. Most mathematical operations have the property of being 

inverted. Suppose that we start with some number, 𝑥. We can change the value of the expression 

by adding a number to it, say 𝑥 + 2. What do we do in order to get back to the 𝑥? We take the 

expression 𝑥 + 2 and subtract 2, that is, 𝑥 + 2– 2 = 𝑥. This works because subtraction is the 

inverse operation of addition. Similarly, if we multiply 𝑥 by 2 to get 2𝑥, to get back to 𝑥 we 

divide by 2, or 
2𝑥

2
= 𝑥. Again, division is the inverse operation of multiplication. Also, if we 

raise 𝑥 to a power, 𝑥𝑛, we need only take the 𝑛th
 root. That is, √𝑥𝑛𝑛

= 𝑥.  

We want to extend this idea of inverting an operation to the idea of a function. Consider the 

function given in the diagram below.  

f
Domain Range

x1 y1

x2

y2
x3

x4 y3

 

Here the function 𝑓 take the elements of its domain {𝑥1, 𝑥2, 𝑥3, 𝑥4} and pairs them with the range 

elements {𝑦1, 𝑦2, 𝑦3} giving us the ordered pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦1), (𝑥4, 𝑦3). 

The inverse of 𝑓, written 𝑓−1, will reverse the direction, that is will take 𝑦1 to 𝑥1, 𝑦2 to 𝑥2, 𝑦1 to 

𝑥3, 𝑦3 to 𝑥4. This gives us the ordered pairs (𝑦1, 𝑥1), (𝑦2, 𝑥2), (𝑦1, 𝑥3), (𝑦3, 𝑥4). This pairing is 

illustrated in the following diagram. Note that the Range of 𝑓 is the Domain of 𝑓−1 and the 

Domain of 𝑓 is the Range of 𝑓−1. 



102 
 

f
–1

Range Domain

x1 y1

x2

y2
x3

x4 y3

 

It is obvious from the picture that 𝑓−1 is not a function. That is, the element, 𝑦1 in the Domain of 

𝑓−1 gets paired with two values in the Range, 𝑥1 and 𝑥3. This pairing violates a fundamental 

condition of a function. What this tells us is that, while every function has an inverse, not every 

inverse is a function. 

Before continuing a comment needs to be made about the notation 𝑓−1(𝑥). Although the –1 

exponent generally means reciprocal, when used in function notation it means inverse, not 

reciprocal. That is, 𝑓−1(𝑥) does not mean 
1

𝑓(𝑥)
. 

It is a problem that the inverse of a function is not a function. But this problem is easily fixed by 

restricting the Domain of 𝑓(𝑥). This means that we throw out half of the duplicated points from 

the Domain of 𝑓. In our example we can throw the value 𝑥3 out of the Domain of 𝑓. This leaves 

us  

f

f
–1

Domain

Range

Range

Domain

x1 y1

x2

y2

x4 y3
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or the points (𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥4, 𝑦3). The inverse function would consist of the points 

(𝑦1, 𝑥1), (𝑦2, 𝑥2), and (𝑦3, 𝑥4). Now the inverse function is a function as desired. Also, because 

the Domain variable is 𝑥 and the Range variable is 𝑦 we can write  

f
–1

Range Domain

y1 x1

y2

x2

y4 x3

 

or the points (𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥3, 𝑦4) found by exchanging the 𝑥 and 𝑦 variables.  

This is the key to finding and graphing the inverse of a function, exchange the Domain and 

Range or 𝑥 and 𝑦 values. For example, graph the function 𝑓(𝑥) = 𝑥2 + 𝑥 − 2. Graph the inverse 

𝑓−1(𝑥) and restrict the domain of 𝑓(𝑥) so that the inverse will be a function. The intercepts are 

(–2, 0) and (1, 0) and the vertex is at (−
1

2
, −

9

4
). Swapping the 𝑥 and 𝑦 coordinates 

(exchanging the Domain and Range values) we get the points (0, –2), (0, 1) and (−
9

4
, −

1

2
). 

Graphing these sets of points and corresponding graphs we get:  

(–2, 0)

(1, 0)

9
4

1
2(–   , –   )

9
4

1
2(–   , –   )

(0, 1)

(0, 2)

f(x) = x  + x – 2
2

f (x) 
–1

 

The function 𝑓(𝑥) is not 1-1. As a result the inverse is not a function. We need to restrict the 

Domain of 𝑓(𝑥) so that its inverse is a function. The vertex of 𝑓(𝑥) is at (−
1

2
, −

9

4
). It's at this 

point where the left and right sides of the graph reflect. So this is the point where we want to 
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restrict the Domain. If we eliminate the points on the left of the vertex (we could just as easily 

eliminate the points on the right) we also eliminate the corresponding points on the inverse, or 

the points below the vertex of the inverse. This gives us the graphs: 

(1, 0)

9
4

1
2

1
2

1
2

(–   , –   )

9
4

1
2(–   , –   )

(0, 1)

(0, 2)

f(x) = x  + x – 2
Domain restricted
to x > –

2
f (x) 
Domain of f(x)
restricted to x > –

–1

– –  

Example 1: Given the graph of the function 𝑓(𝑥) below, graph the inverse of the function and 

restrict the Domain of 𝑓 so that the inverse will be a function. 

(–1, 0)

(–   , 1)

(0, 0)

(2, –3)

(3, 0)

1
2–

f(x)  
 

Exchanging the Domain and Range values 

(swapping the 𝑥's and 𝑦's) we get the following 

graph: 

1
2–

f (x)
–1

(0, –1)

(0, 0)

(0, 3)

(–3, 2)

(1, –   )

 
 

Again, the inverse of 𝑓(𝑥) is not a function. So 

we need to restrict the Domain of 𝑓 so that 

𝑓−1 is a function. There are several ways of 

doing this. Three possibilities are given below. 
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1
2–

1
2–

1
2–

f (x)
–1

f (x)
–1

f (x)
–1

(0, –1) (0, –1) (0, –1)

(0, 0) (0, 0) (0, 0)

(0, 3) (0, 3) (0, 3)

(–3, 2) (–3, 2) (–3, 2)

(1, –   ) (1, –   ) (1, –   )

Domain of f(x) restricted 
to x < –1 or x > 3.

Domain of f(x) restricted 
to  –1 < x < 3.

Domain of f(x) restricted to x > 2.

– – –
–

 
If the function 𝑓(𝑥) is 1-1 then there is no need to restrict the Domain because the inverse will 

automatically be a function. Consider the function 𝑓(𝑥) = 𝑥3 with inverse function 𝑓(𝑥) = √𝑥
3

 

shown below. 

f(x) = x
3

f(x) =   x
3

 

Swapping the Domain and Range values of a function also allows us to find the equation of the 

inverse.  

Example 2: Find the inverse of the function. 

𝑓(𝑥) = (𝑥 + 2)3 − 4 
 

“𝑓(𝑥) =” is the same as “𝑦 =” 

𝑦 = (𝑥 + 2)3 − 4 
 

To find the inverse we swap the 𝑥 and 𝑦 variables 

𝑥 = (𝑦 + 2)3 − 4 
 

Solve for 𝑦, first add 4 

𝑥 + 4 = (𝑦 + 2)3 
 

Cube root both sides 

√𝑥 + 4
3

= 𝑦 + 2 
 

Subtract 2 from both sides 

√𝑥 + 4
3

− 2 = 𝑦 
 

Here, 𝑦 represents the inverse function 

𝑓−1(𝑥) = √𝑥 + 4
3

− 2 
 

Final answer 
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Example 3: Find the inverse of the function 

𝑓(𝑥) = (𝑥 − 3)2 + 6 
 

“𝑓(𝑥) =” is the same as “𝑦 =” 

𝑦 = (𝑥 − 3)2 + 6 
 

Swap the 𝑥 and 𝑦 variables 

𝑥 = (𝑦 − 3)2 + 6 
 

Solve for 𝑦, first subtract 6 

𝑥 − 6 = (𝑦 − 3)2 
 

Square root both sides 

±√𝑥 − 6 = 𝑦 − 3 
 

Add 3 to both sides 

3 ± √𝑥 − 6 = 𝑦 The ± comes from taking the square root. 

𝑓(𝑥) is not a 1-1 function. 

The vertex of the function is at the point (3, 6) 

Restricting the Domain to values of 𝑥 ≥ 3 

 

𝑓−1(𝑥) = 3 + √𝑥 − 6 

where the domain of 𝑓(𝑥) 

is restricted to 𝑥 ≥ 3 

 

Final answer 

One useful property of the inverse function is that 𝑓(𝑓−1(𝑥)) = 𝑥 = 𝑓−1(𝑓(𝑥)). This is 

because, regardless which side of the function we start on (Domain or range), when we apply the 

function rules in the proper order we always end up where we started. Back at 𝑥. 
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2.3 Inverse Functions Practice 
 

Find the inverse function for each of the following functions 

1. 𝑝(𝑡) = (𝑡 − 2)2 + 3 
 

2. 𝑧(𝑥) = (𝑥 − 2)3 + 3 

3. ℎ(𝑥) = √𝑥 − 2 + 3 4. 
𝑞(𝑝) =

𝑝 − 2

𝑝 + 3
 

 

5. 
𝐴(𝑏) =

2𝑏 + 1

𝑏 − 2
 

 

6. 𝑓(𝑥) = 2√𝑥 + 1 + 4 

7. 
𝑓(𝑥) =

3𝑥 − 5

2
 

 

8. 𝑧(𝑟) = (2𝑟 − 3)2 − 6 

9. 𝑓(𝑥) = (4𝑥 − 2)2 − 1 10. 𝑓(𝑥) = √3 − 𝑥
3

+ 8 
 

11. 
𝑓(𝑥) =

2

𝑥 + 3
− 1 

 

12. 
𝑓(𝑥) = 3 −

1

𝑥 − 2
 

13. Graph 𝑓(𝑥) = 𝑥2 + 1 and its inverse. Restrict the domain of 𝑓(𝑥) so that 𝑓−1(𝑥) is a 

function. 

14. Graph 𝑓(𝑥) = 𝑥3 + 1 and its inverse. Restrict the domain of 𝑓(𝑥) so that 𝑓−1(𝑥) is a 

function. 

15. Graph 𝑓(𝑥) = 𝑥3 − 1 and its inverse. Restrict the domain of 𝑓(𝑥) so that 𝑓−1(𝑥) is a 

function. 

16. Graph 𝑓(𝑥) = |𝑥3 − 1| and its inverse. Restrict the domain of 𝑓(𝑥) so that 𝑓−1(𝑥) is a 

function. 

17. Which of the following functions are 1-1? For each of the functions find the inverse. 

a. 𝑓(𝑥) = 𝑥 + 4 b. 𝑓(𝑥) = 2𝑥 c. 
𝑓(𝑥) =

4

𝑥 + 7
 

 

d. 
𝑓(𝑥) =

𝑥 + 4

𝑥 − 3
 

 

e. 𝑓(𝑥) = 𝑥3 − 1 f. 𝑓(𝑥) = 𝑥4 − 1 

g. 𝑓(𝑥) = (𝑥 − 2)2 + 1 h. 𝑓(𝑥) = √𝑥 
 

i. 𝑓(𝑥) = √𝑥
3

 

j. 𝑓(𝑥) = √2𝑥 + 3 
 

k. 𝑓(𝑥) = √2𝑥 + 3
3

 l. 𝑓(𝑥) = 5 

m. 𝑓(𝑥) = 𝑥2 − 2𝑥 + 2 n. 𝑓(𝑥) = 3𝑥2 − 6𝑥 + 1   
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18. Show that each of the following functions are inverses by showing that 𝑓(𝑔(𝑥)) = 𝑥 

a. 𝑓(𝑥) = 𝑥2 − 4;   𝑔(𝑥) = √𝑥 + 4 b. 
𝑓(𝑥) =

1

𝑥 − 1
;   𝑔(𝑥) =

1

𝑥
+ 1 

 

c. 
𝑓(𝑥) = 2𝑥 + 3;   𝑔(𝑥) =

𝑥 − 3

2
 

d. 
𝑓(𝑥) =

2𝑥 + 1

2𝑥 − 1
;   𝑔(𝑥) =

𝑥 + 1

2(𝑥 − 1)
 

 

19. What conditions must be placed on 𝑎, 𝑏, 𝑐, and 𝑑 in 𝑓(𝑥) =
𝑎𝑥+𝑏

𝑐𝑥+𝑑
 so that 𝑓−1(𝑥) = 𝑓(𝑥)? 

20. Graph the inverse of each of the following functions. Where the function is not 1-1 restrict 

the domain of the function so that the inverse will be a function. 

a. 

 
 

b. 

 

c. 

 

d. 

  

( (3,3) 
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e. 

 

f. 

 
 

g. 

 

h. 

 
 

i. 

 

j. 

 
 

k. 

 

l. 
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2.4 Applications of Functions 
 

Consider the quadratic equation 𝑦 = 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. We know from previous work that 

there are two possible graphs of a quadratic depending upon whether the leading coefficient is 

positive or negative. These are shown below. 

(x , y )v v

(x , y )v v

a > 0 a < 0  

If the leading coefficient is positive, 𝑎 > 0, then the tail is positive and the vertex (𝑥𝑣,  𝑦𝑣) is a 

minimum. And, if the leading coefficient is negative, 𝑎 < 0, then the tail is negative and the 

vertex (𝑥𝑣,  𝑦𝑣) is a maximum. 

We also know that the 𝑥-coordinate of the vertex, 𝑥𝑣 is found by the formula 𝑥𝑣 = −
𝑏

2𝑎
  and that 

the 𝑦-coordinate, 𝑦𝑣 = 𝑓(𝑥𝑣). What we want to do in this section is use the vertex to maximize 

(find the largest value) or minimize (find the smallest value) a function. This maximum or 

minimum value is the 𝑦 coordinate of the vertex, 𝑦𝑣.  In mathematical terminology, the function 

that we are maximizing or minimizing is called the objective function and the maximum or 

minimum value is called an extrema of the function. 

Example 1: Find the extrema of the function 𝑓(𝑥) = −2𝑥2 + 4𝑥 + 6.  

𝑓(𝑥) = −2𝑥2 + 4𝑥 + 6 the Extremum of the function is a maximum  

because the leading coefficient is negative 

 

 

Find the 𝑥𝑣 from formula 𝑥𝑣 = −
𝑏

2𝑎
 

𝑥𝑣 = −
4

2(−2)
=

−4

−4
= 1 

 

The maximum value of the function, 𝑦𝑣 = 𝑓(𝑥𝑣) 

𝑓(1) = −2(1)2 + 4(1) + 6 
 

Simplify exponents 

𝑓(1) = −2(1) + 4(1) + 6 
 

Multiply 

𝑓(1) = −2 + 4 + 6 
 

Add 

𝑓(1) = 8 Final answer 



111 
 

If there are multiple variables we need multiple equations to reduce our objective function down 

to two variables, 𝑦 and 𝑥. These extra equations are called constraint equations because they 

constrain the possible values of our variables. 

Example 2: Find two numbers whose sum is 12 and whose product is a maximum. 

𝑥, 𝑦 
 

Equation for product to maximize 

𝑃 = 𝑥𝑦 
 

Constraint: sum is 12 

𝑥 + 𝑦 = 12 
 

Solve for 𝑦 

𝑦 = 12 − 𝑥 
 

Substitute into objective equation 

𝑃 = 𝑥(12 − 𝑥) 
 

Multiply 

𝑃 = −𝑥2 + 12𝑥 Find location of maximum from 𝑥𝑣 = −
𝑏

2𝑎
 

 

𝑥𝑣 =
−12

2(−1)
=

−12

−2
= 6 

 

Find other variable 

𝑦 = 12 − (6) = 6 
 

Find product 

𝑃 = (6)(6) = 36 Under the given constraint, this is the 

largest possible value the product can have 
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Example 3: A farmer has 120 feet of fence to build a double corral. To get the corral he will 

fence a rectangular region with a fence segment dividing the rectangle down the middle as 

shown in the diagram. What dimensions should he use if he wants to maximize the area of the 

corral? What is the maximum area? 

Dimensions: 𝑥, 𝑦 

 

Equation for area 

𝐴 = 𝑥𝑦 
 

Draw picture 

 Note two sides of 𝑥 and three sides of 𝑦. 

Constraint: total fence is 120 feet 

2𝑥 + 3𝑦 = 120 
 

Solve for 𝑦 

𝑦 = −
2

3
𝑥 + 40 

 

Substitute into objective equation 

𝐴 = 𝑥 (−
2

3
𝑥 + 40) 

 

Multiply 

𝐴 = −
2

3
𝑥2 + 40𝑥 

 

Find location of maximum from 𝑥𝑣 = −
𝑏

2𝑎
 

𝑥𝑣 =
−40

2 (
−2
3 )

=
−40

−4
3

= −40 ∙
−3

4
= 30 

 

Find other variable 

𝑦 = −
2

3
(30) + 40 

𝑦 = −2(10) + 40 

𝑦 = −20 + 40 

𝑦 = 20 
 

Find the area 

𝐴 = (30)(20) = 600 
 

Clearly state solution in terms of problem 

The fence will be 30 ft by 20 ft 

with an area of 600 ft
2
 

 

Final answer 

 

  

x

y
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2.4 Applications of Functions Practice 
 

1. Two numbers add to 5.  What is the largest possible value of their product? 

2. Find two numbers adding to 20 such that the sum of their squares is as small as possible.  

3. The difference of two numbers is 1.  What is the smallest possible value for the sum of their 

squares? 

4. For each quadratic function specified below, state whether it would make sense to look for a 

highest or a lowest point on the graph.  Then determine the coordinates of that point. 

 a. 𝑦 = 2𝑥2 − 8𝑥 + 1  

 b. 𝑦 = −3𝑥2 − 4𝑥 − 9 

 c. ℎ = −16𝑡2 + 256𝑡 

 d. 𝑓(𝑥) = 1 − (𝑥 + 1)2 

 e. 𝑔(𝑡) = 𝑡2 + 1 

 f. 𝑓(𝑥) = 1000𝑥2 − 𝑥 + 100 

5. Among all rectangles having a perimeter of 25 m, find the dimensions of the one with the 

largest area.  

6. What is the largest possible area for a rectangle whose perimeter is 80 cm?  

7. What is the largest possible area for a right triangle in which the sum of the lengths of the two 

shorter sides is 100 in?  

8. The perimeter of a rectangle is 12 m.  Find the dimensions for which the diagonal is as short as 

possible.  

9. a. Minimize 𝑆 = 6𝑥2 − 2𝑥𝑦 + 5𝑦2 given that 𝑥 + 𝑦 = 13. 

b. Minimize 𝑆 = 12𝑥2 + 4𝑥𝑦 − 10𝑦2 given that 𝑥 + 𝑦 = 14. 

c. Maximize 𝑆 = 3𝑥2 + 5𝑥𝑦 − 2𝑦2 given that 𝑥 + 𝑦 = 8. 

d. Maximize 𝑆 = 4𝑥2 + 3𝑥𝑦 − 5𝑦2 given that 𝑥 + 𝑦 = −8. 

e. Maximize 𝑆 = −2𝑥2 + 3𝑥𝑦 − 5𝑦2 given that 𝑥 + 𝑦 = 20. 

f. Minimize 𝑆 = 3𝑥2 + 2𝑥𝑦 + 2𝑦2 given that 3𝑥 − 2𝑦 = 42. 

g. Minimize 𝑆 = 2𝑥2 + 5𝑥𝑦 − 𝑦2 given that 4𝑥 − 𝑦 = 12. 

h. Minimize 𝑆 = 3𝑥2 − 𝑥𝑦 + 2𝑦2 given that 𝑥 − 2𝑦 = 24. 

i. Maximize 𝑆 = −3𝑥2 + 2𝑥𝑦 + 4𝑦2 given that 2𝑥 − 5𝑦 = −9. 

j. Maximize 𝑆 = −𝑥2 + 6𝑥𝑦 − 7𝑦2 given that 2𝑥 − 3𝑦 = 2. 
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10. Two numbers add to 6. 

a. Let 𝑇 denote the sum of the squares of the two numbers.  What is the smallest possible  

    value for 𝑇? 

b. Let 𝑆 denote the sum of the first number and the square of the second.  What is the  

    smallest possible value for 𝑆? 

c. Let 𝑈 denote the sum of the first number and twice the square of the second number.   

    What is the smallest possible value for 𝑈? 

d. Let 𝑉 denote the sum of the first number and the square of twice the second.  What is  

    the smallest possible value for 𝑉?  

11. Suppose that the height of an object shot straight up is given by ℎ(𝑡) = 512𝑡 − 16𝑡2 (ℎ in 

feet and 𝑡 in seconds).  Find the maximum height and the time at which the object hits the 

ground.  

12. A baseball is thrown straight up, and its height as a function of time is given by the formula 

ℎ(𝑡) = −16𝑡2 + 32𝑡 (ℎ in feet and 𝑡 in seconds). 

a. Find the height of the ball when 𝑡 = 1 and when 𝑡 =
3

2
. 

b. Find the maximum height of the ball and the time at which that height is attained. 

c. At what time(s) is the height 7 feet?  

13.  a. What number exceeds its square by the greatest amount? 

b. What number exceeds twice its square by the greatest amount?  

14. Suppose that you have 1800 meters of fencing available with which to build three adjacent 

rectangular corrals as shown in the figure.  Find the dimensions so that the total 

enclosed area is as large as possible.  

15. Five hundred feet of fencing is available for a rectangular pasture alongside a 

river, the river serving as one side of the rectangle (so only three sides require 

fencing).  Find the dimensions yielding the greatest area.  

16. Let 𝐴 = 3𝑥2 + 4𝑥 − 5 and 𝐵 = 𝑥2 − 4𝑥 − 1.  Find the minimum value of 𝐴 –  𝐵.  

17. Let 𝑅 = 0.4𝑥2 + 10𝑥 + 5 and 𝐶 = 0.5𝑥2 + 2𝑥 + 101.  For which value of 𝑥 is 𝑅 –  𝐶 a 

maximum?  

18. Suppose that the revenue generated by selling 𝑥 units of a certain commodity is given by 

𝑅 = −
1

5
𝑥2 + 200𝑥.  Assume that 𝑅 is in dollars.  What is the maximum revenue possible in this 

situation?  

Problem 17
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19. Suppose that the function 𝑝(𝑥) = −
1

4
𝑥 + 30 relates the selling price p of an item to the 

quantity sold, 𝑥.  Assume 𝑃 is in dollars.  For which value of 𝑥 will the corresponding revenue 

be a maximum?  What is this maximum revenue and what is the unit price in this case?  

20. A piece of wire 200 cm long is to be cut into two pieces of lengths 𝑥 and 200 − 𝑥.  The first 

piece is to be bent into a circle and the second piece into a square.  For which value of 𝑥 is the 

combined area of the circle and square as small as possible?  

21. A 30 in piece of string is to be cut into two pieces.  The first piece will be formed into the 

shape of an equilateral triangle and the second piece into a square.  Find the length of the first 

piece if the combined area of the triangle and the square is to be as small as possible?  

22.  a. Same as exercise 23 except both pieces are to be formed into squares. 

b. Could you have guessed the answer to part a?  

23. The action of sunlight on automobile exhaust produces air pollutants known as 

photochemical oxidants.  In a study of cross-country runners in Los Angeles, it was shown that 

running performances can be adversely affected when the oxidant level reaches 0.03 parts per 

million.  Let us suppose that on a given day the oxidant level L is approximated by the formula  

 𝐿 = 0.059𝑡2 − 0.354𝑡 + 0.557  (0 ≤ 𝑡 ≤ 7) 

 Here, 𝑡 is measured in hours, with 𝑡 = 0 corresponding to 12 noon, and 𝐿 is in parts per 

million.  At what time is the oxidant level 𝐿 a minimum?  At this time, is the oxidant level high 

enough to affect a runner's performance?  

24. If 𝑥 + 𝑦 = 1, find the largest possible value of the quantity 𝑥2 − 2𝑦2.  

25. Find the smallest possible value of the quantity 𝑥2 + 𝑦2 under the restriction that  

    2𝑥 + 3𝑦 = 6  

 

26. Through a type of chemical reaction known as autocatalysys, the human body produces the 

enzyme trypsin from the enzyme trypsinogen.  (Trypsin then breaks down proteins into amino 

acids, which the body needs for growth.)  Let 𝑟 denote the rate of this chemical reaction in which 

trypsin is formed from trypsinogen.  It has been shown experimentally that 𝑟 = 𝑘𝑥(𝑎 − 𝑥), 

where 𝑟 is the rate of the reaction, 𝑘 is a positive constant, 𝑎 is the initial amount of trypsinogen, 

and 𝑥 is the amount of trypsin produced (so 𝑥 increases as the reaction proceeds). Show that the 

reaction rate 𝑟 is a maximum when 𝑥 =
𝑎

2
.  In other words, the speed of the reaction is the 

greatest when the amount of trypsin formed is half of the original amount of trypsinogen.  
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27. a. Let 𝑥 + 𝑦 = 15.  Find the minimum value of the quantity 𝑥2 + 𝑦2. 

b. Let 𝐶 be a constant and 𝑥 + 𝑦 = 𝐶.  Show that the minimum value of 𝑥2 + 𝑦2 is 
𝐶2

2
.      

    Then use this result to check your answer in part a.  

28. Suppose that 𝐴, 𝐵, and 𝐶 are positive constants and that 𝑥 + 𝑦 = 𝐶.  Show that the minimum 

value of 𝐴𝑥2 + 𝐵𝑦2 occurs when 𝑥 =
𝐵𝐶

𝐴+𝐵
 and 𝑦 =

𝐴𝐶

𝐴+𝐵
.  

29. The figure at the right shows two concentric squares. The side of the 

outside square is 1 unit.  For which value of 𝑥 is the shaded area a maximum?  

30. Find the largest value of the function 𝑓(𝑥) =
1

𝑥4−2𝑥2+1
.  

31. A rancher, who wishes to fence off a rectangular area, finds that the 

fencing in the east-west direction will require extra reinforcement due to the 

strong prevailing winds.  Because of this, the cost of fencing in the east-west direction will be 

$12 per linear yard, as opposed to a cost of $8 per yard for fencing in the north-south direction.  

Find the dimensions of the largest possible rectangular area that can be fenced for $4800.  

32. Let 𝑓(𝑥) = (𝑥 − 𝑎)2 + (𝑥 − 𝑏)2 + (𝑥 − 𝑐)2, where 𝑎, 𝑏, and 𝑐 are constants.  Show that 

𝑓(𝑥) will be a minimum when 𝑥 is the average of 𝑎, 𝑏, and 𝑐.  

33. Let 𝑦 = 𝑎1(𝑥 − 𝑥1)2 + 𝑎2(𝑥 − 𝑥2)2, where 𝑎1, 𝑎2, 𝑥1, and 𝑥2 are all constants.  Further, 

suppose that 𝑎1 and 𝑎2 are both positive.  Show that the minimum of this function occurs when 

𝑥 =
𝑎1𝑥1+𝑎2𝑥2

𝑎1+𝑎2
.  

34. Among all rectangles with a given perimeter 𝑃, find the dimensions of the one with the 

shortest diagonal.  

35. Show that the maximum possible area for a rectangle inscribed in a circle of radius 𝑅 is 2𝑅2.  

36. A Norman window is in the shape of a rectangle surmounted by a semicircle, as 

shown in the figure.  Assume that the perimeter of the window is 𝑃, a constant.  Find 

the values of ℎ and 𝑟 when the area is a maximum and find this area.  

37. A rectangle is inscribed in a semicircle of radius 3.  Find the largest possible 

area for this rectangle.  

 

 

r

h

Problem 43
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38. An athletic field with a perimeter of 
1

4
 mi consists of a rectangle 

with a semicircle at each end, as shown in the figure below.  Find 

the dimensions 𝑥 and 𝑟 that yield the greatest possible area for the 

rectangular region.  

39. Find the values of 𝑥 that make 𝑦 a minimum or a maximum, as 

the case may be.  Find the corresponding 𝑦 value and indicate whether it is a minimum or a 

maximum. 

 a. 𝑦 = 3𝑥4 − 12𝑥2 − 5 

 b. 𝑦 = √4𝑥 − 𝑥2  

40. By analyzing sales figures, the economist for a stereo manufacturer knows that 150 units of a 

top of the line turntable can be sold each month when the price is set at 𝑝 = $200 per unit.  The 

figures also show that for each $10 hike in price, 5 fewer units are sold each month. 

a. Let 𝑥 denote the number of units sold per month and let 𝑝 denote the price per unit.   

    Find a linear function relating 𝑝 and 𝑥. 

b. Express the revenue 𝑅 as a function of 𝑥. 

c. What is the maximum revenue?  At what level should the price be set to achieve this  

    maximum revenue?  

41. Imagine that you own an orchard of orange trees.  Suppose from past experience you know 

that when 100 trees are planted, each tree will yield approximately 240 oranges.  Furthermore, 

you've noticed that when additional trees are planted, the yield per (each) tree in the orchard 

decreases.  Specifically, you have noted that the yield per tree decreases by about 20 oranges for 

each additional tree planted.  Approximately how many trees should be planted in the orchard to 

produce the largest possible total yield of oranges?  

 

 

42. An appliance firm is marketing a new refrigerator.  It determines that in order to sell 𝑥 

refrigerators, its price per refrigerator must be 𝑝 = 𝐷(𝑥) = 280 − 0.4𝑥.  It also determines that 

its total cost of producing 𝑥 refrigerators is given by 𝐶(𝑥) = 5000 − 0.6𝑥2.   

a. How many refrigerators must the company produce and sell in order to maximize  

    profit? 

b. What is the maximum profit? 

c. What price per refrigerator must be charged in order to make this maximum profit? 

x

r

Problem 45



118 
 

43. The owner of a 30 unit motel find that all units are occupied when the charge is $20 per day 

per unit.  For every increase of x dollars in the daily rate, there are x units vacant.  Each occupied 

room costs $2 per day to service and maintain.  What should he charge per unit per day in order 

to maximize profit? 

44. A university is trying to determine what price to charge for football tickets.  At a price of $6 

per ticket, it averages $70,000 people per game.  For every increase of $1, it loses 10,000 people 

from the average number.  Every person at the game spends an average of $1.50 on concessions.  

What price per ticket should be charged in order to maximize revenue?  How many people will 

attend at that price? 

45. When a theater owner charges $3 for admission, there is an average attendance of 100 

people.  For every 10 cent increase in admission, there is a loss of 1 customer from the average.  

What admission should be charged in order to maximize revenue? 

46. An apple farm yields an average of 30 bushels of apples per tree when 20 trees are planted on 

an acre of ground.  Each time 1 more tree is planted per acre, the yield decreases 1 bushel per 

tree due to the extra congestion.  How many trees should be planted in order to get the highest 

yield? 

47. A triangle is removed from a semicircle of radius 𝑅 as shown in the figure.  Find 

the area of the remaining portion of the circle if it is to be a minimum.  

48. Let 𝑓(𝑥) = 𝑥2 + 𝑝𝑥 + 𝑞, and suppose that the minimum value of this function is 0.  Show 

that 𝑞 =
𝑝2

4
.  

49. Suppose that 𝑥 and 𝑦 are both positive numbers and that their sum is 4.  Find the smallest 

possible value for the quantity 
1

𝑥𝑦
.  

 

  

Problem 54
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2.5 Reading Graphs of Functions 
 

 When we discussed functions we stated that functions are rules that pair off elements of 

the domain with elements of the range.  These pairings may be written in the form of an ordered 

pair (𝑥, 𝑦) where 𝑥 is an element of the domain and 𝑦 is an element of the range.  

 As you will no doubt remember from 

your algebra, ordered pairs are also used to plot 

points on a Cartesian coordinate system.  This 

analogy gives us a natural way to display the 

points of a function.  By letting the 𝑥 axis 

represent the domain and the 𝑦 axis represent the 

range we can plot all of the points (ordered pairs) 

which comprise the function. 

 Graphing a function in this manner can be 

very helpful in recognizing various properties of 

the function.  Suppose that we made a record of the 

temperature at various times during the day (See 

figure 1) with time as the domain and temperature 

as the range.  

 From the graph of the temperature plots we 

can see features of the function that would not be obvious from a simple listing of the points.  

For example, the temperature rises fastest during the period between 1 and 2.  It reaches its peak 

between 3 and 4.  The drop in temperature is fastest between 11 and 12. 

 Because temperature changes in a continuous fashion we can logically assume that the 

intermediate values which were not recorded fill in the graph forming a continuous curve as 

shown in figure 2.  We also know that the relationship between time and temperature must be a 

function.  It is not possible to have two different temperatures in the same place at the same time. 

How to Read a Graph 

 It is important to be able to read the properties of a function from its graph.  The types of 

features you should be able to recognize are domain and range of a function, function values, 

maximum and minimum values of a function, positive and negative range values, asymptotes 

and limits at infinity. 

 A point on the 𝑥 axis is in the domain of a function if the graph of the function passes 

over (or under) that point.  An easy way to tell is to draw a vertical line through the point on the 

𝑥 axis and if the vertical  line crosses the graph then the 𝑥 value is in the domain of the function. 
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 Similarly, a point on the 𝑦 axis is in the range of a function if the graph of the function 

passes the point on either the left or the right.  Here, a horizontal line drawn through the point on 

the 𝑦 axis must pass through the graph. 

 In both of the above cases, the graph of the function could pass directly through the 

respective axis.  Obviously a point would belong to the domain of a function if the graph goes 

through the 𝑥 axis, or the range if the graph goes through the 𝑦 axis at that point. 

Vertical Line Test 

 If the point  (𝑥1 , 𝑦1)  is on the graph of a function 𝑓, then, under the function rule  

𝑦1 = 𝑓(𝑥1). Thus, the function evaluated at 𝑥1 is equal to 𝑦1. 

  This gives us a quick method to see if a graph is the graph of a function.  Each domain 

element of a function can only have one range element corresponding to it.  If a vertical line 

should cross the graph at 2 or more points then the graph cannot be the graph of a function.  This 

is called the vertical line test for a function. 

Example 1:  Consider the graph of the function 𝑓 in example 1. 

a. What is the domain of 𝑓? 

b. What is the range of 𝑓? 

c. What is 𝑓(1)? 

d. What domain values of 𝑓 give 𝑓(𝑥) = 1? 

 This is the graph of a function.  Any vertical line 

which crosses the graph crosses at only one point. 

Solutions to Example 1: 

a. The domain of 𝑓 is all points on the 𝑥 axis that have a corresponding point on the graph.  In 

this case only those 𝑥 values between –4 and 4 or the interval −4 ≤ 𝑥 ≤ 4  are inside the 

domain.  Note that any vertical line drawn through the 𝑥 axis outside this interval does not cross 

the graph.  Any vertical line drawn inside the interval crosses the graph. 

b. The range of 𝑓 is all points on the 𝑦 axis that have a corresponding point on the graph.  Here 

the range is the interval 1 ≤ 𝑦 ≤ 4.  Every horizontal line drawn inside this interval crosses the 

graph.  Outside this interval horizontal lines do not cross the graph. 

c. 𝑓(1) is that 𝑦 coordinate on the graph that has 1 for the corresponding 𝑥 coordinate.  Looking 

at the graph we see that the point (1,3) lies on the graph of 𝑓.  Consequently, the range value 

corresponding to a domain value of 1 is 3, or 𝑓(1) = 3.  
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d. Here we need to find those domain values that return a value of 1. The graph of 𝑓 has two 

such points, one at (–4,1) and the other at (4,1).  Therefore, we have 2 domain values that return 

a range value of 1.  These are –4 and 4.  Consequently, 𝑓(– 4) = 1 and 𝑓(4) = 1.  

Positive and Negative Values 

 The 𝑦 coordinates on the graph represent the range values of the function.  Whenever the 

graph of the function is above the 𝑥 axis the 𝑦 coordinates are positive and the corresponding 

function values are positive.  If the graph lies below the 𝑥 axis the 𝑦 coordinates are negative and 

the corresponding function values are negative.  In the above example (example 1), all graph 

points are above the 𝑥 axis.  Therefore, 𝑓(𝑥) > 0 for each domain element. 

Vertical Asymptotes 

  Vertical asymptotes are vertical lines that the graph of a 

function approach but never cross.  

 Figure 3 is the graph of the function 𝑓(𝑥) =
1

𝑥
,  𝑥 = 0 is not 

a point in the domain of 𝑓 because the function is undefined at this 

point.  On the graph we see that the function moves up or down 

approaching the line 𝑥 = 0 (the 𝑦 axis) but does not cross it. 

 The 𝑦 axis is a vertical asymptote of the function 𝑓.  

Whenever we have a vertical asymptote it passes through a point not in the domain of the given 

function. 

Limits at Infinity 

 Vertical asymptotes are not the only asymptotes that a graph might have.  When the 

domain values get large in either the positive or negative direction it may happen that the graph 

will approach the curve of some other function.  Looking again at figure 3 we see that the graph 

of 𝑓 approaches the 𝑥 axis (i.e. the 𝑦 coordinates approach 0) as the domain values get infinitely 

large. 

 In mathematical notation we use an arrow → to indicate that a value (for either 𝑥 or 𝑦) is 

approaching some given point.  If we were to choose values of 𝑥 that are getting closer to the 

point 𝑥 = 2 then we could write 𝑥 → 2.  If we want to consider values of 𝑥 that are getting 

infinitely large we would write 𝑥 → ∞.  This means that the values of 𝑥 are moving infinitely far 

to the right on the number line. If the points were moving infinitely far to the left (infinitely far in 

the negative direction) then we would write 𝑥 → −∞. 

 Similarly, if we wanted to indicate that the 𝑦 values are approaching a point 𝑦 = 1 we 

would write 𝑦 → 1.  
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 In this case the horizontal asymptote 𝑦 = 0 defines a 𝑦 value that is not in the range of 

the function.  However, this is not always the case.  Unlike the vertical asymptote, it is possible 

for the graph of the function to cross the horizontal asymptote.  

  In figure 4 we have the graph of a function with two 

vertical asymptotes and a single horizontal asymptote.  The two 

vertical asymptotes are 𝑥 = 3 and 𝑥 = −3.  At these two points 

the graph shoots off to either + or – infinity.  As we approach 

𝑥 = −3 from the left side of the graph the function shoots up to 

+∞.  As we approach 𝑥 = −3 from the right side, the graph goes 

down to −∞.  The same thing happens as we approach 𝑥 = 3.  

Notice that a vertical line drawn through 𝑥 = 3 will not cross the 

graph and that +3 and –3 are not in the domain of the function. 

 The horizontal asymptote of this function is the line 𝑦 = 2.  As we pick larger and larger 

domain values approaching ∞ the range values tend to get closer to this line.  Similarly, as we 

pick domain values approaching −∞, the graph again approaches the line 𝑦 = 2.  The range of 

this function is all real numbers 𝑦 > 2 and all real numbers 𝑦 ≤ 1.5.  Any horizontal line drawn 

between these two values will not cross the graph and, consequently, will not be in the range of 

the function. 

 Consider the graph of the function 𝑦 = ℎ(𝑥) in figure 5.  This graph has one vertical 

asymptote, one horizontal asymptote and another asymptote along the left half of the curve 

𝑦 = 𝑥2.  The vertical asymptote occurs at the line 𝑥 = 4.  

Because a function will never cross a vertical asymptote, the 

point 𝑥 = 4 is not in the domain of ℎ. 

 The horizontal asymptote occurs at the line 𝑦 = 3.  

The graph of the function crosses this line at approximately 

𝑥 = −2.  The line 𝑦 = 3 is a horizontal asymptote as 𝑥 → ∞, 

or  ℎ(𝑥) → 3 as 𝑥 → ∞.  

 As 𝑥 → −∞ we have a different situation.  Here the 

graph of the function approaches a curve rather than a 

straight line.  In particular, the graph values approach the 

curve 𝑦 = 𝑥2.  As a result of this, the graph crosses the 

horizontal asymptote 𝑦 = 3 at approximately (2, 3).  Even though we never cross a vertical 

asymptote it does not necessarily follow that we never cross any other asymptotes.  The 

horizontal asymptote is an indication of what the range values do as we pick larger and larger 

domain values.  It in no way indicates what happens to the function at any other points. 
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Other features of this graph are: 

1. The domain of ℎ is all real numbers except 𝑥 = 4. 

2. The range of ℎ consists of all real numbers (because the graph crosses the line 𝑦 = 3 the  

    point 3 is in the range). 

3. It has an 𝑥 intercept at –1, i.e. ℎ(−1) = 0. 

4. It has a 𝑦 intercept at –1, i.e. ℎ(0) = −1. 

Example 2:  Given the following graph of 𝑦 = 𝑝(𝑥),  

a. What is the domain of 𝑝?  

b. What is the range of 𝑝?  

c. Over what interval(s) is 𝑝(𝑥) positive?  

d. Over what interval(s) is 𝑝(𝑥) negative?  

e. For 𝑥 ≥
5

2
, what is the maximum value(s) of 𝑝(𝑥)?  

f. For 𝑥 ≥ 1, what is the minimum value(s) of 𝑝(𝑥)?  

g. What is 𝑝(0)?  

h. For what value(s) of 𝑥 does 𝑝(𝑥) = 0?  

i. What is 𝑝(5)?  

j. For what value(s) of 𝑥 does 𝑝(𝑥) = −3?  

k. As 𝑥 → −2, what does 𝑝(𝑥) →?  

l. As 𝑥 → +∞, what does 𝑝(𝑥) →?  

Solutions to Example 2: 

a. The domain of 𝑝 consists of all 𝑥 values 

through which we can draw a vertical line 

that crosses the graph of 𝑝.  From the graph, the only vertical line that we can draw that does not 

cross the graph is through the point 𝑥 = −2.  Consequently, the domain of 𝑝 is all 𝑥 values (real 

numbers) except 𝑥 = −2.  

b. Similarly, the range of 𝑝 is all 𝑦 values through which we can draw a horizontal line that 

crosses the graph.  In this particular example, any horizontal line drawn below 𝑦 = −4 will not 

cross the graph.  All lines drawn above and including 𝑦 = −4 will cross the graph.  The range of 

𝑝 is all 𝑦 values (real numbers) greater than or equal to –4 (𝑦 ≥ −4). 

c. The function 𝑝(𝑥) is positive whenever the graph of 𝑝(𝑥) lies above the 𝑥 axis (𝑦 coordinates 

are positive).  This occurs only in the interval (–3, –1).  However, the function 𝑝 is undefined at 

𝑥 = −2 (not an element of the domain of 𝑝).  𝑝(𝑥) > 0 on the intervals −3 < 𝑥 < −2 and 

−2 < 𝑥 < −1.  

d. The graph of 𝑝 is below the 𝑥 axis and defined over all other intervals.  Therefore, 𝑝(𝑥) < 0 

over the intervals −∞ < 𝑥 < −3 and −1 < 𝑥 < ∞.  
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e. The maximum value of a function over an interval is the largest 𝑦 value that the function takes 

on in the interval.  The largest 𝑦 value is the highest 𝑦 point on the graph.  For the function 𝑝 

over the interval 𝑥 ≥
5

2
 the highest graph point is (5, –2). The maximum value of the function is 

𝑦 = −2.  

f. Similarly, the minimum function value is the lowest graph point over the interval.  Here the 

minimum value of the function is 𝑦 = −4 which occurs at the point (2.5, –4).  

g. 𝑝(0) is the 𝑦 coordinate corresponding to an 𝑥 coordinate of 𝑥 = 0.  There can only be one 𝑦 

coordinate or the graph would not be the graph of a function.  For this graph of 𝑝(𝑥), the 𝑦 

coordinate corresponding to 𝑥 = 0 is 𝑦 = −2.  Therefore, 𝑝(0) = −2.  

h. When the function values are equal to 0 we are looking at the 𝑥 intercepts of the graph.  Those 

𝑥 coordinate at the 𝑥 intercepts for 𝑝 are 𝑥 = −3 and 𝑥 = −1.  

i. To evaluate 𝑝(5) we need to find the 𝑦 coordinate corresponding to 𝑥 = 5.  On the graph this 

point is seen to be 𝑦 = −2.  Therefore, 𝑝(5) = −2. 

j. 𝑝(𝑥) = −3 means 𝑦 = −3.  The values of 𝑥 = 1 and 4 are paired to 𝑦 = −3.  

k. As the 𝑥 values approach –2, the 𝑦 coordinates of the graph get infinitely large in the positive 

𝑦 direction.  As a result, 𝑝 → ∞ as 𝑥 → −2.  

l. As the 𝑥 values approach +∞, the graph approaches the line 𝑦 = −3.  As 𝑥 → −∞, the graph 

again approaches the line 𝑦 = −3.  Therefore, as 𝑥 → +∞, 𝑝 → −3. 

Example 3:  Given the following graph of 𝑦 = 𝑞(𝑥),  

a. What is the domain of 𝑞? 

b. What is the range of 𝑞? 

c. Over what interval(s) is 𝑞 positive? 

d. Over what interval(s) is 𝑞 negative? 

e. What is 𝑞(0)? 

f. What domain values give 𝑞(𝑥) = 0?  

g. On the interval 𝑥 < 3, what are the maximum and minimum values of 𝑞?  

h. On the interval 𝑥 > 3, what are the maximum and minimum values of 𝑞?  

i. As  𝑥 → 3, what does 𝑞 do?  

j. As 𝑥 → ±∞, what does 𝑞 do?  
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Solutions to Example 3  

a. The domain of 𝑞 is all values of 𝑥 where we can draw a vertical line that crosses the graph of 

𝑞.  The only 𝑥 value that does not cross the graph is the line 𝑥 = 3.  Therefore, the domain of 𝑞 

is all 𝑥's (real numbers) except 𝑥 = 3. 

b. The range of 𝑞 is all values of 𝑦 where we can draw a horizontal line that crosses the graph of 

𝑞.  We can do this for all 𝑦 values except the interval −2 < 𝑦 < −1.  Therefore, the range of 𝑞 is 

all 𝑦 values (real numbers) except −2 < 𝑦 < −1. 

c. 𝑞 is positive when the graph of 𝑞 lies above the 𝑥 axis.  The intervals that have 𝑞 above the 𝑥 

axis are −∞ < 𝑥 < −1 and 2 < 𝑥 < 3.  

d. The negative values of 𝑞 are those intervals where the graph lies below the 𝑥 axis.  These 

intervals are −1 < 𝑥 < 2 and  3 < 𝑥 < ∞. 

e. 𝑞(0) is the 𝑦 intercept of 𝑞. This point is 𝑦 = −1. 

f. The domain values of 𝑞(𝑥) = 0 are the 𝑥 intercepts of 𝑞.  These points are 𝑥 = −1 and 𝑥 = 2.  

g. On the interval 𝑥 < 3 the minimum value of 𝑞 is 𝑦 = −1.  There is no maximum value 

because the graph shoots off to ∞.  

h. On the interval 𝑥 > 3 the maximum value of 𝑞 is 𝑦 = −2.  There is no minimum value 

because the graph approaches −∞.  

i. As 𝑥 → 3, the graph goes in two different directions.  To differentiate between the two 

directions we will talk about 𝑥 approaching 3 from the right or positive side of 3 (which we will 

write 𝑥 → 3+) and 𝑥 approaching 3 from the left or negative side of 3 (which we will write 

𝑥 → 3−).  As 𝑥 → 3+ the graph of 𝑞 drops off to negative infinity or 𝑞 → −∞.  As 𝑥 → 3−, 

𝑞 → +∞, or the graph rises to infinity.  

j. As 𝑥 → ±∞, again the graph does two different things.  As 𝑥 → −∞ the graph of 𝑞 approaches 

the line 𝑦 = 3.  As 𝑥 → +∞ the graph of q approaches the line 𝑦 = −3. 
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2.5 Reading Graphs of Functions Practice 
 

1. Given the graph of 𝑦 = 𝑓(𝑥) at the right,  

a. What is the domain of 𝑓(𝑥)? 

b. What is the range of 𝑓(𝑥)? 

c. What is 𝑓(0)? 

d. What value of 𝑥 give 𝑓(𝑥) = 0? 

e. What is 𝑓(−2)? 

f. What is the maximum value of 𝑓(𝑥)? 

g. Where is 𝑓(𝑥) increasing? 

h. Where is 𝑓(𝑥) positive? 

i. As 𝑥 → −∞, what does 𝑓 do? 

j. As 𝑥 → ∞, what does 𝑓 do? 

 

 

2. Given the graph of 𝑦 = 𝑓(𝑥) at the right,  

a. What is the domain of 𝑓(𝑥)? 

b. What is the range of 𝑓(𝑥)? 

c. What is 𝑓(0)? 

d. What values of 𝑥 give 𝑓(𝑥) = 0? 

e. What is the minimum value of 𝑓(𝑥)? 

f. Where is 𝑓(𝑥) decreasing? 

g. Where is 𝑓(𝑥) negative? 

h. As 𝑥 → −∞, what does 𝑓 do? 

i. As 𝑥 → ∞, what does 𝑓 do? 

(–4, 0)

(–1, –2)

(0, –5)

(2, 0)

y = f(x)

(–2, 1)

(0, 3)

(2, 0)

y = f(x)
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3. Given the graph of 𝑦 = 𝑓(𝑥) at the right,  

a. What is the domain of 𝑓(𝑥)? 

b. What is the range of 𝑓(𝑥)? 

c. What is 𝑓(0)? 

d. What values of 𝑥 give 𝑓(𝑥) = 0? 

e. What is 𝑓(−1)? 

f. Where is 𝑓(𝑥) increasing? 

g. Where is 𝑓(𝑥) positive? 

h. As 𝑥 → −∞, what does 𝑓 do? 

i. As 𝑥 → ∞, what does 𝑓 do? 

 

 

 

4. Given the graph of 𝑦 = 𝑓(𝑥) at the right,  

a. What is the domain of 𝑓(𝑥)? 

b. What is the range of 𝑓(𝑥)? 

c. What is 𝑓(0)? 

d. What values of 𝑥 give 𝑓(𝑥) = 0? 

e. What is 𝑓(5)? 

f. What values of 𝑥 give 𝑓(𝑥) = −2 

g. Where is 𝑓(𝑥) increasing? 

h. Where is 𝑓(𝑥) positive? 

i. As 𝑥 → ±∞, what does 𝑓 do? 

j. As 𝑥 → 4, what does 𝑓 do? 

 

  

y = f(x)

y = –3

(2, 0)

(0, –6)

(–1, –4)

y = f(x)

x = 4

y = –2

(0, –1.5)

(3, 0)

(5, –3)
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5. Given the graph of 𝑦 = 𝑓(𝑥) at the right,  

a. What is the domain of 𝑓(𝑥)? 

b. What is the range of 𝑓(𝑥)? 

c. What is 𝑓(0)? 

d. What values of 𝑥 give 𝑓(𝑥) = 0? 

e. What is 𝑓(3)? 

f. What values of 𝑥 give 𝑓(𝑥) = 5? 

g. What is 𝑓(−4)? 

h. Where is 𝑓(𝑥) positive? 

i. For −3 < 𝑥 < 2, what is the maximum value of 𝑓(𝑥)? 

j. As 𝑥 → ±∞, what does 𝑓 do? 

k. As 𝑥 → 5, what does 𝑓 do? 

l. As 𝑥 → −4, what does 𝑓 do? 

 

 

6. Given the graph of 𝑦 = 𝑓(𝑥) at the right,  

a. What is the domain of 𝑓(𝑥)? 

b. What is the range of 𝑓(𝑥)? 

c. What is 𝑓(0)? 

d. What values of 𝑥 give 𝑓(𝑥) = 0? 

e. What is 𝑓(−3)? 

f. What values of 𝑥 give 𝑓(𝑥) = −2? 

g. Where is 𝑓(𝑥) increasing? 

h. Where is 𝑓(𝑥) positive? 

i. As 𝑥 → ±∞, what does 𝑓 do? 

j. As 𝑥 → −2, what does 𝑓 do? 

 

y = f(x)

(–5, 5)

(–3, 0)

(0, 2)

(2, 0)

(3, –3)

(5.5, 0)

x = –4 x = 5

y = 4

y = f(x)

(–4, –2)

(–1.5, –2)

(–1, 0)

(0, 3)

(–3, 0)

x = –2

y = 5

y = –4
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7. Given the following graph of 𝑓(𝑥),  

a. What is the domain of 𝑓? 

b. What is the range of 𝑓?  

c. What is 𝑓(0)? 

d. What values of 𝑥 give 𝑓(𝑥) = 0? 

e. What values of 𝑥 give 𝑓(𝑥) ≥4? 

f. What is 𝑓(−5)? 

g. What domain values make 𝑓 > 0? 

h. What domain values make 𝑓 < 0? 

i. What values of 𝑥 give 𝑓(𝑥) = 4?  

j. As  𝑥 → ∞, what does 𝑓(𝑥) →? 

k. As 𝑥 → −∞, what does 𝑓(𝑥) →? 

 

 

8. Given the following graph of 𝑔(𝑥),  

a. What is the domain of 𝑔? 

b. What is the range of 𝑔? 

c. What is 𝑔(0)? 

d. For what values of 𝑥 does 𝑔(𝑥) = 0? 

e. For what values of x does 𝑔(𝑥) = 3? 

f. What is 𝑔(3)? 

g. What values of 𝑥 give 𝑔(𝑥) = −3? 

h. As 𝑥 → −∞, what does 𝑔 →? 

i. As 𝑥 → +∞, what does 𝑔 →? 

j. As 𝑥 → −3, what does 𝑔 →? 

 

 

(–2, 4) y = 4

(4, 4)

(0, –1)

(–1, 0)

(–4, 0)

(–5, –3)

y = –3

y = f(x)

y = g(x)

(–2.9, 3)

(5, 4)

(3, 3)

y = 3

y = –3

(2, 0)

(1, –2)

x = –3

(–2, 0)

(–4, –3)
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9. Given the following graph of 𝑘(𝑥), 

a. What is the domain of 𝑘(𝑥)? 

b. What is the range of 𝑘(𝑥)? 

c. For what values of 𝑥 is 𝑘(𝑥) = 0? 

d. What is 𝑘(0)? 

e. What is 𝑘(6)? 

f. For what values of 𝑥 does 𝑘(𝑥) = 4 

g. What is 𝑘(3)? 

h. As 𝑥 → −3, what does 𝑘 →? 

i. As 𝑥 → 3, what does 𝑘 →? 

j. As 𝑥 → ±∞, what does 𝑘 →? 

 

 

10. Given the following graph of 𝑚(𝑥), 

a. What is the domain? 

b. What is the range? 

c. What is 𝑚(0)? 

d. For what values of 𝑥 is 𝑚(𝑥) = 0? 

e. What is 𝑚(4)? 

f. For what values of 𝑥 does 𝑚(𝑥) = −4? 

g. For what values of 𝑥 is 𝑚(𝑥) decreasing? 

h. For what values of 𝑥 is 𝑚(𝑥) increasing? 

i. For what values of 𝑥 is 𝑚(𝑥) ≥ 0? 

j. As 𝑥 → 2, what does 𝑚(𝑥) →? 

k. As 𝑥 → ±∞, what does 𝑚(𝑥) →? 

 

 

 

x = –3 x = 3

y = 3

y = k(x)

(–4, 4)

(–1, 0) (0, 1)
(1, 0)

(5, 0)

(6, 1)

(–2, 0)

(0, –3)
(3, –4)

(4, –2)

(1
, 
–

4
)

y = m(x)

x = 2

y = 2
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11.  Given the following graph of ℎ(𝑥) 

 

a. What is the domain of ℎ? 

b. What is the range of ℎ? 

c. What is ℎ(0)? 

d. For what values of 𝑥 does ℎ(𝑥) = 0? 

e. For what values of 𝑥 is ℎ(𝑥) = 4? 

f. What is ℎ(4)? 

g. For what values of 𝑥 is ℎ(𝑥) ≤ −4? 

h. Is ℎ a function? 

 

 

 

 

12. Given the graph 𝑦 = 𝑔(𝑥) 

a. What is the domain of 𝑔? 

b. What is the range of 𝑔? 

c. What is 𝑔(0)? 

d. What is 𝑔(−1)? 

e. What values of 𝑥 give 𝑔(𝑥) = 4? 

f. What values of 𝑥 give 𝑔(𝑥) = 0? 

g. For 𝑥 < 2, what is the minimum value of 𝑔? 

h. Where is 𝑔 increasing? 

i. Where is 𝑔 negative? 

j. As 𝑥 → ±∞, 𝑔 →? 

k. As 𝑥 → 2, 𝑔 →? 

 

y = h(x)

y = 4

y = –1

(–2, 3)

(–1, 1)

(0, 2)

(1
, 
4

)

(3, –2)

y = g(x)

x = 2
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13. Given the graph of 𝑝 = 𝑞(𝑥), 

a. What is the domain of 𝑞? 

b. What is the range of 𝑞? 

c. What is 𝑞(−5)? 

d. What is 𝑞(0)? 

e. What values of 𝑥 give 𝑞(𝑥) = −3? 

f. What values of 𝑥 give 𝑞(𝑥) = 2? 

g. Where is 𝑞 positive? 

h. Where is 𝑞 decreasing? 

i. As 𝑥 → −5, 𝑞 →? 

j. As 𝑥 → 4, 𝑞 →? 

k. As 𝑥 → ±∞, 𝑞 →? 

 

 

 

14. Given the graph of 𝑦 = 𝑧(𝑥), 

a. What is the domain of 𝑧? 

b. What is the range of 𝑧? 

c. What is 𝑧(0)? 

d. What is 𝑧(−5)? 

e. What values of 𝑥 give 𝑧(𝑥) = 0? 

f. What values of 𝑥 give 𝑧(𝑥) = −2? 

g. For 𝑥 < 2 what is the minimum value of 𝑧? 

h. For 𝑥 > 2, what is the maximum value of 𝑧? 

i. Where is 𝑧 positive? 

j. Where is 𝑧 decreasing? 

k. As 𝑥 → ±∞, 𝑧 → ? 

l. As 𝑥 → 2, 𝑧 →? 

 

(–6, 4)

(–5, 2)

(–4, 0)

(–2, –2)

(0, –1)

(1
, 

0
)

(3, –2)

(4, –1)

y = –2

x = 2

y = z(x)

(–6, –1)
(–2, 0)

(0, 1)

(3, 2)

(6, 0)

p = q(x)

y = 2

x = –5 x = 4

(–5.5, –3) (–4, –3) (5, –3)
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15. Given the graph of 𝑄(𝑥), 

a. What is the domain of 𝑄? 

b. What is the range of 𝑄? 

c. What is 𝑄(0)? 

d. What is 𝑄(−2)? 

e. What values of 𝑥 give 𝑄(𝑥) = 0? 

f. What values of x give 𝑄(𝑥) = −5? 

g. What values of x give 𝑄(𝑥) = −6? 

h. For −2 < 𝑥 < 2, what is the minimum value of 𝑄? 

i. Where is 𝑄 negative? 

j. Where is 𝑄 increasing? 

k. As 𝑥 → 4, 𝑄 →? 

l. As 𝑥 → ±∞, 𝑄 →? 

 

 

 

16. The graph below is the graph of the current-versus-voltage characteristics of the tunnel 

diode.  𝑉𝑝, 𝐼𝑝, 𝑉𝑣, and 𝐼𝑣 refer to peak voltage, peak current, valley voltage, and valley current 

respectively.  Restrict the domain of the function to 0 ≤ 𝑥 ≤ 𝑎 and restrict the range to  

0 ≤ 𝑦 ≤ 𝑏.  

a. What are the coordinates of the point 𝑃? 

b. What are the coordinates of the point 𝑉? 

c. Over what intervals is the current rising? 

d. Over what intervals is the current decreasing? 
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y = –6

(0, –1)

y = Q(x)
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17. An object thrown into the air has a trajectory shaped like a parabola.  Given the flight of 

an object whose trajectory is given by the function 𝑦 = 𝑠(𝑡) graphed below,  

a. What is the domain of 𝑠(𝑡)? 

b. What is the range of 𝑠(𝑡)? 

c. What is the maximum height reached by the object? 

d. At what time does the object reach the ground? 

e. From what height is the object thrown? 

 

 

 

 

 

18. The distribution of errors in a measurement is given by the function 𝐸𝑟𝑓(𝑥).  The graph 

of the function 𝑦 = 𝐸(𝑥) given below resembles that of the error function.  

a. What is the domain of 𝐸? 

b. What is the range of 𝐸? 

c. As 𝑥 → +∞, what does 𝐸 →? 

d. Over what intervals is 𝐸 > 0? 

e. Over what intervals is 𝐸 <  0? 
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2.6 Transformations of Graphs 
 

 Like many things in life, graphs come in groups or categories.  The process of graphing a 

function can be simplified by knowing the basic structure of a particular graph type and how it 

relates to the specific function.  For example, all quadratic equations have the same bowed shape.  

The only difference between the graphs of two different quadratic equations is the eccentricity 

(degree) of the bow and the placement or location of the graph on the coordinate system. 

 Because all graphs within a particular category are fundamentally the same, we can 

change one graph into another.  This process is called a transformation. 

 The transformation of a graph is a relocation of the points of the graph.  

There are two ways that we can move a point.  We can actually relocate the 

point or we can change the axis system that we are measuring the point against. 

For purposes of visual simplicity we shall talk and act as if we are always 

moving the points of the graph.  Under a given transformation the point (𝑥, 𝑦) 

will be transformed into a new point (𝑥′, 𝑦′). 

  As a general rule, we can break transformations into two types.  Those 

which change the 𝑥 coordinates of the graph and those which change the 𝑦 

coordinates.  The application of a transformation to the 𝑥 variable will affect the graph in a 

horizontal direction only.  The application of a transformation to the 𝑦 variable will affect the 

graph in the vertical direction only.  

 When dealing with function notation 𝑦 = 𝑓(𝑥), transformations on the inside of the 

function symbol 𝑓() are applied to the 𝑥 variable and transformations applied 

outside the function symbol are applied to the 𝑦 variable. 

 Consider the function 𝑓(𝑥)  =  𝑥 shown in graph 1.  We want to see 

what happens to the graph when we add or multiply values to the inside of the 

function (directly on the x variable) or outside the function (applied to the 

function rule itself).  In order to see how the graph changes we will look at the 

points (0, 0), (1, 1) and (–1, –1) on the graph of 𝑓(𝑥). 

 Now look at the graph of the function 𝑦 = 𝑓(𝑥) + 2 (Graph 2).  Because 𝑓(𝑥) = 𝑥 this is 

equivalent to 𝑦 = 𝑥 + 2.  The graph of this equation is shown in graph 2.  This transformation of 

𝑓(𝑥) added 2 units to the outside of the function which is a change in the 𝑦 direction.  Looking at 

the graph we see that the point (0, 0) has changed to the point (0, 2) or that 2 units have been 

added to the y coordinate.  Similarly, the point (1, 1) has become (1, 3) and the point (–1, –1) has 

become (–1, 1).  Visually, the graph is raised 2 units. 

(1, 1)

( 1, 1) 

Graph 1

f(x) = x

x

y

(1, 3)

( 1, 1)

Graph 2

f(x) = x + 2

x

y
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 What happens when we add 2 units inside the function (to the 𝑥 

variable) to get 𝑦 = 𝑓(𝑥 + 2)?  Again this is equivalent to the 

equation𝑥 = 𝑥 + 2.  Only this time we are changing the graph in the 𝑥 

direction.  Now the point (0, 0) becomes (–2, 0).  This is the same as 

subtracting 2 units from the 𝑥 coordinate.  Similarly, subtracting 2 from 

the 𝑥 coordinates of (1, 1) and (–1, –1) gives us (–1, 1) and (–3, –1) 

respectively.  Visually, the graph shifts 2 units in the negative direction 

(see graph 3). 

 The student should show that subtracting 2 units outside the function lowers the graph 2 

units or subtracts 2 units from each of the 𝑦 coordinates.  Also, subtracting 2 units inside the 

function shifts the graph 2 units in the positive 𝑥 direction or adds 2 units to each 𝑥 coordinate. 

Example 1:  Consider the graph of f(x).  Graph the function y = f(x – 3) + 1.  

 Under the transformation the basic shape of the graph will 

remain the same.  All we have to do is move a few points around to 

determine the new placement. 

 The transformation adds a 1 to the outside of the function.  

This means that we add 1 unit to each of the 𝑦 coordinates of the 

points on the graph.  The transformation also subtracts a 3 on the 

inside of the function.  Here we add 3 units to each of the 𝑥 

coordinates of the graph. 

 The point (–3, –3) becomes (0, –2), 

 (–1, 2) becomes (2, 3), 

 (1, 2) becomes (4, 3), 

 (2, 0) becomes (5, 1), 

 and (3, 3) becomes (6, 4). 

 Plot these points and connect them similar to the original 

graph to get the graph of the transformed equation. 

 This type of transformation, which shifts the graph around the coordinate plane, is called 

a translation.  Another type of transformation, called a scaling, distorts the graph by stretching or 

shrinking it with respect to the coordinate axes. 

 

( 1, 1)

( 3, 1) 

Graph 3
f(x) = (x + 2)

x

y



 





Example 1a

y = f(x)



 





Example 1b

y = f(x  3) + 1
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 Refer again to the function 𝑓(𝑥) = 𝑥.  The graph of 𝑦 =

2𝑓(𝑥) is shown in graph 4.  Because of the function definition, this 

is equivalent to 𝑦 = 2𝑥 which is a line with slope 2 and 𝑦 intercept at 

the origin. 

 To see how the graph has been changed look at the points 

(1, 1) and (–1, –1) on the original graph.  On the new graph the 

corresponding points are (1, 2) and (–1, –2).  To convert from the 

first pair of points to the second we multiply the 𝑦 coordinate by 2.  Consequently, multiplying 

outside the function by 2 multiplies the 𝑦 coordinates by 2.  This is the same as stretching the 

graph by a factor of two in the 𝑦 direction. 

 The graph of the equation  𝑦 = 𝑓(2𝑥) also reduces to 

𝑦 = 2𝑥 because of the definition of 𝑓 (see graph 5).  Because the 

transformation is inside the function symbol the transformation is 

only in the 𝑥 direction.  This time the point (1,1) becomes the point 

(
1

2
, 1) and the point (–1, –1) becomes (−

1

2
, −1).  Multiplying 

on the inside of the function by 2 has reduced the 𝑥 coordinates by 

a factor of 2 (or multiplied the 𝑥 coordinates by 
1

2
 ).  This is 

equivalent to shrinking the graph by 
1

2
 in the 𝑥 direction.  

Rules of Transforming and Scaling Graphs 

Adding 𝑎 units on the outside of the function raises the graph of the function 𝑎 units  

(adds 𝑎 units to each 𝑦 coordinate of the function). 

Adding 𝑎 units on the inside of the function moves the graph of the function  −𝑎 units  

(subtracts 𝑎 units from each of the 𝑥 coordinates). 

Multiplying outside the function by 𝑎 units stretches the graph by a factor of 𝑎 in the 𝑦 direction 

(multiplies each y coordinate by 𝑎). 

Multiplying inside the function by 𝑎 units shrinks the graph by a factor of 𝑎   

(multiplies each 𝑥 coordinate by 
1

𝑎
 ). 

 Notice that the transformation of the 𝑥 coordinates is the reverse of what we might expect 

while the transformation of the 𝑦 coordinates are direct and straightforward. 

 Combining translations and scalings is a relatively simple procedure as long as we follow 

a few simple rules. 





Graph 4

y = 2f(x)

1

2
1,











 










1

2
1,

Graph 5

1

2
1,











 










1

2
1,

y = f(2x)
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  If we wish to transform the function 𝑓(𝑥) by 𝑦 = 𝑎𝑓(𝑐𝑥 + 𝑑) + 𝑏 where 𝑎, 𝑏, 𝑐, and 𝑑 

are constants, then for each point (𝑥, 𝑦) on the original graph, the corresponding point (𝑥′, 𝑦′) on 

the transformed graph is found by the transformation equations 𝑦′ = 𝑎𝑦 + 𝑏 and 𝑥′ =
𝑥−𝑑

𝑐
.  

This latter equation is derived by letting 𝑥 = 𝑐𝑥′ + 𝑑 and then solving for 𝑥′. 

 These two rules follow our above discussion of transformations.  To transform the 𝑦 

coordinate we rescale by multiplying by 𝑎 and translate by adding 𝑏.  To transform the 𝑥 

coordinate we translate by subtracting 𝑑 and then rescale by dividing by 𝑐.  Note carefully the 

order of the operations.  To transform the 𝑦 coordinate we first rescale then translate.  To 

transform the 𝑥 coordinate we first translate and then we rescale.  This is in accord with the 

'backwards' process of transforming the 𝑥 coordinate that we observed above. 

Example 2:  Consider the function 𝑦 = 𝑝(𝑥).  Draw the graph of the transformed function 

𝑦 =
1

3
𝑝 (

1

2
𝑥 − 1) + 2. 

 To transform the 𝑦 coordinates of this graph we 

let 𝑦′ =
1

3
𝑦 + 2.  To transform the 𝑥 coordinates let 

𝑥 =
1

2
𝑥′ − 1, solve for 𝑥′ to get 𝑥′ = 2(𝑥 + 1) or 

𝑥′ = 2𝑥 + 2.  We then apply these two transformations to 

the points (–2, 3), (–1, 0), (0, –3), (2, 0), and (4, –3) with 

the following results:  

 (–2, 3) → (–2, 3) 

 (–1, 0) → (0, 2) 

 (0, –3) → (2, 1) 

 (2, 0) → (6, 2) 

 (4, –3) → (10, 1). 

  

Example 2a

y = p(x)











 y p x  1
3

1
2

1 2

Example 2b






 

y p x  1
3

1
2

1 2
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2.6 Transformations of Graphs Practice 
 

1. Given the following graph of 𝑦 = 𝑓(𝑥), graph 

a. 𝑦 = 𝑓(𝑥 + 4) 

b. 𝑦 = 𝑓(𝑥) + 4 

c. 𝑦 = 2𝑓(𝑥) 

d. 𝑦 = 𝑓(2𝑥) 

e. 𝑦 = 2𝑓(2𝑥 + 4) + 4 
 

2.  Given the following graph of 𝑦 = 𝑔(𝑥), graph 

a. 𝑦 = −𝑔(𝑥) 

b. 𝑦 = 𝑔(−𝑥) 

c. 𝑦 = −𝑔(𝑥) + 2 

d. 𝑦 = −𝑔(𝑥 − 2) 

e. 𝑦 = 𝑔(−𝑥 − 2) 

 

3. Given the following graph of ℎ(𝑥), graph 

a. 𝑦 =
1

2
ℎ(𝑥) 

b. 𝑦 = ℎ (
1

2
𝑥) 

c. 𝑦 =
1

2
ℎ (

1

2
𝑥) 

d. 𝑦 = −
1

2
ℎ(−2𝑥) 

e. 𝑦 = 2ℎ(−𝑥 + 2) − 3 
 

4. Given the following graph of 𝑆(𝑥), graph 

a. 𝑦 = 𝑆(𝑥) + 1 

b. 𝑦 = 2𝑆(𝑥) 

c. 𝑦 = 𝑆(2𝑥 − 𝜋) 

d. 𝑦 =
1

2
𝑆 (3𝑥 +

𝜋

2
) 

e. 𝑦 = 2𝑆 (
1

2
𝑥 + 2𝜋) 

 

 

 

 











y = f(x)









y = g(x)

y = h(x)

 











  
2

1,

 
2

1,



 
2

1,


2

1,

y = S(x)
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5. Given the following graph of 𝑅(𝑥), graph 

a. 𝑦 = 𝑅(𝑥) + 1 

b. 𝑦 = 𝑅(𝑥 − 2) 

c. 𝑦 = 𝑅(𝑥 − 2) + 1 

d. 𝑦 = 2𝑅(𝑥) 

e. 𝑦 = 𝑅(3𝑥) 

f. 𝑦 = 2𝑅(3𝑥 − 3) + 2 

 

 Notice that 𝑅(𝑥) is not a function.  It fails the vertical line test for functions.  However, 

our transformations still work. 

6. Let the points (–2, 1), (0, 2), (1, 3), (2, 4), (4, 0) be on the function 𝑓(𝑥). Give the 

corresponding points for each of the following transformations. 

a. 𝑦 = 𝑓(−𝑥 − 2) + 1 

b. 𝑦 = 2𝑓(𝑥 + 3) − 2 

c. 𝑦 =
3

2
𝑓 (

3

2
𝑥 − 1) + 3 

d. 𝑦 =
1

2
𝑓 (−

3

2
𝑥 − 2) − 1 

 

7. Let the points (–3, –1), (–1, 2), (0, 3), (2, –2), (4, 1) be on the function 𝑔(𝑥). Give the 

corresponding points for each of the following transformations. 

a. 𝑦 = −3𝑔(2𝑥 − 1) + 1 

b. 𝑦 =
1

2
𝑔(−𝑥 + 2) − 3 

c. 𝑦 = −2𝑔 (
1

2
𝑥 − 2) − 1 

d. 𝑦 =
2

3
𝑔 (

3

2
𝑥 +

1

2
) −

1

3
 

 

8. Let the points (–4, 3), (–3, 3), (0, –2), (2, 1), (4, –1) be on the function ℎ(𝑥). Give the 

corresponding points for each of the following transformations. 

a. y = −2h(2x − 3) + 1 

b. 𝑦 =
1

2
ℎ(3𝑥 − 1) +

3

2
 

c. 𝑦 = −ℎ(−𝑥 + 1) + 1 

d. 𝑦 = 3ℎ (
1

2
𝑥 − 3) + 2 

  

y = R(x)








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2.7 Transformations of Basic Functions 
 

 Many of the equations which you will encounter are transformations of a few basic 

functions.  By transforming a few reference points according to the rules in the last section, we 

will be able to graph variations of these functions. 

 In the following we will look at six of the most common graphs.  These graphs and their 

corresponding functions are: 

 

 

 

 

 

 

 

 

1

𝑥2
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The Linear Function 𝒇(𝒙) = 𝒙 

 This function is a straight line with intercepts at the origin and a slope of 1.  Easy 

reference points on this function are (–1,–1), (0,0) and (1,1). 

 If we look at the slope intercept form of the equation of a line 𝑦 = 𝑚𝑥 + 𝑏, we notice 

that the equation can be written 𝑦 = 𝑚𝑓(𝑥) + 𝑏 where 𝑓(𝑥) = 𝑥.  Here 𝑚 is a rescaling factor 

and 𝑏 is a translation factor, both in the 𝑦 direction. 

Example 1: Graph the function 𝑦 =
2

3
𝑥 − 2 

𝑦 =
2

3
𝑥 − 2 

 

Rewrite in function notation where 𝑓(𝑥) = 𝑥 

𝑦 =
2

3
𝑓(𝑥) − 2 Multiply each of the 𝑦 coordinates by 

2

3
  and then add –2. 

Leave the x coordinates alone 

 

(−1, −1) → (−1, −
8

3
) 

(0,0) → (0, −2) 

 (1,1) → (1, −
4

3
) 

 

Graph the points 

 
 

Final answer 
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The Absolute Value Function 𝒇(𝒙) = |𝒙| 

 The three reference points that we will use on the absolute value function are (–1, 1), 

(0, 0), and (1, 1). 

Example 2: Graph the function 𝑦 = −2 |
3

2
𝑥 − 1| + 4.   

𝑦 = −2 |
3

2
𝑥 − 1| + 4 

 

Rewrite in function notation where 𝑓(𝑥) = |𝑥| 

𝑦 = −2𝑓 (
3

2
𝑥 − 1) + 4 

Transformations outside the function symbol affect only the 𝑦 values.  

Therefore, we multiply each 𝑦 coordinate by –2 and add 4. 

 

𝑦′ = −2𝑦 + 4 On the inside of the function symbol we change only the 𝑥 values.  

Let 𝑥 =
3

2
𝑥′ − 1 and solve for 𝑥′ 

 

𝑥 =
3

2
𝑥′ − 1 

𝑥 + 1 =
3

2
𝑥′ 

2

3
(𝑥 + 1) = 𝑥′ 

 

 

 

 

Calculate new reference points 

(−1,1)  → (0,2) 

(0,0) → (
2

3
, 4) 

(1,1) → (
4

3
, 2) 

 

Graph the points 

 
 

Final answer 
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The Quadratic Function 𝒇(𝒙) = 𝒙𝟐 

 The quadratic will occur again in future sections, under polynomials.  Here we will only 

concern ourselves with transformations of the graph. 

 The three reference points are (–1, 1), (0, 0), and (1, 1).  To graph any quadratic we need 

only look at transformations of these points on the graph of 𝑦 = 𝑥2.   

Example 3: Graph the function 𝑦 = (
1

2
𝑥 − 2)

2
− 1 

𝑦 = (
1

2
𝑥 − 2)

2

− 1 

 

Rewrite in function notation where 𝑓(𝑥) = 𝑥2 

𝑦 = 𝑓 (
1

2
𝑥 − 2) − 1 

Transformations outside the function affect only the 𝑦 values. 

Therefore, we subtract 1. 

 

 

𝑦′ = 𝑦 − 1 On the inside of the function symbol we change only the 𝑥 values. 

Let 𝑥 =
1

2
𝑥′ − 2 and sove for 𝑥′ 

 

𝑥 =
1

2
𝑥′ − 2 

𝑥 + 2 =
1

2
𝑥′ 

2(𝑥 + 2) = 𝑥′ 
2𝑥 + 4 = 𝑥′ 

 

 

 

 

Calculate new reference points 

(−1,1) → (2,0) 

(0,0) → (4, −1) 

(1,1) → (6,0) 
 

Graph the points 

 
 

Final answer 

 

 A question that frequently arises is "What happens to the exponent 2?"  The function rule 

𝑓(𝑥) = 𝑥2 means "square whatever is inside the function symbol 𝑓( )".  The exponent is not 

lost, it is replaced by another way of saying "square." 
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Example 4: Graph the function 𝑦 = 𝑥2 + 2𝑥 + 3 

Before we can graph this equation we must first write it in a form showing the basic function.  

To do this we complete the square on the quadratic and use the function 𝑓(𝑥) = 𝑥2. 

𝑦 = 𝑥2 + 2𝑥 + 3 
 

Group 𝑥2 + 2𝑥 

𝑦 = (𝑥2 + 2𝑥) + 3 
 

Take half the middle term and square it 

(
1

2
∙ 2)

2

= 12 = 1 

 

Add and subtract to balance 

𝑦 = (𝑥2 + 2𝑥 + 1) + 3 − 1 
 

Factor trinomial perfect square 

𝑦 = (𝑥 + 1)2 + 2 
 

Rewrite in function notation where 𝑓(𝑥) = 𝑥2 

𝑦 = 𝑓(𝑥 + 1) + 2 
 

Find 𝑦′ and 𝑥′ (solve for 𝑥′) 

𝑦′ = 𝑦 + 2 

𝑥 = 𝑥′ + 1 

𝑥 − 1 = 𝑥′ 
 

Calculate new reference points 

(−1,1) → (−2,3) 

(0,0) → (−1,2) 

(1,1) → (0,3) 
 

Graph the points 

 
 

Final answer 

 

 

 

 

 

 



146 
 

The Cubic Function 𝒇(𝒙) = 𝒙𝟑 

 The graph of the cubic has the three reference points (–1, –1), (0, 0), and (1, 1).  When 

graphing a cubic we apply the appropriate transformations to these three points. 

Example 5: Graph the function 𝑦 =
2

5
(𝑥 − 2)3 − 2 

𝑦 =
2

5
(𝑥 − 2)3 − 2 

 

Rewrite in function notation, where 𝑓(𝑥) = 𝑥3 

𝑦 =
2

5
𝑓(𝑥 − 2)3 − 2 

 

Find 𝑦′ and 𝑥′ (solve for 𝑥′) 

𝑦′ =
2

5
𝑦 − 2 

𝑥 = 𝑥′ − 2 

𝑥 + 2 = 𝑥′ 
 

Calculate new reference points 

(−1, −1) → (1, −
12

5
) 

(0,0) → (2, −2) 

(1,1) → (3, −
8

5
) 

 

Graph the points 

 
 

Final answer 
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The Reciprocal Function 𝒇(𝒙) =
𝟏

𝒙
 

 The reciprocal function has both a vertical and a horizontal asymptote (which are the 

lines  𝑥 = 0 and 𝑦 = 0).  The intersection of the asymptotes is the coordinate (0, 0) which is one 

of the three reference points for the function.  The other two reference points are (–1, –1) and 

(1, 1).  When transforming this function the transformation of the point (0, 0) becomes the 

intersection point of the new asymptotes.  The asymptotes will retain their vertical and horizontal 

directions. 

Example 6: Graph the function 𝑦 =
1

2𝑥−1
+ 2  

𝑦 =
1

2𝑥 − 1
+ 2 

 

Rewrite in function notation where 𝑓(𝑥) =
1

𝑥
 

𝑦 = 𝑓(2𝑥 − 1) + 2 
 

Find 𝑦′ and 𝑥′ (solve for 𝑥′) 

𝑦′ = 𝑦 + 2 

𝑥 = 2𝑥′ − 1 

𝑥 + 1 = 2𝑥′ 
1

2
(𝑥 + 1) = 𝑥′ 

 

Calculate new reference points  

(−1, −1) → (0,1) 

(0,0) → (
1

2
, 2) 

(1,1) → (1,3) 
 

Graph the points 

 
 

Final answer 

The vertical and horizontal asymptotes are now centered at the point (
1

2
, 2).  The rest of the 

graph is placed around these asymptotes in the same fashion as the original asymptotes. 
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The Inverse Square Function 𝒇(𝒙) =
𝟏

𝒙𝟐
 

 The reciprocal function of 𝑥2 also has horizontal and vertical asymptotes.  Unlike the 

reciprocal function this function is always positive and its graph is above the 𝑥 axis.  The 

standard reference points are (–1, 1), (0, 0) (again the center of the asymptotes), and (1, 1). 

Example 7: Graph the function 𝑦 =
2

3
(

1

(3𝑥−2)2) − 4 

𝑦 =
2

3
(

1

(3𝑥 − 2)2
) − 4 

 

Rewrite in function notation where 𝑓(𝑥) =
1

𝑥2
 

𝑦 =
2

3
𝑓(3𝑥 − 2) − 4 

 

Find 𝑦′ and 𝑥′ (solve for 𝑥′) 

𝑦′ =
2

3
𝑦 − 4 

𝑥 = 3𝑥′ − 2 

𝑥 + 2 = 3𝑥′ 
1

3
(𝑥 + 2) = 𝑥′ 

 

Calculate new reference points 

(−1,1) → (
1

3
, −

10

3
) 

(0,0) → (
2

3
, −4) 

(1,1) → (1, −
10

3
) 

 

Graph the points 

 
 

Final answer 

Notice that the intersection point of the asymptotes is (
2

3
, −4). 
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Functions Inside of Absolute Value Signs 

 Sometimes we need to graph an equation that has a function inside of an absolute value 

symbol.  For example, something like 𝑦 = |𝑥2 − 4|.  In this example we have a quadratic 

function inside of the absolute value.  (Please note - this is not the same as the absolute value 

function talked about earlier in this section although there is a relationship.) 

 To graph this situation we need to break the graphing process into several distinct parts.  

First we need to graph the function inside the absolute value symbol.  Then apply the absolute 

value operation to the graph.  Lastly, apply any transformations that are outside the absolute 

value. 

  Remember from your basic algebra that absolute values make everything inside of them 

positive.  If 𝑦 = 𝑓(𝑥), then |𝑦| = |𝑓(𝑥)|.  To make the function values positive we make all the 

𝑦 coordinates positive.  If a 𝑦 coordinate is already positive we leave it alone.  If negative we 

change the sign and replot. 

Example 8: Graph the function 𝑦 = |𝑥2 − 4| 

𝑦 = |𝑥2 − 4| 
 

We start by graphing the inside equation, 𝑥2 − 4 

 
 

This graph is negative below the 𝑥 axis, between −2 and 2 

Take the portion of the graph over this interval 

and fold it up over the 𝑥 axis making it positive. 

 
 

Final answer 
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 When working with functions inside of absolute values be sure to graph the function 

inside the absolute values signs first.  Then apply the absolute value function.  If the absolute 

value is also to be transformed, do this only after you have done everything else. 

Example 9: Graph the function 𝑦 = 2|𝑥3 + 1| − 1 

𝑦 = 2|𝑥3 + 1| − 1 
 

First graph the equation 𝑥3 + 1 

 
 

Apply the absolute value to the graph 

making all points below the 𝑥 axis positive 

(reflecting them about the 𝑥 axis). 

 
 

The rest of the graph is a transformation of 𝑔(𝑥), 𝑦 = 2𝑔(𝑥)– 1. 

Multiply each of the 𝑦 coordinates of 𝑔 by 2 and subtract 1. 

 

Final answer 
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2.7 Transformations of Basic Functions Practice 
 

Rewrite each of the following equations in function notation using the appropriate function. 

Graph each equation by transforming the graph of the basic function.  

1. 𝑦 = |𝑥 + 2| 2. 
𝑦 =

1

(𝑥 − 2)2
 

 

3. 𝑦 = (𝑥 − 2)2 4. 
𝑦 =

1

(𝑥 + 1)2
 

 

5. 𝑦 = (𝑥 + 1)3 
 

6. 𝑦 = 2(𝑥 + 1)2 + 3 

7. 𝑦 = (2𝑥 − 2)3 + 3 8. 
𝑦 =

2

𝑥 + 1
 

 

9. 
𝑦 =

1

𝑥 + 1
− 1 

 

10. 𝑦 = 3(𝑥 + 1)3 − 2 

11. 𝑦 = 2|𝑥 + 3| − 3 
 

12. 
𝑦 =

1

2
(

1

𝑥 + 2
) + 1 

 

13. 
𝑦 =

1

2𝑥 + 4
+ 1 

 

14. 
𝑦 =

1

2
(

1

(2𝑥 − 1)2
) + 1 

15. 
𝑦 =

2

(2𝑥 − 1)2
+ 2 

 

16. 𝑦 = 𝑥2 + 2𝑥 + 1 

17. 𝑦 = 2𝑥2 + 2𝑥 + 1 
 

18. 𝑦 = 3𝑥2 + 1 

19. 
𝑦 = 3 (

1

2
𝑥 − 2)

3

+ 2 

 

20. 
𝑦 = 3 (

1

2
𝑥 − 2)

2

− 1 

21. 
𝑦 =

3

2𝑥 − 5
+ 3 

 

22. 
𝑦 =

1

2(𝑥 + 2)2
− 7 

23. 
𝑦 =

1

(3𝑥 + 6)2
 

 

24. 
𝑦 =

1

2
|2𝑥 + 3| − 1 

25. 𝑦 = −2𝑥2 − 3𝑥 + 1 
 

26. 𝑦 = −2(𝑥 − 1)3 + 1 

27. 
𝑦 =

2

(−𝑥 + 3)2
+ 1 

 

28. 
𝑦 =

1

−𝑥 + 1
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29. 
𝑦 =

1

2𝑥2
+ 2 

 

30. 
𝑦 = −

1

𝑥 + 1
 

31. 
𝑦 =

1

−𝑥 − 1
 

 

32. 𝑦 = −|𝑥 + 2| 

33. 𝑦 = 2(𝑥 + 2)2 + 2 34. 
𝑦 =

1

2(𝑥 + 2)
+ 2 

 

35. 𝑦 = 2(𝑥 + 2)3 + 2 
 

36. 𝑦 = 2𝑥2 − 3𝑥 + 1 

37. 
𝑦 =

𝑥 − 1

𝑥 + 1
 

 

38. 
𝑦 =

𝑥 + 1

𝑥 − 1
 

39. 𝑦 = −𝑥2 − 𝑥 + 1 
 

40. 𝑦 = −𝑥2 + 𝑥 + 1 

41. 𝑦 = 𝑥2 − 𝑥 + 1 
 

42. 𝑦 = −2|𝑥 − 3| + 1 

43. 
𝑦 =

1

2
(2𝑥2 + 1) − 1 

 

44. 𝑦 = 𝑥3 + 3𝑥2 + 3𝑥 + 3 

45. 
𝑦 =

3

2(𝑥 + 2)2
+ 1 

 

46. 
𝑦 =

2

3𝑥 + 1
− 1 

47. 𝑦 = |𝑥3| + 3 
 

48. 𝑦 = |𝑥3 − 1| 

49. 
𝑦 =

1

|𝑥 + 2|
 

 

50. 
𝑦 =

1

|𝑥 − 2|
+ 1 

51. 𝑦 = |𝑥2 − 2| 
 

52. 𝑦 = |𝑥2 + 2| 

53. 𝑦 = −|2𝑥2 + 3| − 3 
 

54. 𝑦 = |𝑥2 − 2| + 3 

55. 
𝑦 = |

1

𝑥 − 2
| 

 

56. 𝑦 = 2|𝑥2 − 𝑥 − 6| 

57. 𝑦 = ||𝑥2 − 4| − 4| − 4 

 

58. 𝑦 = −|𝑥2 − 2| + 2 

59. 1

𝑥 + 1
= −

𝑦

2
 

60. 
2(𝑦 + 1) +

1

𝑥
= 0 
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Chapter 3: 

Graphs of Key Functions 
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3.1 Graphs of Polynomial Functions 
 

 Polynomials are functions of the form 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0.  We 

have seen simple polynomials in the form of linear, quadratic and cubic functions.  In this section 

we will deal with the graphs of polynomials of higher degree.  For simplicity, all polynomials 

will have rational roots.   

 All polynomials of degree 𝑛 with rational roots can be reduced and factored to the form 

𝑝(𝑥) = (𝑥 − 𝑟1)(𝑥 − 𝑟2) … (𝑥 − 𝑟𝑛) where 𝑟1, 𝑟2, . . . , 𝑟𝑛 are the roots of the polynomial, i.e., 

𝑝(𝑟1) = 0, 𝑝(𝑟2) = 0, etc.  You should remember from your algebra that the root of a function is 

an 𝑥 intercept of the graph of the function.  According to the fundamental theorem of algebra 

every polynomial of degree 𝑛 has 𝑛 roots.  If those roots are distinct then the graph of the 

polynomial has 𝑛 distinct 𝑥 intercepts. 

Intercepts of Polynomials 

If the polynomial 𝑃(𝑥) has factors (𝑥 − 𝑟1), (𝑥 − 𝑟2), … , (𝑥 − 𝑟𝑛), then 𝑃(𝑥) has roots 

𝑥 = 𝑟1, 𝑥 = 𝑟2, … , 𝑥 = 𝑟𝑛.   The graph of 𝑃(𝑥) will have intercepts (𝑟1, 0), (𝑟2, 0), … , (𝑟𝑛, 0). 

Conversely, if the graph of a polynomial 𝑃(𝑥) has 𝑥 intercepts (𝑟1, 0), (𝑟2, 0), … , (𝑟𝑛, 0), then the 

polynomial has roots 𝑥 = 𝑟1, 𝑥 = 𝑟2, … , 𝑥 = 𝑟𝑛 and has factors (𝑥 − 𝑟1), (𝑥 − 𝑟2), … , (𝑥 − 𝑟𝑛). 

 The graphs of polynomials are of two kinds depending upon whether the degree of the 

polynomial is even or odd.  Assuming that the leading coefficient of the polynomial is positive, 

polynomials of even degree (i.e., degree 2, 4, 6, etc.) come in from the upper left corner of the 

Cartesian plane, wiggle through the intercepts (roots) and head off in the upper right direction.  

Polynomials of odd degree (i.e., 1, 3, 5, etc.) come in from the bottom left, wiggle through the 

intercepts and also head off in the upper right direction.  If the polynomial has a negative leading 

coefficient then we are multiplying outside a function by a negative which will reflect the 

polynomial with positive leading coefficient about the 𝑥 axis (that is, turn the polynomial upside 

down). 
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Example 1: Graph the polynomial 𝑝(𝑥) = (𝑥 − 1)(𝑥 + 1)(𝑥 + 3)(𝑥 − 4) 

𝑝(𝑥) = (𝑥 − 1)(𝑥 + 1)(𝑥 + 3)(𝑥 − 4) The polynomial has four factors, 

it is a fourth degree polynomial. 

Multiply the factors we find the leading coefficient is 

+1. 

The graph enters top left, exists top right 

 

 Set the polynomial equal to zero to find 𝑥 intercepts 

 

0 = (𝑥 − 1)(𝑥 + 1)(𝑥 + 3)(𝑥 − 4) Set each factor equal to zero and solve 

 

𝑥 = ±1, −3, 4 
 

Set 𝑥 equal to 0 to find the 𝑦 intercept 

𝑝(0) = (0 − 1)(0 + 1)(0 + 3)(0 − 4) 

𝑝(0) = (−1)(1)(3)(−4) 

𝑝(0) = 12 
 

Graph 𝑥 and 𝑦 intercepts. Connect points to graph 

 
 

Final answer 
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Example 2.  Graph the polynomial 𝑝(𝑥) = −3𝑥3 − 8𝑥2 − 3𝑥 + 2 

𝑝(𝑥) = −3𝑥3 − 8𝑥2 − 3𝑥 + 2 The leading exponent is odd with a negative coefficient. 

The graph enters top left, exists bottom right 

 

𝑝(𝑥) = −(3𝑥 − 1)(𝑥 + 1)(𝑥 + 2) Factor the polynomial  

(tricks for factoring later in this chapter) 

 

 Set the polynomial equal to zero to find 𝑥 intercepts 

 

0 = −(3𝑥 − 1)(𝑥 + 1)(𝑥 + 2) Set each factor equal to zero and solve 

 

𝑥 =
1

3
, −1, −2 

 

Set 𝑥 equal to zero (original function) to find 𝑦 intercept 

𝑝(0) = −3(0)3 − 8(0)2 − 3(0) + 2 

𝑝(0) = 2 
 

Graph 𝑥 and 𝑦 intercepts. Connect points to graph 

 
 

Final answer 

Polynomials with Multiple Roots 

 If a polynomial has multiple roots then we have to adjust the graph to compensate for 

those extra roots. 

If a root has multiplicity 1 (occurs one time), then it intersects the 𝑥 axis as a straight line.  If a 

root has an even multiplicity (occurs an even number of times), then it intersects the 𝑥 axis in the 

same way as 𝑥2  If the root has an odd multiplicity (occurs an odd number of times greater than 

one), then it intersects the 𝑥 axis in the same way as 𝑥3.  In each case the direction of the 

intersection (from above or below) is the direction which allows the curve to flow in a normal, 

continuous manner from left to right. 

Conversely, If a curve intersects the 𝑥 axis in a linear fashion (passes through the 𝑥 axis without 

any bending), then the root occurs once.  If the curve bounces off the 𝑥 axis (curves like 𝑥2 when 

it hits the axis), then the root has even multiplicity (occurs an even number of times).  For 

simplicity we shall assume that the root occurs twice.  If the curve flattens out a little as it passes 

through the 𝑥 axis (looks like the graph of 𝑥3 as it intersects the 𝑥 axis), then it is a root of odd 
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multiplicity (occurs an odd number of times).  For simplicity we shall assume the root has 

multiplicity 3. 

Example 3.  Given the graph find the simplest polynomial which has the same intercepts. 

 This graph begins in the lower left of the plane 

and leaves at the upper right.  This is the pattern for an 

odd degree polynomial with positive leading coefficient.  

It intercepts the 𝑥 axis three times.  Each intersection is 

linear in form (passes straight through the axis) telling 

us that each intercept is a root of multiplicity one.  We 

determine the factors of the polynomial as follows:  For 

the intercept at 𝑥 = −4 we have the factor (𝑥 + 4).  For 

the intercept at 𝑥 = −1 we have the factor (𝑥 + 1), and 

for the intercept at 𝑥 = 1 we have the factor (𝑥 − 1).  A 

polynomial with the given roots of the given 

multiplicities is (𝑥 + 4)(𝑥 + 1)(𝑥 − 1) = 𝑥3 + 4𝑥2 − 𝑥 − 4.  The problem with this polynomial 

is that even though it has the correct roots (𝑥 intercepts) it has a 𝑦 intercept of (0, –4) not (0, –1).  

To change this we need only rescale the polynomial so that it has the correct y intercept.  To 

convert a –4 into a –1 we need to multiply by 
1

4
.  Doing this gives us the correct polynomial 

𝑝(𝑥) =
1

4
(𝑥3 + 4𝑥2 − 𝑥 − 4). 
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Example 4.  Find the polynomial which best fits the following graph:  

 This graph starts at the lower left and leaves at the 

lower right.  To enter and leave on the same half (bottom half 

of the plane in this case) the polynomial must be of even 

degree. 

 It has two intercepts 𝑥 = ±3.  Both of these intercepts 

bounce off the 𝑥 axis indicating that the roots are of even 

multiplicity and that the factors (𝑥 + 3) and (𝑥– 3) each occur 

an even number of times.  For simplicity we will choose 

multiplicity two (actually, the roots could occur any even 

number of times but we have no means of deciding so we will choose the smallest even 

multiplicity). 

 Based on the above analysis we can approximate the polynomial by  

𝑝(𝑥) = (𝑥 + 3)2(𝑥 − 3)2.  This polynomial has the appropriate roots with multiplicity two 

which was desired.  Finding the 𝑦 intercept we let 𝑥 = 0 which gives us the point (0, 81).  The 𝑦 

intercept on the given graph is (0, –9).  To change the 81 into a –9 we rescale in the y direction 

by −
1

9
.  I.e., −

1

9
(81) = −9.  Our finished polynomial is 𝑝(𝑥) = −

1

9
(𝑥 + 3)2(𝑥 − 3)2.  

Notice that when we rescale by −
1

9
 we are multiplying by a negative which reflects the graph 

about the 𝑥 axis.  This reflection turns the tails down which is what we want. 

Example 5.  Graph the equation 𝑝(𝑥) = (𝑥 + 1)(𝑥 − 2)2(𝑥 − 4)3. 

This polynomial has a root of multiplicity one (–1, 0), a root of multiplicity two (2, 0), and a root 

of multiplicity three (4, 0).  Counting up the number of roots 3 + 2 + 1 = 6, we get a polynomial 

of degree 6.  Multiplying the leading coefficients of each factor out we get 1 which is positive.  

Therefore, we have a 6th degree polynomial with positive 

leading coefficient.  The graph must enter the plane form the 

upper left, wiggle through the roots, and leave in the upper 

right. 

 The root at (–1, 0) is a triple root and will flatten out 

slightly as it passes through the 𝑥 axis.  The root at (2, 0) is a 

double root and will bounce off the 𝑥 axis like a quadratic.  

Because the curve is below the 𝑥 axis as we approach this 

intercept the bounce will be below the axis.  The root at (4, 0) 

is a triple root and will flatten out slightly as it passes through 

the 𝑥 axis looking like a cubic.  Letting 𝑥 = 0 we get the 𝑦 

intercept (0, –256).   
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Example 6.  Graph the polynomial 𝑝(𝑥) = 𝑥5 − 𝑥4 − 5𝑥3 + 𝑥2 + 8𝑥 + 4. 

 This is a fifth degree polynomial with positive leading 

coefficient.  Therefore it will start at the lower left corner of the 

plane, wiggle through the roots, and leave at the upper right 

corner of the plane. 

 Factoring the polynomial (using strategies discussed later 

in this chapter) gives 𝑝(𝑥) = (𝑥 + 1)3(𝑥 − 2)2.  The point       

(–1, 0) is a root of multiplicity three and the point (2, 0) is a root 

of multiplicity two.  Letting 𝑥 = 0 in the original equation gives 

the 𝑦 intercept (0, 4). 
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3.1 Graphs of Polynomial Functions Practice 
 

Graph each of the following polynomial functions. 

1. 𝑦 = −3𝑥2 + 12 
 

2. 𝑦 = (𝑥 + 2)(𝑥 − 3) 

3. 𝑦 = (𝑥 − 1)(𝑥 + 2) 
 

4. 𝑦 = (𝑥 − 2)(𝑥 + 2)(𝑥 + 4) 

5. 𝑦 = (𝑥 + 3)(𝑥 − 3)(𝑥 − 6) 
 

6. 𝑦 = 𝑥(𝑥 + 4)(𝑥 + 3)(𝑥 − 2) 

7. 𝑦 = 𝑥(𝑥 − 4)(𝑥 − 2)(𝑥 − 1) 
 

8. 𝑦 = 𝑥(2𝑥 + 1)(𝑥 − 1) 

9. 𝑦 = −(𝑥 + 2) 
 

10. 𝑦 = −𝑥(𝑥 − 3) 

11. 𝑦 = 2𝑥2 + 5𝑥 − 3 
 

12. 𝑦 = 2𝑥2 + 9𝑥 − 5 

13. 𝑦 = 𝑥3 − 𝑥2 − 12𝑥 
 

14. 𝑦 = 3𝑥3 + 7𝑥2 + 12𝑥 

15. 𝑦 = −𝑥2 + 3𝑥 + 10 
 

16. 𝑦 = −𝑥2 + 5𝑥 − 6 

17. 𝑦 = −3𝑥3 − 33𝑥2 − 84𝑥 
 

18. 𝑦 = −3𝑥3 − 33𝑥2 − 90𝑥 

19. 
𝑦 =

1

2
𝑥3 −

1

4
𝑥2 −

1

2
𝑥 

 

20. 
𝑦 =

1

4
𝑥3 −

1

4
𝑥2 −

1

2
𝑥 

21. 𝑦 = 3𝑥3 + 3𝑥2 − 12𝑥 − 12 
 

22. 𝑦 = 2𝑥3 + 2𝑥2 − 18𝑥 − 18 

23. 𝑦 = (𝑥 + 2)2(𝑥 − 1) 
 

24. 𝑦 = (2𝑥 + 1)(𝑥 − 1)2 

25. 𝑦 = (3𝑥 − 2)(2𝑥 − 1)2(𝑥 + 1)3 
 

26. 𝑦 = (3𝑥 + 2)2(3𝑥 − 2)3 

27. 𝑦 = (𝑥 + 1)2(𝑥2 − 1)2 
 

28. 𝑦 = (𝑥4 − 1)2 

29. 𝑦 = (𝑥4 − 1)3 
 

30. 𝑦 = (𝑥4 − 1)4 
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Find a polynomial equation of least degree for each of the following graphs 
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3.2 Synthetic Division 
 

In order to graph a polynomial it is necessary to find the roots. If we are working with quadratics 

(polynomials of degree 2) this is fairly straightforward. We can factor or use the quadratic 

formula. For polynomials of larger degree it is not always this simple. There are formulas for 

polynomials of degree three and four but these are not simple. It has been proven that there are 

no formulas to solve polynomials of degree five or larger. 

As discussed in the section on graphing polynomials, finding the roots of a polynomial is 

equivalent to factoring the polynomial. This is relatively easy for quadratics and some simple 

cubic equations. Even some simple quartic equations can be easily factored. But, in general, 

polynomials require a little work to factor. 

Factoring is really a process of division. That is, if (𝑥 − 𝑟) is a factor of a polynomial 𝑃(𝑥), then 

the quotient 
𝑃(𝑥)

𝑥−𝑎
 will divide with a remainder of zero. Consequently, to better understand the 

process of factoring a polynomial we need to understand polynomial division better. 

Let 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ + 𝑎1𝑥 + 𝑎0 and 

 𝑄(𝑥) = 𝑏𝑚𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + 𝑏𝑚−2𝑥𝑚−2 + ⋯ + 𝑏1𝑥 + 𝑏0 be two polynomials. Consider the 

quotient 
𝑃(𝑥)

𝑄(𝑥)
 where the degree of 𝑄 is less than the degree of 𝑃, or 𝑚 < 𝑛.  

𝑃(𝑥)

𝑄(𝑥)
= 𝐹(𝑥) +

𝑅(𝑥)

𝑄(𝑥)
 where 𝐹(𝑥) is a polynomial of degree 𝑛 − 𝑚 and 𝑅(𝑥) is the remainder 

with degree less than 𝑚. For example, let 𝑃(𝑥) = 𝑥5 − 3𝑥3 + 2𝑥2 − 5 and  

𝑄(𝑥) + 𝑥3 + 3𝑥2 − 2𝑥 + 1.  

Then, dividing 𝑃 by 𝑄 we get 
𝑃(𝑥)

𝑄(𝑥)
= 𝑥2 − 3𝑥 + 8 −

29𝑥2−19𝑥+13

𝑥3+3𝑥2−2𝑥+1
 or 𝑄(𝑥) divides 𝑃(𝑥) 

𝑥2 − 3𝑥 + 8 times with remainder of −29𝑥2 − 19𝑥 + 13. Or, letting 𝐹(𝑥) = 𝑥2 − 3𝑥 + 8 and 

𝑅(𝑥) = −29𝑥2 − 19𝑥 + 13 we get 
𝑃(𝑥)

𝑄(𝑥)
= 𝐹(𝑥) +

𝑅(𝑥)

𝑄(𝑥)
. If 𝑄(𝑥) divides 𝑃(𝑥) exactly, 

without a remainder, then 𝑅(𝑥) = 0 and 𝑄(𝑥) is a factor of 𝑃(𝑥). I.e., 𝐹(𝑥)𝑄(𝑥) = 𝑃(𝑥). 

If we take the expression 
𝑃(𝑥)

𝑄(𝑥)
= 𝐹(𝑥) +

𝑅(𝑥)

𝑄(𝑥)
 and multiply through by 𝑄(𝑥) (eliminate the 

denominator), we get 𝑃(𝑥) = 𝐹(𝑥)𝑄(𝑥) + 𝑅(𝑥). We are particularly interested when  

𝑄(𝑥) = 𝑥 − 𝑎. This gives us 𝑃(𝑥) = 𝐹(𝑥)(𝑥 − 𝑎) + 𝑅(𝑥). What happens if we evaluate 𝑃(𝑎)? 

𝑃(𝑎) = 𝐹(𝑎)(𝑎 − 𝑎) + 𝑅(𝑎) = 𝑅(𝑎). But 𝑄(𝑥) is linear so the remainder, 𝑅(𝑥) has to be one 

degree less or a constant. This means that 𝑃(𝑎) equals the remainder when we divide the 

polynomial by 𝑥 − 𝑎. To show this, consider the polynomial 𝑃(𝑥) = 𝑥2 − 𝑥 + 2. We want to 

evaluate this polynomial at 𝑥 = 2, or find 𝑃(2). 𝑃(2) = 22 − 2 + 2 = 4.  Divide 𝑃(𝑥) by 𝑥 − 2 

and get 
𝑥2−𝑥+2

𝑥−2
= 𝑥 + 1 +

4

𝑥−2
.  Here the remainder is 4 = 𝑃(2). This implies that, to 
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evaluate a polynomial 𝑃(𝑥) at 𝑥 = 𝑎 we need only divide 𝑃(𝑥) by 𝑥 − 𝑎 and look at the 

remainder.  

But, as we know from our experience in beginning algebra, division of polynomials can be a 

long and laborious process. Therefore, we need a simpler method of dividing by the monomial 

𝑥– 𝑎. This process is called synthetic division.  

We will start with a simple division, 
3𝑥2−5𝑥+2

𝑥−3
. As a division problem this sets up as the image 

on the left below. 

                       𝟑𝑥 + 𝟒 + 𝑅(𝟏𝟒) 

𝑥 − 3  3𝑥2 − 5𝑥 + 2 

           𝟑𝑥2 − 9𝑥 

                      4𝑥 + 2 

                      𝟒𝑥 − 12 

                                   𝟏𝟒 

            𝟑       𝟒     𝟏𝟒 

1 − 3  3   − 5    2 

           𝟑   − 9  
                    4     2 

                    𝟒  − 12 

                           𝟏𝟒 

 

The image on the right is a simple schematic showing only the numbers. The numbers of 

importance to us are the bold numbers on each side. 

Using the schematic on the right we can condense the picture to look like: 

–3   3  –5     2 

           –9  –12  

         3   4    14 with the top row on the bottom. 

 

Because each step of the division requires a subtraction we can change the sign on the divisor   

(–3) and on the second row (–9   –12) and rewrite to get: 

3   3  –5    2 

           9  12  

        3   4  14 

 

This has the advantage of changing our steps to addition rather than subtraction. Also, you can 

think of the divisor 𝑥 − 3 as 𝑥 − 3 = 0 or 𝑥 = 3. So instead of dividing by 𝑥 − 3, we are finding 

the value of 𝑃(3). In this case 𝑃(3) = 14, the remainder. 

This structure gives us a very simple way to divide any polynomial by the factor 𝑥 − 𝑎 or to 

determine the value of 𝑃(𝑎). And, if 𝑃(𝑎) = 0, or the remainder is zero, then 𝑥 − 𝑎 is a factor of 

the polynomial or 𝑥 = 𝑎 is a root. The actual procedure of the division is shown below. 
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step 1 3   3  –5    2   Drop the leading term 

           

                 3                

Step 2 3   3  –5    2   Multiply divisor × 3 and place in second position 

  9 

       3                

Step 3 3   3  –5    2   Add 

  9 

       3    4         

Step 4 3   3  –5     2   Multiply and place in next position 

   9    12 

      3    4         

Step 5 3   3  –5     2   Add 

   9    12 

      3    4    14   

 

The bottom line gives the quotient. The first number is the coefficient of the leading term (one 

degree less than the dividend) and the last number is the remainder. Because we started with a 

quadratic the quotient is linear, 3𝑥 + 4 with a remainder of 14. 

Example 1: Divide 
4𝑥4−3𝑥2+2𝑥−3

𝑥−1
 

The denominator 𝑥 − 1 gives us a divisor of 𝑥 = 1. Setting up the coefficients we get: 

1  4   0   –3   2   –3 

                                

 

 

Notice the zero in the 𝑥3 position. We need to account for all of 

the terms and the 𝑥3 has a coefficient of zero. Bring down the 

first number. 

1  4   0   –3   2   –3 

                                

      4 

 

Multiply 1×4 and place under the zero in the second position. 

1  4   0   –3   2   –3 

         4                    

      4 

 

Add. 
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1  4    0   –3   2   –3 

          4                    

      4   4 

 

Multiply 1×4 and place in the next position. 

1  4    0   –3   2   –3 

          4     4               

      4   4 

 

Add. 

1  4    0   –3   2   –3 

          4     4               

      4   4     1 

 

Multiply 1×1 and place in the next position. 

1  4    0   –3    2   –3 

          4     4    1           

      4   4     1 

 

Add. 

1  4    0   –3    2   –3 

          4     4    1           

      4   4     1    3 

 

Multiply 1×3 and place in the next position. 

1  4    0   –3    2   –3 

           4     4    1     3  

      4   4     1    3 

 

Add. 

1  4    0   –3    2   –3 

          4     4    1     3  

      4   4     1    3     0 

 

 

This says that 
4𝑥4−3𝑥2+2𝑥−3

𝑥−1
= 4𝑥3 + 4𝑥2 + 𝑥 + 3 + 𝑅(0).  Because the remainder is 

zero, 𝑥 − 1 is a factor of 4𝑥4 − 3𝑥2 + 2𝑥 − 3 and 𝑥 = 1 is a root of 4𝑥4 − 3𝑥2 + 2𝑥 − 3. 
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Example 2: Divide  
6𝑥3+7𝑥2−6𝑥−2

2𝑥+1
. 

The divisor, 2𝑥 + 1 does not have a 1 coefficient on the 𝑥. But we are dividing to see if 2𝑥 + 1 

is a factor or 2𝑥 + 1 = 0. Solving, this means that 𝑥 = −
1

2
. So our divisor for the synthetic 

division is −
1

2
. Setting up the division we get: 

– 
 1 

2
    6     7    –6    –2 

                  –3    –2      4   

              6     4    –8      2 

 

Therefore, 
6𝑥3+7𝑥2−6𝑥−2

2𝑥+1
= 6𝑥2 + 4𝑥 − 8 + 𝑅(2). This tells us that 2𝑥 + 1 is not a factor 

of 6𝑥3 + 7𝑥2 − 6𝑥 − 2 because it has a remainder of 2 when divided by 2𝑥 + 1. Also, if 

𝑓(𝑥) = 6𝑥3 + 7𝑥2 − 6𝑥 − 2, then 𝑓 (−
1

2
) = 2. 
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3.2 Synthetic Division Practice 
 

Use synthetic division to find the following quotients. 

1. 3𝑥3 − 2𝑥2 + 4𝑥 − 75

𝑥 − 3
 

 

2. 3𝑥3 + 2𝑥2 − 4𝑥 + 8

𝑥 + 2
 

3. 𝑥4 − 6𝑥3 + 𝑥2 − 8

𝑥 + 1
 

 

4. 𝑥4 − 3𝑥3 + 𝑥 + 6

𝑥 − 2
 

5. 2𝑥4 − 15𝑥2 + 8𝑥 − 3

𝑥 + 3
 

 

6. 3𝑥4 − 15𝑥 − 2

𝑥 − 2
 

7. 4𝑥5 − 4𝑥4 − 5𝑥3 + 4

𝑥 − 1
 

 

8. 4𝑥3 − 3𝑥2 − 5𝑥 + 2

𝑥 − 2
 

9. 3𝑥3 − 2𝑥2 + 4𝑥 − 24

𝑥 − 2
 

 

10. 3𝑥3 + 2𝑥2 + 4𝑥 + 24

𝑥 + 2
 

11. Use synthetic division to find 𝑓(2) if 𝑓(𝑥) = 2𝑥3 − 3𝑥2 + 4𝑥 − 10 

12. Use synthetic division to find 𝑓(3) if 𝑓(𝑥) = 3𝑥3 − 7𝑥2 − 5𝑥 + 2 

13. Use synthetic division to find 𝑓(2) if 𝑓(𝑥) = 𝑥4 − 5𝑥3 + 2𝑥2 − 𝑥 + 3 

14. Use synthetic division to find 𝑓(4) if 𝑓(𝑥) = 𝑥4 − 3𝑥3 − 4𝑥2 + 2𝑥 − 5 

15. Use synthetic division to find 𝑓(−2) if 𝑓(𝑥) = 2𝑥4 + 5𝑥3 + 2𝑥2 + 5𝑥 + 2 

16. Use synthetic division to find 𝑓(−3) if 𝑓(𝑥) = 5𝑥4 + 10𝑥3 − 20𝑥2 − 12𝑥 − 2 

17. Use synthetic division to find 𝑓(5) if 𝑓(𝑥) = 𝑥4 − 20𝑥2 − 10𝑥 − 50 

18. Use synthetic division to find 𝑓(−2) if 𝑓(𝑥) = 𝑥5 − 3𝑥4 + 2𝑥2 − 5 

19. Find the value of 𝑘 for which 𝑥 + 1 is a factor of 4𝑥3 − 4𝑥2 + 𝑘𝑥 + 4 

20. Find the value of ℎ for which 𝑥 − 2 is a factor of 3𝑥3 − 5𝑥2 + ℎ𝑥 + 4 

21. What is 𝑚 in 3𝑥3 + 𝑚𝑥2 − 7𝑥 + 6 if 𝑥 + 3 is a factor? 

22. What is 𝑛 in 4𝑥3 − 2𝑛𝑥2 − 8𝑥 + 6 if 𝑥 − 3 is a factor? 

23. If 𝑥 − 4 is a factor of 6𝑥3 + 13𝑥2 + 2𝑘𝑥 − 40, what is the value of 𝑘? 

24. If 𝑥 + 1 is a factor of 3𝑥4 − 𝑥3 + ℎ𝑥2 + 𝑥 + 2, what is the value of ℎ? 
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25. Find 𝑚 so that 𝑥 + 1 is a factor of 5𝑥3 + 𝑚2𝑥2 + 2𝑚𝑥 − 3 

26. Find 𝑛 so that 𝑥 − 4 is a factor of 𝑥3 − 𝑛2𝑥2 − 8𝑛𝑥 − 16 

27. Find 𝑘 and 𝑚 so that 𝑥3 − 𝑚𝑥2 + 2𝑥 − 8𝑘 is divisible by (𝑥 − 1)(𝑥 + 2) 
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3.3 Rational Root Theorem 
 

We want to consider roots of polynomials with real, rational coefficients. If the coefficients are 

complex or irrational then the process is more complicated than we need to consider.  

Let 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ + 𝑎1𝑥 + 𝑎0. We want to find the roots of this 

polynomial or the values of 𝑥 that make 𝑃(𝑥) = 0. This means we want to find factors of the 

form (𝑥 − 𝑟1)(𝑥 − 𝑟2)(𝑥 − 𝑟3)(𝑥 − 𝑟4) … (𝑥 − 𝑟𝑛) = 0 which will give us roots 𝑟1, 𝑟2, 𝑟3, … 𝑟𝑛. 

The initial problem is that the product (𝑥 − 𝑟1)(𝑥 − 𝑟2)(𝑥 − 𝑟3)(𝑥 − 𝑟4) … (𝑥 − 𝑟𝑛) has a leading 

coefficient of 1, not 𝑎𝑛. But this is easily fixed. Because we are finding roots or points where 

P(x) = 0 we can divide both sides of the equation by 𝑎𝑛 getting  

𝑥𝑛 +
𝑎𝑛−1

𝑎𝑛
𝑥𝑛−1 +

𝑎𝑛−2

𝑎𝑛
𝑥𝑛−2 + ⋯ +

𝑎0

𝑎𝑛
= 0  

This means that each 𝑟𝑖 has to be a factor of the fraction 
𝑎0

𝑎𝑛
 or that 𝑟𝑖 =

𝑝𝑖

𝑞𝑖
 where the 𝑝𝑖 is a factor 

of 𝑎0 and the 𝑞𝑖 is a factor of the 𝑎𝑛. This may sound complicated but an example will clarify the 

concept. 

Example 1: Find the roots of the polynomial 𝑃(𝑥) = 8𝑥4 + 30𝑥3 − 33𝑥2 − 106𝑥 − 24. 

According to the above discussion we are looking for fractions of the form 
𝑝

𝑞
 where the 𝑝's are 

factors of 24 and the 𝑞's are factors of 8. All the factors of 8 are 1, 2, 4, and 8. All the factors of 

24 are 1, 2, 3, 4, 6, 8, 12, and 24. We need to look at all ratios with the factors of 24 in the 

numerator and factors of 8 in the denominator. These are: 

1

1
,
1

2
,
1

4
,
1

8
,
2

1
,
2

2
,
2

4
,
2

8
,
3

1
,
3

2
,
3

4
,
3

8
,
4

1
,
4

2
,
4

4
,
4

8
,
6

1
,
6

2
,
6

4
,
6

8
,
8

1
,
8

2
,
8

4
,
8

8
,
12

1
,
12

2
,
12

4
,
12

8
,
24

1
,
24

2
,
24

4
,
24

8
 

There are a lot of possibilities but reducing the fractions and throwing out the duplicates we get: 

1,
1

2
,

1

4
,

1

8
, 2, 3,

3

2
,

3

4
,

3

8
, 4, 6, 8, 12, and 24. This is a smaller set of numbers. But there is still one 

complication. We don't know if the roots are positive or negative. So we need to consider both 

possibilities for each value. This means, if the given polynomial has rational roots they must be 

in the collection 

±1, ±
1

2
, ±

1

4
, ±

1

8
, ±2, ± 3, ±

3

2
, ±

3

4
, ±

3

8
, ±4, ±6, ±8, ±12, ± 24 

This is still a lot of possibilities and we will have to do a lot of guesswork. There is one rule that 

might simplify our guessing called Descartes rule of signs. This says that the number of positive 

roots of the polynomial does not exceed the number of sign changes. If all the roots are real 

numbers then the number of positive roots is equal to the number of sign changes. If there are 

any complex roots then the number of positive roots is less than the number of sign changes. 
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Looking at our original polynomial, 8𝑥4 + 30𝑥3 − 33𝑥2 − 106𝑥 − 24 there is exactly one sign 

change between the cubic and quadratic terms. This means that we have at most one positive 

term. Because this is a fourth degree polynomial with four roots the remaining roots must be 

negative, assuming all real roots. To find roots we need to check negative values because they 

are more likely to work. Let's try −
1

2
. using synthetic division we get: 

– 
 1 

2
    8    30    –33    –106    –24 

        –4   –13         23       

 

             8   26   −46    −83        

           

Multiplying the −
1

2
 times the –83 gives us a fraction that, when added to the –24, cannot give us 

a zero. If we don't get a zero in the last position −
1

2
 cannot be a root of the equation.  Let's try 

−
1

4
. The synthetic division is  

– 
 1 

4
    8    30    –33    –106    –24 

               –2     –7         10     24    

            8    28    –40       –96      0    

Here the remainder is zero making 𝑥 = −
1

4
 a root of the polynomial. We have an added benefit 

to finding a root. Dividing out the corresponding factor from our original polynomial reduces it 

to 8𝑥3 + 28𝑥2 − 40𝑥 − 96. To find zeros of this polynomial set it equal to zero and divide out 

the common factor of 4 to get 2𝑥3 + 7𝑥2 − 10𝑥 − 24 = 0. Checking our factors of 24 over 2 we 

get a smaller set of possibilities, 

±1, ±
1

2
, ±2, ±3, ±

3

2
, ±4, ±6, ±8, ±12, ±24 

We still have only one sign change between the quadratic and linear term so still 2 negative and 

one positive roots. Our best guess is still to go with the negative possibilities. Let's try −
3

2
. Our 

synthetic division is: 

– 
 3 

2
    2    7    –10    –24 

                  –3      –6      24    

            2    4    –16       0    
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The zero in the remainder position tells us that the −
3

2
 is a root of the polynomial. This leaves us 

the 2𝑥2 + 4𝑥 − 16. Setting it equal to zero and factoring out the 2 gives 𝑥2 + 2𝑥 − 8 = 0. This 

factors into (𝑥 + 4)(𝑥 − 2) = 0 giving our two remaining roots as 𝑥 = −4 and 𝑥 = 2. 

Therefore, our polynomial 𝑃(𝑥) = 8𝑥4 + 30𝑥3 − 33𝑥2 − 106𝑥 − 24 has roots 

−
1

4
, −

3

2
, −4, and 2. This is an even polynomial with positive coefficient so it can be graphed:  
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3.3 Rational Root Theorem Practice 
 

Use the rational root theorem and synthetic division to find all factors of the following 

polynomials.  

1. 6𝑥3 − 19𝑥2 + 𝑥 + 6 
 

2. 12𝑥3 + 20𝑥2 − 21𝑥 − 36 

3. 18𝑥3 + 9𝑥2 − 23𝑥 + 6 
 

4. 27𝑥3 − 69𝑥2 − 152𝑥 − 16 

5. 18𝑥3 − 27𝑥2 + 𝑥 + 4 
 

6. 8𝑥3 − 13𝑥2 − 198𝑥 − 72 

7. 42𝑥3 + 121𝑥2 − 17𝑥 − 6 
 

8. 10𝑥3 + 13𝑥2 − 73𝑥 + 14 

9. 15𝑥3 + 31𝑥2 + 𝑥 − 15 
 

10. 18𝑥3 + 3𝑥2 − 28𝑥 + 12 

11. 8𝑥3 + 12𝑥2 − 18𝑥 − 27 
 

12. 𝑥4 − 13𝑥2 + 36 

13. 𝑥4 − 3𝑥2 + 2 
 

14. 4𝑥4 − 11𝑥2 − 3 

15. 6𝑥4 − 13𝑥3 − 18𝑥2 + 7𝑥 + 6 
 

16. 6𝑥4 + 35𝑥3 + 75𝑥2 + 70𝑥 + 24 

17. 12𝑥4 + 20𝑥3 − 25𝑥2 − 40𝑥 − 12 
 

18. 4𝑥4 − 4𝑥3 − 15𝑥2 + 16𝑥 − 4 

19. 8𝑥4 − 44𝑥3 + 54𝑥2 − 25𝑥 + 4 
 

20. 6𝑥4 − 𝑥3 − 14𝑥2 − 𝑥 + 6 

21. 6𝑥4 − 7𝑥3 − 36𝑥2 + 7𝑥 + 6 
 

22. 4𝑥4 + 3𝑥2 − 1 

23. 24𝑥4 + 20𝑥3 − 18𝑥2 + 5𝑥 − 6 
 

24. 𝑥4 − 𝑥3 + 2𝑥2 − 4𝑥 − 8 

25. 2𝑥4 + 𝑥3 − 25𝑥2 − 12𝑥 + 12 
 

26. 4𝑥4 + 12𝑥3 + 17𝑥2 + 27𝑥 + 18 

27. 6𝑥4 + 5𝑥3 − 25𝑥2 − 10𝑥 + 24 
 

28. 6𝑥4 − 5𝑥3 − 25𝑥2 + 10𝑥 + 24 

29. 6𝑥4 + 7𝑥3 − 36𝑥2 − 7𝑥 + 6 
 

30. 12𝑥5 − 4𝑥4 − 75𝑥3 − 65𝑥2 + 3𝑥 + 9 

31. 18𝑥5 − 21𝑥4 − 139𝑥3 + 258𝑥2 − 32𝑥 − 96 
 

32. 32𝑥5 − 24𝑥4 − 232𝑥3 − 6𝑥2 + 182𝑥 − 60 
 

33. 6𝑥5 − 11𝑥4 − 52𝑥3 + 113𝑥2 + 4𝑥 − 60 
 

34. 24𝑥6 + 52𝑥5 − 138𝑥4 − 501𝑥3 − 523𝑥2 − 228𝑥 − 36 
 

35. 72𝑥6 − 324𝑥5 + 286𝑥4 + 169𝑥3 − 158𝑥2 − 27𝑥 + 18 
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3.4 Graphs of Reciprocal Functions 
 

 Reciprocal functions are functions of the form 𝑓(𝑥) =
1

𝑃(𝑥)
 where 𝑃(𝑥) is a function.  

The simplest reciprocal function is the function 𝑓(𝑥) =
1

𝑥
.  We have seen the graph of this 

function before as one of the basic functions. 

The Big-Little Principle 

 The big-little principle of reciprocal numbers says that the reciprocal of a big number is 

little and the reciprocal of a little number is big.  For example, the reciprocal of 1,000 is .001 and 

the reciprocal of .0001 is 10,000.  Also, the reciprocal of a positive number is positive and the 

reciprocal of a negative number is negative.  

We can use these facts to make the graphing of reciprocal functions easier. 

The reciprocal of a value which is far away from the 𝑥 axis (large) is a value which is close to 

the 𝑥 axis (small).  The reciprocal of a value which is close to the 𝑥 axis  (small) is a value which 

is far away from the 𝑥-axis (large). 

The reciprocal of the function value at a vertical asymptote (𝑓(𝑥) = ±∞) is 0 (an 𝑥 intercept), 

and the reciprocal of an 𝑥 intercept of a function is a vertical asymptote. 

Example 1.  Graph the function 𝑓(𝑥) =
1

𝑥−2
. 

 In graphing this function we could treat it as a translation of 
1

𝑥
, however we can also 

graph it as the reciprocal of 𝑦 = 𝑥 − 2.  Looking at the graph of 𝑦 = 𝑥 − 2 we see that it has an 

𝑥 intercept at (2, 0).  This tells us that the reciprocal has a vertical asymptote at 𝑥 = 2. 

 Also 𝑦 → −∞ as 𝑥 → −∞ and 𝑦 → +∞ as 𝑥 → +∞.  This tells us that the reciprocal 

function approaches 0 from below the 𝑥 axis (negative side) as 𝑥 → −∞ and approaches 0 from 

above the 𝑥 axis (positive side) as 𝑥 → +∞.  

 

(0, −2) 
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Example 2.  Given the following graph of 𝑓(𝑥), graph 
1

𝑓(𝑥)
.   

 

 

 This function has two vertical asymptotes and one 𝑥 intercept.  It has the 𝑥 axis for a 

horizontal asymptote and a 𝑦 intercept of (0,2).   

 The reciprocal of this function will have a y intercept of (0,
1

2
); we know this because 

the reciprocal of 2 is 
1

2
.  When graphing a reciprocal function we are really plotting the 

reciprocals of the y coordinates. 

 The reciprocal will have 𝑥 intercepts at (–2, 0) and (–4, 0) (the values of the vertical 

asymptotes).  It will also have a vertical asymptote at 𝑥 = −3 (the intercept of 𝑓 becomes the 

vertical asymptote of 
1

𝑓
).  As 𝑥 → +∞, 𝑓 → +∞.  Therefore, 

1

𝑓
 will approach the 𝑥 axis from 

above (the positive side of the 𝑥-axis). 

 As 𝑥 → −∞, 𝑓 → 0.  Thus, the reciprocal 
1

𝑓
 will go to −∞ (𝑓(𝑥) is below the axis turning 

the reciprocal down towards −∞). 
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Example 3.  Graph the function 𝑓(𝑥) =
1

𝑥3−𝑥2−𝑥+1
. 

We start by graphing 𝑥3 − 𝑥2 − 𝑥 + 1 and then graphing its reciprocal. 

𝑥3 − 𝑥2 − 𝑥 + 1 factors into (𝑥 − 1)2(𝑥 + 1).  Using the techniques from the last section on 

graphing polynomials we get the graph below.  

 

 The graph of the reciprocal of this function will have vertical asymptotes at 𝑥 = −1 and 

𝑥 = 1.  Its 𝑦 intercept will be (0, 1) (the reciprocal of 1 is 1).  It will have no 𝑥 intercepts but will 

have the 𝑥 axis as a horizontal asymptote, approaching it on the negative side for 𝑥 → −∞ and 

approaching it on the positive side for 𝑥 → +∞.  Notice that the graph of the reciprocal is 

positive on both sides of the asymptote 𝑥 = 1.  This is because 𝑥3 − 𝑥2 − 𝑥 + 1 is positive on 

both sides of the root (0, 1). 
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3.4 Graphs of Reciprocal Functions Practice 
 

Graph each of the following functions: 

1. 
𝑓(𝑥) =

1

𝑥2 − 1
 

 

2. 
𝑓(𝑥) =

1

𝑥3 − 1
 

3. 
𝑓(𝑥) =

1

𝑥2 + 1
 

4. 
𝑓(𝑥) =

1

(𝑥 − 2)2
 

 

5. 
𝑓(𝑥) =

1

𝑥2 − 2𝑥 − 3
 

 

6. 
𝑓(𝑥) =

2

𝑥(𝑥 − 1)
 

7. 
𝑓(𝑥) =

2

(𝑥 − 1)(𝑥 − 3)
 

 

8. 
𝑓(𝑥) =

−1

(𝑥 − 1)(𝑥 − 3)
 

9. 
𝑓(𝑥) =

−1

(𝑥2 − 1)(𝑥2 + 1)
 

 

10. 
𝑓(𝑥) =

1

(𝑥 + 1)(𝑥 + 2)(𝑥 − 3)
 

Graph the reciprocal of each of the following graphs: 
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3.5 Graphs of Rational Functions 
 

 Rational functions are functions of the type 
𝑃(𝑥)

𝑄(𝑥)
 where 𝑃(𝑥) and 𝑄(𝑥) are both 

polynomial functions.  The primary difference between rational functions and reciprocal 

functions is the polynomial in the numerator rather than a constant.   

 There are five particular features of a rational function that we use when graphing them.  

We will go through each of the five characteristics one at a time. 

1. 𝑿 intercepts:  As in all other cases, the 𝑥 intercepts are those places where the function 

values are 0.  To find the 𝑥 intercept of a rational function we set the numerator equal to 0 

(𝑃(𝑥) = 0) and solve for 𝑥. 

2. 𝒀 intercepts:  To find the 𝑦 intercept of the function we evaluate 𝑓(0). 

3.  Vertical asymptotes:  Like reciprocal functions rational functions also have vertical 

asymptotes.  To find the vertical asymptotes of a rational function we set the denominator 𝑄(𝑥) 

equal to 0 and solve for 𝑥.  Those points where the denominator is 0 are undefined and like the 

reciprocal function will give us a vertical asymptote.  Remember, the graph of the function will 

never cross vertical asymptotes.  

4. Other asymptotes:  Rational functions have one other asymptote. What does the 

function do as 𝑥 → ±∞?  There are three possibilities for this asymptote.  It can be the line 

𝑦 = 0, it can be the line 𝑦 =
𝑝

𝑞
 where 𝑝 is the leading coefficient of 𝑃(𝑥) and 𝑞 is the leading 

coefficient of 𝑄(𝑥), or it can be any polynomial curve (most of the functions that we will deal 

with will have a linear asymptote, but any polynomial is possible). 

 To find this asymptote we will use the principle that as the denominator of a fraction gets 

bigger the value of the fraction goes to 0.  To apply this to a rational function we divide the 

denominator into the numerator and look at the remainder.  As 𝑥 → ±∞ the remainder will go to 

0 leaving the quotient as the asymptote. 

A.  If the degree of the denominator is larger than the degree of the numerator before 

dividing then the asymptote is 𝑦 = 0. 

B.  If the degree of the denominator is equal to the degree of the numerator then the 

asymptote is 
𝑝

𝑞
 where 𝑝 is the leading coefficient of 𝑃(𝑥) and 𝑞 is the leading coefficient 

of 𝑄(𝑥). 
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C.  If the degree of the numerator is larger than the degree of the denominator then the 

asymptote will be a polynomial.  In this last case the degree of the asymptote will be 

𝑚 − 𝑛 where 𝑚 is the degree of 𝑃(𝑥) and n the degree of 𝑄(𝑥). 

Because the function approaches this asymptote only as 𝑥 → ±∞, it is possible for the function 

to cross it.  To find these intercepts we set 𝑦 = 𝑓(𝑥) where 𝑦 is the asymptote.  Solving for 𝑥 

gives all intercepts.  If the equation cannot be solved then there are no intercepts. 

5. Positive/negative regions:  Before we can graph the function we still need to know when 

the graph is positive (lies above the 𝑥 axis) or negative (lies below the 𝑥 axis).  To find the 

positive and negative regions of a rational function we will use the principle that a quotient 
𝑎

𝑏
 has 

the same sign as the product 𝒂𝒃.  That is, dividing two numbers gives the same sign  as 

multiplying them.  What we wish to do here is find the signs of a quotient 
𝑃(𝑥)

𝑄(𝑥)
.  Applying the 

above principle this quotient has the same signs as the product 𝑃(𝑥)𝑄(𝑥).  Because 𝑃 and 𝑄 are 

both polynomials their product is also a polynomial.  Graphing the polynomial 𝑃(𝑥)𝑄(𝑥) with 

the techniques learned earlier, we can see where it is positive (above the 𝑥 axis) or negative 

(below the 𝑥 axis) by inspection.  The rational function 
𝑃(𝑥)

𝑄(𝑥)
 will be positive or negative in the 

same regions. 

CAUTION: The graph of 𝑃(𝑥)𝑄(𝑥) has no relationship to the graph of 
𝑃(𝑥)

𝑄(𝑥)
 other than that 

they have the same sign.  Do not try to mix the two graphs in any form. 

Example 1.  Graph the function 𝑓(𝑥) =
𝑥+1

𝑥−1
. 

1. 𝑥 intercepts:  Set the numerator equal to 0.  This gives 𝑥 + 1 = 0, or 𝑥 = −1.  This gives 

the 𝑥 intercept (–1, 0). 

2. 𝑦 intercept:  Evaluate 𝑓(0) =
0+1

0−1
=

1

−1
= −1.  This gives the 𝑦 intercept (0, –1). 

3. Vertical asymptotes:  Set the denominator equal to 0.  This gives 𝑥 − 1 = 0, or 𝑥 = 1.  

The vertical asymptote is 𝑥 = 1. 

4. Find asymptotes as 𝑥 → ±∞.   Divide the function out and throw the remainder away (the 

fractional remainder goes to 0 as 𝑥 → ±∞).  

𝑥 + 1

𝑥 − 1
= 1 +

2

𝑥 − 1
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Setting the remainder equal to 0 gives the asymptote 𝑦 = 1.  To see if there are any intercepts 

with this asymptote we set 𝑓(𝑥) = 𝑦 and solve for 𝑥.  This gives us the equation 
𝑥+1

𝑥−1
= 1.  

Multiplying out the denominator  𝑥 − 1 = 𝑥 + 1.  Subtracting 𝑥 from both sides –1 = 1.  This 

equation cannot be solved, therefore there are no intercepts with this asymptote. 

5. Sign changes:  Multiply numerator and denominator together and graph the resulting 

polynomial.  The two functions have the same sign.  The polynomial is (𝑥 − 1)(𝑥 + 1).  This is 

a quadratic with 𝑥 intercepts (–1, 0) and (1, 0).  The graph is below. 

 

From the graph we see that the function is positive for 𝑥 > 1 and 𝑥 < −1 and is negative for -

1 < 𝑥 < 1. 

 

Example 2.  Graph the function 𝑓(𝑥) =
𝑥+1

(𝑥−1)(𝑥+2)
. 

1. 𝑥 intercept:  𝑥 + 1 = 0 gives 𝑥 = −1 or (–1, 0) for the 𝑥 intercept. 

2. 𝑦 intercept: 𝑓(0) =
0+1

(0−1)(0+2)
=

1

(−1)(2)
=

1

−2
= −

1

2
 or (0, −

1

2
) for the 𝑦 

intercept. 

3. Vertical asymptotes:  Setting (𝑥 − 1)(𝑥 + 2) = 0 gives 𝑥 = 1 and 𝑥 = −2 for the 

vertical asymptotes. 

4. Other asymptotes:  The fraction 
𝑥+1

(𝑥−1)(𝑥+2)
 has numerator of lesser degree than the 

denominator.  Letting 𝑥 → ±∞, the function 𝑓(𝑥) → 0.  Therefore the other asymptote is 
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horizontal and is 𝑦 = 0.  We already know that the 𝑥 intercept is the only intersection with this 

asymptote. 

5. Sign changes:  We graph the polynomial 𝑦 = (𝑥 − 1)(𝑥 + 1)(𝑥 + 2).  The graph is 

shown below. 

 

This gives negative for 𝑥 < −2, positive for −2 < 𝑥 < −1, negative for −1 < 𝑥 < 1, and 

positive for 𝑥 > 1. 

 

Example 3.  Graph the function 𝑓(𝑥) =
𝑥2−𝑥−6

2𝑥2−𝑥−3
. 

1. 𝑥 intercepts:  Setting the numerator equal to 0 and factoring gives (𝑥 − 3)(𝑥 + 2) = 0 or 

𝑥 = 3 and 𝑥 = −2.  The 𝑥 intercepts are (–2, 0) and (3, 0). 

2. 𝑦 intercepts:  Evaluating 𝑓(0) =
02−0−6

2(02)−0−3
=

−6

−3
= 2. The y intercept is (0, 2). 

3. Vertical asymptotes:  Setting the denominator equal to 0 gives 2𝑥2 − 𝑥 − 3 = 0, 

factoring and solving for 𝑥 gives (2𝑥 − 3)(𝑥 + 1) = 0 or vertical asymptotes of 𝑥 = −1 

and 𝑥 =
3

2
. 
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4. Other asymptotes:  Dividing the fraction out gives 
1

2
−

1

2
(𝑥+9)

2𝑥2−𝑥−3
  Letting the fractional 

part go to 0 we have the asymptote 𝑦 =
1

2
.  We could also have found the asymptote by noticing 

that the numerator and denominator have the same degree.  The ratio of the leading coefficients 

will then be the horizontal asymptote 
1

2
. 

5. Sign changes:  We graph the polynomial (2𝑥 − 3)(𝑥 + 1)(𝑥 − 3)(𝑥 + 2). This is shown 

below. 

 

This gives positive for 𝑥 < −2, negative for −2 < 𝑥 < −1, positive for −1 < 𝑥 <
3

2
, negative 

for 
3

2
< 𝑥 < 3, positive for 𝑥 > 3 

 

 

Example 4.  Graph the function 𝑓(𝑥) =
𝑥2−𝑥−2

𝑥+2
. 

1. 𝑥 intercepts:  Setting the numerator equal to 0 and factoring gives 

𝑥2 − 𝑥 − 2 = (𝑥 + 1)(𝑥 − 2) = 0.  Our 𝑥 intercepts are (–1, 0) and (2, 0). 
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2. 𝑦 intercepts:  Evaluating 𝑓(0) gives 
02−0−2

0+2
=

−2

2
= −1 for a 𝑦 intercept of (0, –1). 

3. Vertical asymptotes:  Setting the denominator equal to 0 gives 𝑥 + 2 = 0 or 𝑥 = −2 for 

the vertical asymptote. 

4. Other asymptotes:  Dividing the denominator into the numerator gives 𝑥 − 3 +
4

𝑥+2
.   

Letting the fractional remainder go to 0 leaves us with the asymptote 𝑦 = 𝑥 − 3.  To find any 

intercepts we set the function equal to the asymptote getting 
𝑥2−𝑥−2

𝑥+2
= 𝑥 − 3, multiplying the 

denominator out gives 𝑥2 − 𝑥 − 2 = 𝑥2 − 𝑥 − 6.  Subtracting 𝑥2 and adding 𝑥 gives −2 = −6. 

This equation has no solutions therefore the function does not cross the asymptote 𝑦 = 𝑥 − 3. 

5. Sign changes:  To find the sign changes we graph the polynomial 

𝑦 = (𝑥2 − 𝑥 − 2)(𝑥 + 2) Factoring gives 𝑦 = (𝑥 + 1)(𝑥 − 2)(𝑥 + 2). This graph is below: 

 

This gives negative for 𝑥 < −2, positive for −2 < 𝑥 < −1, negative for −1 < 𝑥 < 2, and 

positive for 𝑥 > 2 
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Example 5.  Graph the function 𝑓(𝑥) =
𝑥2−4

𝑥−2
.  

 If you look carefully at the numerator you will notice that it factors into (𝑥 + 2)(𝑥 − 2).  

The denominator is (𝑥 − 2) which will divide out with the (𝑥 − 2) in the numerator provided 

that 𝑥 ≠ 2.  If 𝑥 = 2, the function is not defined because 𝑓(2) =
22−4

2−2
=

0

0
 which is undefined.  

As long as 𝑥 ≠ 2, 𝑓(𝑥) = 𝑥 + 2. 
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3.5 Graphs of Rational Functions Practice 
 

Graph each of the following rational functions: 

1. 𝑥 + 2

𝑥 − 1
 

 

2. 𝑥 − 2

𝑥 + 1
 

3. 𝑥 + 3

𝑥 + 4
 

4. 𝑥 + 4

(𝑥 + 3)(𝑥 + 1)
 

 

5. 𝑥 − 4

(𝑥 + 3)(𝑥 + 1)
 

6. 𝑥 + 2

𝑥2 − 9
 

7. 𝑥 + 3

𝑥2 − 4
 

 

8. 2𝑥

𝑥 + 3
 

9. 2𝑥

𝑥 − 3
 

10. 𝑥 + 2

2𝑥 + 3
 

 

11. 𝑥 − 2

2𝑥 − 3
 

12. 5𝑥 − 9

𝑥 + 3
 

13. 4𝑥 + 9

𝑥 − 3
 

 

14. 𝑥 − 3

𝑥 − 3
 

15. 𝑥 + 4

𝑥 + 4
 

16. 𝑥 − 3

𝑥2 − 9
 

 

17. 𝑥 + 2

𝑥2 − 9
 

18. 𝑥2 − 4

𝑥
 

19. 𝑥2 − 9

𝑥
 

 

20. 𝑥 + 1

𝑥
 

21. 𝑥 − 2

𝑥2
 

22. 𝑥 − 4

𝑥2 − 4
 

 

23. 𝑥 + 4

𝑥2 − 9
 

24. 𝑥 − 2

𝑥2 − 25
 

25. 𝑥 + 3

𝑥2 − 25
 

 

26. 𝑥 + 2

𝑥2 + 5𝑥 + 4
 

27. 𝑥 − 2

𝑥2 − 6𝑥 + 5
 

28. 𝑥

(𝑥 − 2)(𝑥 + 1)(𝑥 − 4)
 

 

29. 𝑥 + 4

(𝑥 − 1)(𝑥 − 3)(𝑥 + 5)
 

30. 𝑥2 + 2𝑥 + 5

𝑥 + 1
 

31. 𝑥2 + 2𝑥 + 5

𝑥 − 1
 

 

32. 𝑥2 − 5𝑥 + 6

𝑥2 − 16
 

33. 𝑥2 − 7𝑥 + 6

(𝑥 + 1)(𝑥 + 4)(𝑥 − 2)
 

34. −2𝑥2 + 7𝑥 − 5

𝑥2 − 𝑥 − 12
 

 

35. (3 − 𝑥)(2 − 𝑥)(1 − 𝑥)

(𝑥 + 3)(𝑥 + 2)(𝑥 + 1)
 

36. (1 + 𝑥)(2 − 𝑥)(2 + 𝑥)

(3 − 𝑥)(4 + 𝑥)(𝑥 − 1)
 

37. (𝑥 − 1)(𝑥 + 2)

3 − 𝑥
 

 

38. (𝑥2 − 6𝑥 + 8)(𝑥 − 1)

9 + 6𝑥 + 𝑥2
 

39. 𝑥3 − 𝑥

2 + 𝑥
 

40. 2 − 3𝑥 + 𝑥2

(𝑥 − 1)(𝑥 − 3)(𝑥 + 5)
 

 

41. 2 − 3𝑥 + 𝑥2

(𝑥 + 1)(4 + 𝑥)(𝑥 − 2)
 

42. 𝑥2 + 2𝑥 + 1

𝑥3 − 3𝑥2 + 3𝑥 − 1
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3.6 Midpoint, Distance, and Circles  
 

Distance 

Given two points on a plane it is useful and frequently necessary to find the distance between the 

two points and the midpoint or the point on the line determined by the two points and halfway 

between them. Consider two points x and y on the number line.  

 

The distance between these two points is simply the difference of the larger minus the smaller. If 

𝑥 = 4 and 𝑦 = 12 then the distance between them is 12 − 4 or 8. Also, it doesn't matter whether 

the line is horizontal or vertical or any angle in between. The distance between the two points is 

still the larger minus the smaller. 

Consider the points (𝑥0, 𝑦0) and (𝑥1, 𝑦1) on the plane and the line 

segment that connects them. We want to find the length of the line 

segment. Extend the horizontal and vertical lines from the two points as 

shown in the picture to form a right triangle. We know from the 

Pythagorean theorem that the length of the hypotenuse is the square root 

of the sums of the squares of the legs of the triangle. The base of the triangle is a horizontal line 

with length 𝑥1 − 𝑥0 and the vertical distance is 𝑦1 − 𝑦0. Using Pythagoras we get the distance 

between the two points, 𝐷 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2. 

Midpoint 

The midpoint between two points on a straight line is the average of the value of the points. So 

on the horizontal line above the midpoint is 
𝑥+𝑦

2
. 

 

On the two points in a plane the midpoint of the hypotenuse has to have an 

𝑥 coordinate that is halfway between the 𝑥 values and a 𝑦 coordinate that is 

halfway between the 𝑦 coordinates. Or, the midpoint is (
𝑥0+𝑥1

2
,

𝑦0+𝑦1

2
). 

 

 

(x , y )1 1

(x , y )0 0 (x , y )1 0

(x , y )1 1

(x , y )0 0 (x , y )1 0

x  + x

2
0 1 y  + y

2
0 1,( )
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Example 1. Find the midpoint and distance between the two points (4, –2) and (–8, 7). 

(4, −2), (−8,7) Find the midpoint using (
𝑥0+𝑥1

2
,

𝑦0+𝑦1

2
) 

 

(
4 + (−8)

2
,
−2 + 7

2
) 

 

Simplify 

(−2,
5

2
) 

 

Final answer for midpoint 

(4, −2), (−8,7) Find distance using 𝐷 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2 

 

𝐷 = √(−8 − 4)2 + (7 − (−2))
2
 

 

Simplify 

𝐷 = √(−12)2 + (9)2 

𝐷 = √144 + 81 

𝐷 = √225 

𝐷 = 15 

 

 

 

Final answer for distance 

 

Example 2: Find the locus of all points equidistant to the two points (–8, –3) and (–4, 3). 

A locus of points is simply the curve formed by the points in a plane. In this case we want the 

curve where each point on the curve is the same 

distance from the two given points. Notice we are 

talking about each point not all points. The problem is 

not possible if all points on the curve are the same 

distance from the given two points. Let the point 

(𝑥, 𝑦) be on the curve.  Draw the line that connects the 

two points (–4, 3) and (–8, –3) to the point (𝑥, 𝑦). The 

distance 𝐷 between the two points and the point (𝑥, 𝑦) is the same. We need to find the function 

𝑦 = 𝑓(𝑥) that represents the curve.  

We know that the distance between each of the points and (𝑥, 𝑦) can be found using the distance 

formula. We do this for both points: 

𝐷 = √(𝑥 + 4)2 + (𝑦 − 3)2 

𝐷 = √(𝑥 + 8)2 + (𝑦 + 3)2 

 

Both distances are the same, set them equal 

√(𝑥 + 4)2 + (𝑦 − 3)2 = √(𝑥 + 8)2 + (𝑦 + 3)2 

 

Square both sides, eliminate the radical 

(𝑥 + 4)2 + (𝑦 − 3)2 = (𝑥 + 8)2 + (𝑦 + 3)2 Square binomials and subtract squared terms 

(–8, –3)

(–4, 3)

(x, y)

D

D
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𝑥2 + 8𝑥 + 16 + 𝑦2 − 6𝑦 + 9 = 𝑥2 + 16𝑥 + 64 + 𝑦2 + 6𝑦 + 9 
 

8𝑥 + 16 − 6𝑦 + 9 = 16𝑥 + 64 + 6𝑦 + 9 
 

Combine like terms 

8𝑥 − 6𝑦 + 25 = 16𝑥 + 6𝑦 + 73 
 

Solve for y, subtract 8𝑥, 25, and 6𝑦 

−12𝑦 = 8𝑥 + 48 
 

Divide by −12 

𝑦 = −
2

3
𝑥 − 4 

 

Final answer 

Example 3. Find the perpendicular bisector of the line segment that connects the points (−8, −3) 

and (–4, 3).  

To find the perpendicular bisector we need to know the midpoint 

between the two points and the slope of the line connecting the two 

points. We know that a perpendicular line has a negative reciprocal 

slope. With point and slope we can find the equation of the line. First 

we find the midpoint using the midpoint formula. 

(
−8 + (−4)

2
,
−3 + 3

2
) 

 

Simplify to get point on the perpendicular bisector 

(−6,0) 
 

Find the slope connecting the points 

3 − (−3)

−4 − (−8)
=

6

4
=

3

2
 

 

Find the slope of the perpendicular line 

𝑚 = −
2

3
 

 

Put point and slope into 𝑦 = 𝑚𝑥 + 𝑏 

0 = −
2

3
(−6) + 𝑏 

 

Multiply 

0 = 4 + 𝑏 
 

Subtract 4 from both sides 

−4 = 𝑏 
 

Give the equation with slope and intercept 

𝑦 = −
2

3
𝑥 − 4 

 

Final answer 

Not surprisingly, it is the same equation we derived in example 2. 

Equation of a Circle 

(–8, –3)

(–4, 3)
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We want to find the equation of all points equidistant from a fixed 

point. Geometrically this is a circle of radius 𝑟 where the fixed point 

is the center of the circle. Let (𝑥, 𝑦) be a point on the circumference 

of a circle of radius 𝑟 and center at (𝑎, 𝑏). Then the distance between 

the center and the circumference is 𝑟 = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 or 

𝑟2 = (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2. This is the equation of a circle of radius 𝑟 

and centered at the point (𝑎, 𝑏). 

Example 4: Find the equation of a circle with radius 3 and centered at the point (–2, 5).  

Radius: 3 

Center: (−2,5) 

 

Put values into equation of circle 

32 = (𝑥 + 2)2 + (𝑦 − 5)2 
 

Simplify left side 

9 = (𝑥 + 2)2 + (𝑦 − 5)2 
 

Final answer 

Example 5: Find the center and radius of the circle (𝑥 − 3)2 + (𝑦 + 1)2 = 25. 

(𝑥 − 3)2 + (𝑦 + 1)2 = 25 
 

From formula, center is opposite of 𝑎 and 𝑏 

Center: (3, −1) 

 

The 25 is 𝑟2 

𝑟2 = 25 
 

Solve, take the square root 

𝑟 = 5 
 

Final answer 

 

 

 

 

 

 

 

 

 

 

(a, b)

r

(x, y)
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Example 6: Find the center and radius of the circle 2𝑥2 − 6𝑥 + 2𝑦2 + 2𝑦 − 27 = 0. 

 This problem is slightly different than the previous one. This one is not in the standard 

form 𝑟2 = (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2. This means that we need to complete the square on the equation 

to put it into squared form. 

2𝑥2 − 6𝑥 + 2𝑦2 + 2𝑦 − 27 = 0 
 

Add 27 to both sides of the equation 

2𝑥2 − 6𝑥 + 2𝑦2 + 2𝑦 = 27 
 

Divide both sides by 2 

𝑥2 − 3𝑥 + 𝑦2 + 𝑦 =
27

2
 

 

Complete the square on 𝑥 and 𝑦. 

Need to add half of the second term 

squared 

For 𝑥: (
1

2
∙ −3)

2

= (−
3

2
)

2

=
9

4
 

For y: (
1

2
∙ 1)

2

= (
1

2
)

2

=
1

4
 

 

Add to both sides of equations 

(𝑥2 − 3𝑥 +
9

4
) + (𝑦2 + 𝑦 +

1

4
) =

27

2
+

9

4
+

1

4
 

 

Factor and simplify 

(𝑥 −
3

2
)

2

+ (𝑦 +
1

2
)

2

= 16 

 

From formula, identify center and radius 

Center: (
3

2
, −

1

2
)  

Radius = 4 

 

Final answer 
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3.6 Midpoint, Distance, and Circles Practice  
 

Find the distance and midpoint of each of the following pairs of points: 

1. (1,1) and (9,7) 

 

2. (1,12) and (6,0) 

3. (−4,10) and (4, −5) 

 

4. (−7, −4) and (2,8) 

5. (−1,2) and (5,4) 

 

6. (2,10) and (10,2) 

7. (
1

2
, 1) and (−

5

2
,

4

3
) 

 

8. (−
1

3
, −

1

3
) and (−

1

6
, −

1

2
) 

9. (−36, −18) and (48, −72) 

 

  

(Hint for 10-12 use distance formula, then find min using vertex formula) 

10. What point is nearest to (3, 0) on the curve 𝑦 = √𝑥 ?  

11. What point is closest to (4, 1) on the curve 𝑦 = √𝑥 − 2 + 1?  

12. Find the coordinates of the point on the line 𝑦 = 3𝑥 + 1 closest to (4, 0).  

13. Find 𝑥 so the distance between the points is 13. 

 a. (1,2) and (𝑥, −10) 

 b. (−8,0) and (𝑥, 5) 

14. Find 𝑦 so the distance between the points is 17. 

 a. (0,0) and (8, 𝑦) 

 b. (−8,4) and (7, 𝑦) 

15. Find a relationship between 𝑥 and 𝑦 so that (𝑥, 𝑦) is equidistant from the two points. 

 a. (4, −1) and (−2,3) 

 b. (3,
5

2
)  and (−7,1) 

16. Find the perpendicular bisector of the line that connects the two points 

 a. (1,1) and (−1,3) 

 b. (−4,2) and (−1,3) 
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Find the standard form of the equation for each of the following circles: 

17. Center (0,0); radius = 3 

 

18. Center (0,0); radius = 5 

19. Center (2, −1); radius = 4 20. Center (0,
1

3
); radius =

1

3
 

 

21. Center (−1,2) passing through (0,0) 

 

22. Center (3, −2), passing through (−1,1) 

23. Endpoints of diameter (0,0) & (6,8) 24. Endpoints of diameter (−4, −1) & (4,1) 

Find the center and radius of each of the following circles: 

25. 𝑥2 + 𝑦2 − 2𝑥 + 6𝑦 + 6 = 0 
 

26. 𝑥2 + 2𝑥 + 𝑦2 + 6𝑦 − 15 = 0 

27. 𝑥2 + 𝑦2 − 2𝑥 + 6𝑦 + 10 = 0 
 

28. 3𝑥2 + 3𝑦2 − 6𝑦 − 1 = 0 

29. 2𝑥2 + 2𝑦2 − 2𝑥 − 2𝑦 − 3 = 0 
 

30. 4𝑥2 + 4𝑦2 − 4𝑥 + 2𝑦 − 1 = 0 

31. 16𝑥2 + 16𝑦2 + 16𝑥 + 40𝑦 − 7 = 0 
 

32. 𝑥2 + 𝑦2 − 4𝑥 + 2𝑦 + 3 = 0 
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Chapter 4 

Exponents and Logarithms 
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4.1 Exponential Equations with Common Base 
 

Definition: 

𝑎𝑥 = 𝑎𝑦      ↔      𝑥 = 𝑦 

Example 1: Solve 

5𝑥 = 513 
 

By direct application of above definition 

𝑥 = 13 
 

Final answer 

Example 2: Solve 

6𝑥 = 216 
 

Make both sides powers of the same number 

6𝑥 = 63 
 

Set exponents equal 

𝑥 = 3 
 

Final answer 

Example 3: Solve  

4𝑥 = 8 
 

Make both sides powers of the same number 

(22)𝑥 = 23 
 

Multiply exponents 

22𝑥 = 23 
 

Set exponents equal 

2𝑥 = 3 
 

Solve for 𝑥 

𝑥 =
3

2
 

 

Final answer 

Example 4: Solve 

27𝑥 = 3 
 

Make both sides powers of the same number 

(33)𝑥 = 31 
 

Multiply exponents 

33𝑥 = 31 
 

Set exponents equal 

3𝑥 = 1 
 

Solve for 𝑥 

𝑥 =
1

3
 

 

Final answer 
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Example 5: Solve 

9𝑥 =
1

3
 

 

Negative exponents create fractions 

(32)𝑥 = 3−1 
 

Multiply exponents 

32𝑥 = 3−1 
 

Set exponents equal 

2𝑥 = −1 
 

Solve for 𝑥 

𝑥 = −
1

2
 

 

Final answer 

Example 6: Solve 

1253𝑥−7 =
1

25
 

 

Make both sides powers of the same number 

(53)3𝑥−7 = 5−2 
 

Put binomial in parentheses 

53(3𝑥−7) = 5−2 
 

Set exponents equal 

3(3𝑥 − 7) = −2 
 

Distribute 

9𝑥 − 21 = −2 
 

Add 21 

9𝑥 = 19 
 

Divide by 9 

𝑥 =
19

9
 

 

Final answer 

 

 

 

 

 

 

 

 



195 
 

Example 7: Solve 

(
4

9
)

𝑥

=
27

8
 

 

Make both sides power of the same number 

[(
2

3
)

2

]

𝑥

= (
3

2
)

3

 

 

Because the fractions are reciprocals of each other,  

we flip one of them by making the exponent negative. 

[(
2

3
)

2

]

𝑥

= (
2

3
)

−3

 

 

Multiply exponents 

(
2

3
)

2𝑥

= (
2

3
)

−3

 

 

Set exponents equal 

2𝑥 = −3 
 

Solve for 𝑥 

𝑥 = −
3

2
 

 

Final answer 

Example 8: Solve 

83𝑥−1 = 44𝑥+3 
 

Make both sides powers of the same number 

(23)3𝑥−1 = (22)4𝑥+3 
 

Put binomials in parentheses 

23(3𝑥−1) = 22(4𝑥+3) 
 

Set exponents equal 

3(3𝑥 − 1) = 2(4𝑥 + 3) 
 

Distribute 

9𝑥 − 3 = 8𝑥 + 6 
 

Subtract 8𝑥, add 3 to both sides 

𝑥 = 9 
 

Final answer 
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Example 9: Solve 

5𝑥2
= 25𝑥 ∙ 125 

 

Make both sides power of the same number 

5𝑥2
= (52)𝑥(53) 

 

Multiply exponents 

5𝑥2
= 52𝑥 ∙ 53 

 

Add exponents on left 

5𝑥2
= 52𝑥+3 

 

Set exponents equal 

𝑥2 = 2𝑥 + 3 
 

Because we have a squared exponents, set equal to zero 

𝑥2 − 2𝑥 − 3 = 0 
 

Factor 

(𝑥 − 3)(𝑥 + 1) = 0 
 

Set each factor equal to zero 

(𝑥 − 3) = 0     or     𝑥 + 1 = 0 
 

Solve both equation 

𝑥 = 3, −1 
 

Final answer 

Example 10: Solve 

3𝑥 + 9 ∙ 3−𝑥 = 10 
 

Clear negative exponent, multiply by 3𝑥 

(3𝑥)2 + 9 = 10 ∙ 3𝑥 
 

This is quadratic in form, set equal to zero 

(3𝑥)2 − 10 ∙ (3𝑥) + 9 = 0 
 

Factor 

(3𝑥 − 9)(3𝑥 − 1) = 0 
 

Set each factor equal to zero 

3𝑥 − 9 = 0     or     3𝑥 − 1 = 0 
 

Add to both sides 

3𝑥 = 9    or    3𝑥 = 1 
 

Make both sides power of the same number 

3𝑥 = 32     or     3𝑥 = 30 
 

Set exponents equal 

𝑥 = 2,0 
 

Final answer 
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Example 11: Solve 

35−𝑥 = 9𝑥2+1 
 

Make both sides power of the same number 

35−𝑥 = (32)𝑥2+1 
 

Put binomial in parentheses 

35−𝑥 = 32(𝑥2+1) 
 

Set the exponents equal 

5 − 𝑥 = 2(𝑥2 + 1) 
 

Distribute 

5 − 𝑥 = 2𝑥2 + 2 
 

Set equation equal to zero 

0 = 2𝑥2 + 𝑥 − 3 
 

Factor 

0 = (2𝑥 + 3)(𝑥 − 1) 
 

Set each factor equal to zero 

2𝑥 + 3 = 0     or     𝑥 − 1 = 0 
 

Solve each equation 

𝑥 = −
3

2
, 1 

 

Final answer 

Example 12: Solve 

49𝑥2−2 − 8 ∙ 7𝑥2−2 + 7 = 0 
 

Write 49 as 72 to get quadratic form 

(72)𝑥2−2 − 8 ∙ 7𝑥2−2 + 7 = 0 
 

Rewrite (72)𝑥2−2 as (7𝑥2−2)
2
 

(7𝑥2−2)
2

− 8 ∙ 7𝑥2−2 + 7 = 0 

 

Factor 

(7𝑥2−2 − 7)(7𝑥2−2 − 1) = 0 

 

Set each factor equal to zero 

7𝑥2−2 − 7 = 0     or     7𝑥2−2 − 1 = 0 
 

Add 

7𝑥2−2 = 7     or    7𝑥2−2 = 1 
 

Make both sides power of the same number 

7𝑥2−2 = 71     or     7𝑥2−2 = 70 
 

Set exponents equal 

𝑥2 − 2 = 1     or     𝑥2 − 2 = 0 
 

Add 2 to both sides of each 

𝑥2 = 3     or     𝑥2 = 2 
 

Square root both sides 

𝑥 = ±√3, ±√2 
 

Final answer 
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4.1 Exponential Equations with Common Base Practice 
 

Solve for the variable. 

1. 2𝑥 = 8 
 

2. 3𝑥 = 27 3. 5𝑥 = 125 

4. 3𝑥 = 243 
 

5. 9𝑥 = 27 6. 8𝑥 = 2 

7. 343 = 7𝑥 
 

8. 625 = 5𝑥 9. 4 = 8𝑥 

10. 27𝑥 = 9 
 

11. 81𝑥 = 27 12. 125𝑥 = 25 

13. 𝑏3 = 343 
 

14. 𝑏5 = 32 15. 𝑎3 = 1331 

16. 3125 = 𝑎5 17. 
25𝑥 =

1

5
 

 

18. 
27𝑥 =

1

3
 

19. 
82𝑥−2 =

1

16
 

 

20. 
93𝑥−2 =

1

27
 

21. 
(

2

3
)

𝑥

=
27

8
 

22. 
(

10

7
)

𝑥

= 0.49 

 

23. 
(

4

9
)

𝑥

= 1.5 
24. 

(
64

25
)

𝑥

= 1.6 

25. 9𝑦+1 = 2431−2𝑦 26. 1252−3𝑦 = 625𝑦−3 27. 
(

4

5
)

𝑥+3

=
25

16
 

 

28. 
(

7

2
)

𝑥

=
8

343
 

 

29. 3𝑥+1 + 3 = 30 30. 42𝑥 = 83𝑥−4 

31. 
3𝑥2+4𝑥 =

1

27
 

 

32. 35𝑥 ∙ 9𝑥2
= 27 33. 4𝑥2

∙ 2𝑥 = 2 

34. 4𝑥2
∙ 4𝑥 = 163 35. 

3𝑥2
∙ 81𝑥 =

1

27
 

 

36. 25𝑥2
∙ 5𝑥 = 125 

37. 27𝑥2

81𝑥
=

1

3
 

 

38. 2𝑥2

8𝑥
=

1

4
 

39. 8𝑥2

128𝑥
=

1

4
 

40. 273𝑥2

27𝑥
= 9 

 

41. 22𝑥−3 = 4𝑥2−3𝑥−2 42. 2𝑥+1 + 2−𝑥 = 3 

43. 52𝑥−3 = 25𝑥2−3𝑥−2 
 

44. 
7𝑥+2 −

1

7
∙ 7𝑥−1 − 14 ∙ 7𝑥−1 + 2 ∙ 7𝑥 = 0 

 

45. 4𝑥2+2 − 9 ∙ 2𝑥2+2 + 8 = 0    
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4.2 Properties of Logarithms 
 

Definitions and Properties 

Logarithm: The inverse of an exponential function. The inverse of 𝑓(𝑥) = 𝑎𝑥 is 𝑓−1(𝑥) =

log𝑎 𝑥. Logarithms tell us the exponential “size” of a number. 

When we want to find log𝑎 𝑏 we are asking “𝑎 to what power equals 𝑏?” 

As exponential functions and logarithmic functions are inverses, the domain of the exponential 

function is the range of the logarithmic function. Similarly, the range of the exponential function 

is the domain of the logarithmic function. 

Function Domain Range 

Exponential Function (−∞, ∞) (0, ∞) 

Logarithmic Function (0, ∞) (−∞, ∞) 

 

You should be able to identify log equivalencies: log𝑎 𝑏 = 𝑥 ↔ 𝑎𝑥 = 𝑏 

Example 1: Convert to logarithmic form 

5𝑥 = 14 
 

Identify base of 5 and exponent of 𝑥 

log5 14 = 𝑥 
 

Final answer 

Example 2: Convert to exponential form 

log10 𝑥 = 6 
 

Identify base of 10 and exponent of 6 

106 = 𝑥 
 

Final answer 

Example 3: Solve 

log5 𝑥 = 3 
 

Rewrite as exponent 

53 = 𝑥 
 

Simplify 

125 = 𝑥 
 

Final answer 
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Example 4: Solve 

log2(13𝑥 − 2) = 7 
 

Convert to exponent 

27 = 13𝑥 − 2 
 

Evaluate exponent 

128 = 13𝑥 − 2 
 

Add 2 

130 = 13𝑥 
 

Divide by 13 

10 = 𝑥 
 

Final answer 

Example 5: Evaluate 

log2(log3 81) 
 

Work from inside out 

log3 81 
 

“3 to what power is 81?” 

4 
 

Now work on the outside log 

log2 4 
 

“2 to what power is 4?” 

2 
 

Final answer 

Example 6: Evaluate 

log√3 (
1

27
) 

 

Set equal to 𝑥 

𝑥 = log√3 (
1

27
) 

 

Rewrite as exponent 

√3
𝑥

=
1

27
 

 

Make both sides powers of the same number 

(31/2)
𝑥

= 3−3 

 

Multiply exponents 

3𝑥/2 = 3−3 
 

Set exponents equal 

𝑥

2
= −3 

 

Multiply both sides by 2 

𝑥 = −6 
 

Final answer 
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Properties of Logarithms 

From the properties of exponents we can find some important properties of logarithms: 

log𝑎 1 = 0 

log𝑎 𝑎𝑥 = 𝑥 

𝑎log𝑎 𝑥 = 𝑥 

log𝑎 𝑥𝑦 = log𝑎 𝑥 + log𝑎 𝑦 

log𝑎

𝑥

𝑦
= log𝑎 𝑥 − log𝑎 𝑦 

log𝑎 𝑥𝑟 = 𝑟 log𝑎 𝑥 

Example 7: Solve 

log𝑒 𝑒7 = 𝑥 
 

The log and the base are inverses, leaving just the exponent 

7 = 𝑥 
 

Final answer 

Example 8: Write as a single logarithm 

log5 𝑥 + log5 𝑦 − log5 13 
 

Use properties of addition and subtraction 

log5

𝑥𝑦

13
 

 

Final answer 

Generally speaking, we can put the arguments of positive logarithms in the numerator and the 

arguments of negative logarithms in the denominator. 

Example 9: Write as a single logarithm 

3 log7 𝑧 − 2 log7 𝑥 + log7 𝑦 − log7 𝑡 
 

Use exponent property to move coefficients into logs 

log7 𝑧3 − log7 𝑥2 + log7 𝑦 − log7 𝑡 Positive logarithms in numerator 

and negative logarithms in denominator 

log7

𝑦𝑧3

𝑡𝑥2
 

 

Final answer 

Log properties can be used to evaluate unknown logs based on known logs of the same base. 

This is illustrated in the following examples: 
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Example 10: Suppose log𝑏 2 = 0.3562 and log𝑏 3 = 0.5646. Find log𝑏 6 

log𝑏 6 
 

Rewrite 6 using 2’s and 3’s 

log𝑏(2 ∙ 3) 
 

Expand logarithm 

log𝑏 2 + log𝑏 3 
 

Replace logs with their values given 

0.3562 + 0.5646 
 

Add 

0.9208 
 

Final answer 

Example 11: Suppose log𝑏 2 = 0.3562 and log𝑏 3 = 0.5646. Find log𝑏
2

3
𝑏4 

log𝑏 (
2𝑏4

3
) 

 

Expand the logarithm 

log𝑏 2 + log𝑏 𝑏4 − log𝑏 3 
 

Replace logs with given values, log𝑏 𝑏4 = 4 

0.3562 + 4 − 0.5646 
 

Add and subtract 

3.7916 
 

Final answer 

Change of Base Theorem:  

For any positive 𝑐 such that 𝑐 ≠ 1 we have: 

log𝑎 𝑏 =
log𝑐 𝑏

log𝑐 𝑎
 

 

Example 12: Use the change of base theorem to write log9 𝑥 as a logarithm with a base of 5 

log9 𝑥 
 

Using change of base formula 

log5 𝑥

log5 9
 

 

Final answer 

On your calculator, you have two logarithm buttons: log 𝑥 = log10 𝑥 (common logarithm) and 

ln 𝑥 = log𝑒 𝑥 (natural logarithm; the abbreviation comes from the Latin “logaritmus naturalis”) 
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4.2 Properties of Logarithms Practice 
 

Convert to an exponential equation 

1. 𝑡 = log4 7 
 

2. log5 5 = 1 3. log10 7 = 0.845 

4. log𝑎 10 = 2.3036 
 

5. log𝑎 0.38 = −0.9676 6. log𝑎 𝑊 = −2 

7. ℎ = log6 29 
 

8. log10 0.1 = −1   

Convert to a logarithmic equation 

9. 100.4771 = 3 
 

10. 𝑡𝑘 = 𝑄 11. 𝑎−0.0987 = 0.906 

12. 25 = 32 
 

13. 10−2 = 0.01 14. 𝑚𝑎 = 𝑃 

15. 𝑟−𝑥 = 𝑀 
 

    

Solve 

16. log10 𝑥 = 3 17. 
log5 (

1

25
) = 𝑥 

 

18. log𝑥 16 = 2 

19. log3 𝑥 = −2 
 

20. log2 16 = 𝑥 21. log3 𝑥 = 2 

22. log𝑥 64 = 3 23. 
log8 𝑥 =

1

3
 

 

24. log3 3 = 𝑥 

25. log4 𝑥 = 3 26. log2 𝑥 = −1 27. 
log32 𝑥 =

1

5
 

 

28. |log3 𝑥| = 3 29. log√5 𝑥 = −3 30. 
log√125 𝑥 =

2

3
 

 

31. log𝑏 𝑏2𝑥2
= 𝑥 32. 

log𝑥 √36
5

=
1

10
 

 

33. log𝜋 𝜋4 = 𝑥 

34. log4(3𝑥 − 2) = 2 35. 
log9(𝑥2 + 2𝑥) =

1

2
 

 

  

Evaluate 

36. 
log1

4
(

1

64
) 

 

37. log2(log2 256) 38. 
log√3 (

1

81
) 

39. log4(log3 81) 40. log1
5

25   



204 
 

Expand into several logarithms 

41. log𝑏 𝑃𝑄 42. 
log𝑏 (

𝑃

𝑄
) 

43. 

log𝑎 √
𝑧3

𝑥𝑦
 

 

44. 
log𝑎 (

𝑥2

𝑦3𝑎
) 

 

45. 
log𝑚 (

𝑎3𝑏4

𝑚5𝑛9
) 

46. 
log𝑎 (

𝑝3𝑞2

𝑧4
) 

47. 

log𝑎 √
𝑎𝑏

𝑐3

4

 

 

48. 
log𝑏 (

𝑎𝑏5

𝑚3𝑛4
) 

49. log𝑎 √4 − 𝑥2 

50. log𝑎

𝑥 − 𝑦

√𝑥2 − 𝑦2
 

 

51. 
ln

𝑥2 − 1

𝑥3
 

52. ln √𝑥2(𝑥 + 2) 

Express as a single logarithm 

53. log 𝐶 + log 𝐴 + log 𝐵 + log 𝐼 + log 𝑁 
 

54. log2 𝑥 − log2 25 

55. 
5 log𝑎 𝑥 − log𝑎 𝑦 +

1

4
log𝑎 𝑧 

 

56. 1

2
log𝑎 𝑥 − 7 log𝑎 𝑦 + log𝑎 𝑧 

57. 
log𝑎 (

√𝑥

𝑏
) − log𝑎 √𝑏𝑥 

 

58. 
log𝑎 (

𝑏

√𝑥
) + log𝑎 √𝑏𝑥 

59. 2

3
log𝑎 𝑥 −

1

3
log𝑎 𝑦 

 

60. 1

2
log𝑎 𝑥 + 4 log𝑎 𝑦 − 3 log𝑎 𝑥 

61. log𝑎 2𝑥 + 3(log𝑎 𝑥 − log𝑎 𝑦) 
 

62. log𝑎 𝑥2 − log𝑎 √𝑥 

63. 
log𝑎 (

𝑎

√𝑥
) − log𝑎 √𝑎𝑥 

 

64. log𝑎(𝑥2 − 4) − log𝑎(𝑥 − 2) 

65. 1

3
[2 ln(𝑥 + 1) + ln 𝑥 − ln(𝑥2 − 1)] 

 

66. 2[ln(𝑥 + 1) + ln(𝑥 − 1)] − 3 ln(𝑥2 − 1) 

Use the change of base formula to rewrite the logarithm with the given base 

67. log3 5 in base 10 

 

68. log5 3 in base 𝑒 69. log2 𝑥 in base 10 

70. log𝑥 𝑦 in base 𝑦 71. log4 8 in base 2 72. log1

5

10 in base 5 
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Evaluate, given that log𝑏 2 ≈ 0.3562, log𝑏 3 ≈ 0.5646, and log𝑏 5 ≈ 0.8271 

73. log𝑏 6 74. 
log𝑏 (

3

2
) 

 

75. log𝑏 25 

76. log𝑏 √2 77. 
log𝑏 (

1

4
) 

 

78. log𝑏 √5𝑏 

79. 
log𝑏 (

4.53

√3
) 

 

80. log𝑏 15 81. 
log𝑏 (

5

3
) 

82. log𝑏 18 83. 
log𝑏 (

9

2
) 

 

84. log𝑏 √75
3

 

85. log𝑏(3𝑏2) 
 

86. log𝑏 1   
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4.3 Exponential Equations with Different Bases 
 

Generally speaking, we solve exponential equations with different bases by applying a logarithm 

to both sides of an equation and using properties to simplify. We usually use log 𝑥 or ln 𝑥 so as 

to making using a calculator easier. 

Example 1: Solve 

7𝑥 = 3 
 

Take a natural log of both sides 

ln 7𝑥 = ln 3 
 

Exponent moves to front 

𝑥 ln 7 = ln 3 
 

Divide by ln 7 

𝑥 =
ln 3

ln 7
 

 

Type into calculator 

𝑥 ≈ 0.5646 
 

Final answer 

Example 2: Solve 

5𝑥+4 = 15 
 

Take a natural log of both sides 

ln 5𝑥+4 = ln 15 
 

Treat exponent as one whole unit, move to front 

(𝑥 + 4) ln 5
= ln 15 

 

Divide by ln 5 

𝑥 + 4 =
ln 15

ln 5
 

 

Subtract 4 

𝑥 =
ln 15

ln 5
− 4 

 

Type into calculator 

𝑥 ≈ −2.3174 
 

Final answer 

Example 3: Solve 

𝑒𝑥 = 9 
 

Take a natural log of both sides 

ln 𝑒𝑥 = ln 9 
 

Natural log and base 𝑒 are inverses, leaving just the exponent 

𝑥 = ln 9 
 

Type into calculator 

𝑥 ≈ 2.1972 
 

Final answer 
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Example 4: Solve 

10𝑥 = 7 
 

Take common log of both sides (base 10) 

log 10𝑥 = log 7 
 

Common log and base 10 are inverses, leaving just the exponent 

𝑥 = log 7 
 

Type into calculator 

𝑥 ≈ 0.8451 
 

Final answer 

Example 5: Solve 

4𝑥 = 5𝑥 
 

Take a natural log of both sides 

ln 4𝑥 = ln 5𝑥 
 

Exponents move to front 

𝑥 ln 4 = 𝑥 ln 5 
 

Subtract 𝑥 ln 5 from both sides 

𝑥 ln 4 − 𝑥 ln 5 = 0 
 

Factor out the 𝑥 

𝑥(ln 4 − ln 5) = 0 
 

Divide by the binomial 

𝑥 =
0

ln 4 − ln 5
 

 

Simplify 

𝑥 = 0 
 

Final answer 

In the above example, it is important to note that we cannot divide by 𝑥, should 𝑥 be zero, as it 

turned out to be, dividing by zero is undefined and therefore not permissible.  
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Example 6: Solve 

23𝑥 = 45𝑥−6 
 

Take a natural log of both sides 

ln 23𝑥 = ln 45𝑥−6 
 

Exponents move to front 

3𝑥 ln 2 = (5𝑥 − 6) ln 4 
 

Distribute 

3𝑥 ln 2 = 5𝑥 ln 4 − 6 ln 4 
 

Subtract term with 𝑥 to other sides 

3𝑥 ln 2 − 5𝑥 ln 4 = −6 ln 4 
 

Factor out the 𝑥 

𝑥(3 ln 2 − 5 ln 4) = −6 ln 4 
 

Divide by the binomial 

𝑥 =
−6 ln 4

3 ln 2 − 5 ln 4
 

 

Type into calculator 

𝑥 ≈ 1.7143 
 

Final answer 
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4.3 Exponential Equations with Different Bases Practice 
 

Solve for the variable 

1. 3𝑥 = 5 
 

2. 4𝑥 = 9 3. 𝑒𝑥 = 21 

4. 10𝑥 = 16 
 

5. 8𝑥+3 = 6 6. 12𝑥−7 = 2 

7. 𝑒3𝑥 = 7 
 

8. 104𝑥−5 = 2 9. 5𝑥 = 3𝑥 

10. 10𝑥 = 𝑒𝑥 
 

11. 10𝑥+2 = 𝑒𝑥+1 12. 𝑒4𝑥 = 10𝑥−2 

13. 2𝑥+1 = 3𝑥−1 
 

14. 32𝑥 = 2𝑥−1 15. 𝑒𝑥2
= 2𝑥 

16. 2𝑥2−1 = 3𝑥+1 
 

17. 5𝑥−1 = 3𝑥2−𝑥−5 18. 7𝑥2+2𝑥−1 = 32−𝑥2
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4.4 Solving Equations with Logarithms 
 

We generally want to have as few logarithms on each side of an equation as possible. To get rid 

of logarithms, we make both sides powers of their base or use log equivalence and convert to 

exponents. Don’t forget to check your answers when you finish as logarithms cannot have 

negative arguments (Domain is 𝑥 > 0). These answers must be excluded from your final 

solution.  

Example 1: Solve 

log12 𝑥 + log12(𝑥 + 1) = 1 
 

Combine to a single log 

log12 𝑥(𝑥 + 1) = 1 
 

Convert to exponent 

121 = 𝑥(𝑥 + 1) 
 

Evaluate 121 and distribute on right 

12 = 𝑥2 + 𝑥 
 

Subtract 12 from both sides 

0 = 𝑥2 + 𝑥 − 12 
 

Factor 

0 = (𝑥 + 4)(𝑥 − 3) 
 

Set each factor equal to zero 

𝑥 + 4 = 0     or     𝑥 − 3 = 0 
 

Solve both equations 

𝑥 = −4,3 
 

Check if this makes arguments of logs negative 

log12 −4 and log12(−4 + 1) are undefined 

log12 3 and log12(3 + 1) are ok 

 

Exclude −4 from solution 

𝑥 = 3 
 

Final answer 
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Example 2: Solve 

log7(𝑥 + 3) − log7 𝑥 = 2 
 

Combine to a single log 

log7

𝑥 + 3

𝑥
= 2 

 

Convert to exponent 

72 =
𝑥 + 3

𝑥
 

 

Evaluate exponent 

49 =
𝑥 + 3

𝑥
 

 

Multiply by denominator 

49𝑥 = 𝑥 + 3 
 

Subtract 𝑥 from both sides 

48𝑥 = 3 
 

Divide both sides by 48 

𝑥 =
1

16
 

 

Check if this makes arguments of logs negative 

log7 (
1

16
+ 3) and log7 (

1

16
) are ok 

 

No need to exclude from solution set 

𝑥 =
1

16
 

 

Final answer 

Example 3: Solve 

log 𝑥 + log(𝑥 − 8) = log 9 
 

Combine left side to a single log 

log 𝑥(𝑥 − 8) = log 9 
 

Take both sides to power of 10 (base) to clear the logs 

𝑥(𝑥 − 8) = 9 
 

Distribute 

𝑥2 − 8𝑥 = 9 
 

Subtract 9 from both sides 

𝑥2 − 8𝑥 − 9 = 0 
 

Factor 

(𝑥 − 9)(𝑥 + 1) = 0 
 

Set each factor equal to zero 

𝑥 − 9 = 0     or     𝑥 + 1 = 0 
 

Solve both equations 

𝑥 = 9, −1 
 

Check if this makes arguments of logs negative 

log 9 and log(9 − 8) are ok 

log −1 and log(−1 − 8) are undefined 

 

Exclude −1 from solution 

𝑥 = 9 Final answer 
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Example 4: Solve 

ln(2 − 𝑥) + ln(5 − 𝑥) = ln 18 
 

Combine left side to a single log 

ln(2 − 𝑥)(5 − 𝑥) = ln 18 
 

Take both sides to power of 𝑒 (base) to clear the logs 

(2 − 𝑥)(5 − 𝑥) = 18 
 

FOIL left side 

10 − 7𝑥 + 𝑥2 = 18 
 

Subtract 18 and reorder terms 

𝑥2 − 7𝑥 − 8 = 0 
 

Factor 

(𝑥 − 8)(𝑥 + 1) = 0 
 

Set each factor equal to zero 

𝑥 − 8 = 0     or     𝑥 + 1 = 0 
 

Solve both equations 

𝑥 = 8, −1 
 

Check if this makes arguments of logs negative 

ln(2 − 8) and ln(5 − 8) are undefined 

ln(2 − (−1)) and ln(5 − (−1)) are ok 

 

Exclude 8 from solution 

𝑥 = −1 
 

Final answer 

Example 5: Solve 

[log3 𝑥]2 − 5 log3 𝑥 + 6 = 0 
 

Notice quadratic “shape”, factor 

(log3 𝑥 − 3)(log3 𝑥 − 2) = 0 
 

Set each factor equal to zero 

log3 𝑥 − 3 = 0     or     log3 𝑥 − 2 = 0 
 

Solve each equation for the log 

log3 𝑥 = 3     or     log3 𝑥 = 2 
 

Convert to exponential equations 

33 = 𝑥     or     32 = 𝑥 
 

Evaluate the exponents 

𝑥 = 27, 9 
 

Check if this makes arguments of logs negative 

log3 27 and  log3 9 are ok  

 

No need to exclude from solution set 

𝑥 = 27,9 
 

Final answer 
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Example 6: Solve 

log2 𝑥 + log𝑥 16 = 4 
 

Need a common base, so we change the base to 2 

log2 𝑥 +
log2 16

log2 𝑥
= 4 

 

Clear the fraction by multiplying by log2 𝑥 

[log2 𝑥]2 + log2 16 = 4 log2 𝑥 
 

Simplify log2 16, “2 to what power is 16?” 

[log2 𝑥]2 + 4 = 4 log2 𝑥 
 

Notice quadratic “shape”, make equation equal zero 

[log2 𝑥]2 − 4 log2 𝑥 + 4 = 0 
 

Factor 

(log2 𝑥 − 2)2 = 0 
 

Square root both sides 

log2 𝑥 − 2 = 0 
 

Add 2 to both sides 

log2 𝑥 = 2 
 

Convert to exponential equation 

22 = 𝑥 
 

Simplify 

4 = 𝑥 
 

Check if this makes arguments of logs negative 

log2 4 is ok 

 

No need to exclude from solution set 

𝑥 = 4 
 

Final answer 
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Example 7: Solve 

log49 𝑥 + log√7 𝑥 = 5 

 
Change to base of log7  as 49 and √7 are powers of 7 

log7 𝑥

log7 49
+

log7 𝑥

log7 √7
= 5 

 

Simplify denominators 

log7 𝑥

2
+

log7 𝑥

1
2

= 5 

 

Multiply numerators by reciprocals 

1

2
log7 𝑥 + 2 log7 𝑥 = 5 

 

Combine like terms (log7 𝑥) 

5

2
log7 𝑥 = 5 

 

Multiply both sides by reciprocal 

log7 𝑥 = 2 
 

Convert to an exponential equation 

72 = 𝑥 
 

Simplify 

49 = 𝑥 
 

Check if this makes arguments of logs negative 

log49 49 and log√7 49 are ok 

 

No need to exclude from solution set 

𝑥 = 49 
 

Final answer 
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Example 8: Solve 

10 log4 𝑥 − 3 log8 𝑥 = 4 
 

Change to base of log2  as 4 and 8 are powers of 2 

10 ∙
log2 𝑥

log2 4
− 3 ∙

log2 𝑥

log2 8
= 4 

 

Simplify denominators 

10 ∙
log2 𝑥

2
− 3 ∙

log2 𝑥

3
= 4 

 

Divide out denominators with numerators 

5 log2 𝑥 − log2 𝑥 = 4 
 

Combine like terms 

4 log2 𝑥 = 4 
 

Divide both sides by 4 

log2 𝑥 = 1 
 

Convert to an exponential equation 

21 = 𝑥 
 

Simplify 

2 = 𝑥 
 

Check if this makes arguments of logs negative 

log4 2 and log8 2 are ok 

 

No need to exclude from solution set 

𝑥 = 2 
 

Final answer 
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4.4 Solving Equations with Logarithms Practice 
 

Solve each of the following equations for 𝑥 

1. log 𝑥 + log(𝑥 + 9) = 1 
 

2. log 𝑥 − log(𝑥 + 3) = 1 

3. log(𝑥 + 9) − log 𝑥 = 1 
 

4. log(2𝑥 + 1) − log(𝑥 − 9) = 1 

5. log4(𝑥 + 3) + log4(𝑥 − 3) = 2 
 

6. log8(𝑥 + 1) − log8 𝑥 = log8 4 

7. log 𝑥2 = (log 𝑥)2 
 

8. (log3 𝑥)2 − log3(𝑥2) = 3 

9. log √𝑥 = √log 𝑥 

 

10. log(log 𝑥) = 2 

11. log5 √𝑥2 + 1 = 1 
 

12. log √𝑥23
+ log √𝑥43

= log(2−3) 

13. log6 𝑥 + log6(𝑥 + 1) = 1 14. 
log9(𝑥 + 1) =

1

2
+ log9 𝑥 

 

15. log2(𝑥 + 4) = 2 − log2(𝑥 + 1) 
 

16. log(2𝑥 + 4) + log(𝑥 − 2) = 1 

17. ln 𝑥 + ln(𝑥 + 1) = ln 2 
 

18. log(𝑥 + 3) − log(𝑥 − 2) = 2 

19. log2(2𝑥2 + 4) = 5 
 

20. log(𝑥 − 6) + log(𝑥 + 3) = 1 

21. log 𝑥 − log 5 = log 2 − log(𝑥 − 3) 
 

22. (ln 𝑥)3 = ln(𝑥4) 

23. log(6𝑥 + 5) − log 3 = log 2 − log 𝑥 
 

24. (log 𝑥)3 = log(𝑥4) 

25. log(𝑥2) − log(𝑥 − 1) = 1 
 

26. (log 𝑥)2 − 3 log(𝑥) + 2 = 0 

27. 1

3
log 27 + log(9 − 3) = log 𝑥 

 

28. 3 + log2(3) + log2(𝑥) = log2(96) 

29. log(2𝑥) − 2 log 𝑥 = −1 30. 1

log(𝑥) − 1
=

2

log(𝑥) + 1
 

 

31. log2(3 − 𝑥) + log2(1 − 𝑥) = 3 
 

32. log3(2 − 𝑥) + log3(4 − 𝑥) = 1 

33. log5(2 − 𝑥) + log5(6 − 𝑥) = 1 
 

34. log2(3 − 𝑥) + log2(7 − 𝑥) = 5 

35. log3(5 − 𝑥) + log3(3 − 𝑥) = 1 
 

36. log2(3 − 𝑥) + log2(6 − 𝑥) = 2 

37. log2(7 − 𝑥) + log2(5 − 𝑥) = 3 
 

38. log6(7 − 𝑥) + log6(1 − 𝑥) = 3 
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39. log4(4 − 𝑥) + log4(1 − 𝑥) = 1 
 

40. log3 𝑥 + log9 𝑥 + log27 𝑥 = 5.5 

41. log(𝑥 − 4) + log(𝑥 + 3) = log(5𝑥 + 4) 42. 
ln(𝑥2 + 1) −

1

2
ln(𝑥2 − 2𝑥 + 1) = ln 5 

 

43. 2 log3(𝑥 − 2) + log3(𝑥 − 4)2 = 0 44. 
log2 (

𝑥 − 2

𝑥 − 1
) = log2 (

3𝑥 − 7

3𝑥 − 1
) 

 

45. 
2 log2 (

𝑥 − 7

𝑥 − 1
) + log2 (

𝑥 − 1

𝑥 + 1
) = 1 

 

46. log(10𝑥2) ∙ log(𝑥) = 1 

47. 2 log9 𝑥 + 9 log𝑥 3 = 10 
 

48. log𝑥(125𝑥) ∙ (log25 𝑥)2 = 1 

49. log2 𝑥 + 2 log𝑥 8 = 5 
 

50. log3 𝑥 + 2 log𝑥 9 = 5 

51. log3 𝑥 − log𝑥 27 = 2 
 

52. log4 𝑥 + 4 log𝑥 64 = 8 

53. log√2 𝑥 + 3 log𝑥 4 = 8 

 

54. log√3 𝑥 + 4 log𝑥 27 = 14 

55. log(log 𝑥) + log(log 𝑥3 − 2) = 0 
 

56. 𝑥2 log𝑥(27) ∙ log9(𝑥) = 𝑥 + 4 

57. 
log𝑥(2) − log4(𝑥) +

7

6
= 0 

 

58. 𝑥log(𝑥) = 100𝑥 

59. 
𝑥log(𝑥) =

𝑥3

100
 

 

60. (𝑥 + 1)log(𝑥+1) = 100(𝑥 + 1) 

61. 𝑥log(𝑥) = 3𝑥 62. 
2

3
log3(𝑥) =

1

64
 

 

63. Solve for 𝑡: 𝑃 = 𝑃0𝑒𝑘𝑡 

 

64. Solve for 𝑡: 𝑇 = 𝑇0 + (𝑇1 − 𝑇2)𝑒−𝑘𝑡 

65. Solve for 𝑛: 𝑃𝑉𝑛 = 𝑐 66. Solve for 𝑄: log𝑎 𝑄 =
1

3
log𝑎 𝑦 + 𝑏 

 

67. Solve for 𝑥: log𝑎 𝑥 = 𝑏 + log𝑎 𝑏 

 

68. Solve for 𝑦: log𝑎 𝑦 = log𝑎 𝑏 − 𝑎 

69. Solve for 𝑃: log𝑏 𝑃 = 𝑏 − log𝑏(𝑎𝑃) 

 

  

70. log(𝑥 + 1) = log(2𝑥2 + 3) − log(2𝑥 − 5) − 1 
 

71. 
[log2 (

1 + 𝑥

1 − 𝑥
)]

2

− 5 log2 (
1 + 𝑥

1 − 𝑥
) + 4 = 0 

 

72. [log(2𝑥 − 1)]2 − 3 log(2𝑥 − 1) − 10 = 0 
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73. log(𝑥 − 3) + log(𝑥 + 6) = log(2) + log(5) 
 

74. log5(𝑥 − 2) + 2 log5(𝑥3 − 2) + log5(𝑥 − 2)−1 = 4 

 

75. log2(𝑥 + 2)2 + log2(𝑥 + 10)2 = 4 log2(3) 

 

76. log3(5𝑥 − 2) − 2 log3 √3𝑥 + 1 = 1 − log3(4) 
 

77. 
log(3𝑥 − 2) − 2 =

1

2
log(𝑥 + 2) − log(50) 

 

78. log3𝑥+7(9 + 12𝑥 + 4𝑥2) = 4 − log2𝑥+3(6𝑥2 + 23𝑥 + 21) 
 

79. log0.5𝑥 𝑥2 − 14 log16𝑥 𝑥3 + 40 log4𝑥 √𝑥 = 0 
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4.5 Applications of Logarithms and Exponents 
 

Basic Exponential Equation 

𝑓(𝑡) = 𝑃𝑒𝑘𝑡 

Where 𝑘 is the growth rate (if positive) or decay rate (if negative), 𝑡 is time and 𝑃 is the principle 

or starting amount.  

Half-Life 

Half-life is the time it takes for a substance to decay to 50% of its initial mass. Using 𝑃 = 1, half 

this would be 𝑓(𝑡) = 0.5. Solving the exponential equation for 𝑡 and 𝑘 we get the following 

formulas: 

𝑡 =
ln 0.5

𝑘
 

𝑘 =
ln 0.5

𝑡
 

Example 1: Lead 185, 
185

Pb, has a half-life of 6.3 seconds. How much of a 1000 g mass will 

remain in one minute? 

First we will need to know the decay constant, 𝑘 

𝑘 =
ln 0.5

𝑡
 

 

The half-life is 6.3 seconds. Use this for 𝑡 

𝑘 =
ln 0.5

6.3
 

 

Evaluate on calculator 

𝑘 ≈ −0.11 
 

Using basic exponential equation with 𝑃 = 1000, 𝑡 = 60 

𝑓(60) = 1000𝑒−0.11∙60 
 

Evaluate on calculator 

𝑓(60) = 1.3585 g 

 

Final answer 
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Doubling Time 

The time it takes for a growing amount to double is the doubling time. Use 𝑃 = 1, double this 

would be 𝑓(𝑡) = 2. Solving the exponential equation for 𝑡 and 𝑘 we get the following formulas: 

𝑡 =
ln 2

𝑘
 

𝑘 =
ln 2

𝑡
 

Example 2: The world currently has a population growth rate of 1.14%. At this rate, how long 

will it take the Earth’s population to double? (assume 𝑡 is in years) 

We first need to know the constant, 𝑘, which is given as a percent which must be convert to a 

decimal 

𝑘 = 0.0114 
 

Substitute into double time equation 

𝑡 =
ln 2

0.0114
 

 

Evaluate on calculator 

𝑡 ≈ 60.8024 years 

 

Final answer 

General Growth/Decay Equation 

The above formulas can be generalized in the following way: The time it takes for a substance to 

grow/decay to 𝑎 times its original size can be found with the general growth/decay equation. 

Using 𝑃 = 1, this would give 𝑓(𝑡) = 𝑎. Solving the exponential equation for 𝑡 and 𝑘 we get the 

following formulas: 

𝑡 =
ln 𝑎

𝑘
 

𝑘 =
ln 𝑎

𝑡
 

Continuous Compound Interest 

If one deposits a principal 𝑃 at an interest rate 𝑟, then after 𝑡 years we can represent the resultant 

amount 𝐴 as  

𝐴 = 𝑃𝑒𝑟𝑡 
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Example 3: How long does it take an amount of money to triple if invested at 1% compounded 

continuously? 

Notice that this problem does not specify the principal amount. We will call it 𝑃. Because we 

want to know how much time will pass for this principal to triple, let 𝐴 = 3𝑃. Convert the 

interest rate into a decimal, 𝑟 = 0.01, 

3𝑃 = 𝑃𝑒0.01𝑡 
 

Divide both sides by 𝑃 

3 = 𝑒0.01𝑡 
 

Convert to natural log 

ln 3 = 0.01𝑡 
 

Divide by 0.01 

ln 3

0.01
= 𝑡 

 

Evaluate on calculator 

𝑡 ≈ 109.861 years 

 

Final answer 

Logistic Growth Equation 

A growth rate of k and a maximum sustainable population M, grows in such a way that the population 

over time t is given by Q. B, which are an equation constant that must be solved for, given an initial 

population and a later population where: 

𝑄(𝑡) =
𝑀

1 + 𝐵𝑒𝑘𝑡
 

  

Example 4: A population of wolves consists of 1000 wolves. The area will sustain 2000 wolves. After 4 

years the population is 1200. How long will it take for the population to reach 1500 wolves? 

𝑄(0) = 1000 

1000 =
2000

1 + 𝐵𝑒𝑘0
→ 1000 =

2000

1 + 𝐵
 

1000(1 + 𝐵) = 2000        Multiplying each side by (1 + B) 

1 + B = 2                                 Dividing each side by 1000 

B = 1                                       Subtracting each side by 1 

1200 =
2000

1+1𝑒4𝑘                    Substitute value for B into equation 

1200(1 + 𝑒4𝑘) = 2000    Multiplying each side by (1 + 𝑒4𝑘) 
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1 + 𝑒4𝑘 =
5

3
                          Dividing both sides by 1200 

𝑒4𝑘 =
2

3
                                 Subtracting both sides by 1 

ln 𝑒4𝑘 = ln
2

3
                        Multiply each side by ln 

4𝑘 = ln
2

3
                              Divide each side by 4 

k = -0.101366 

Now that we know what B and k are, we can input our information into the equation again and solve for 

t. 

1500 =
2000

1+𝑒−0.101366𝑡                     Our equation 

1 + 𝑒−0.101366𝑡 =
5

3
                     Skipping ahead (refer to prior steps when solving for k) 

𝑡 = (ln
1

3
)/−0.101366                Last step 

t = 10.84 years                              Final answer 

Newton’s Law of Cooling 

If an object at temperature 𝑇0 is surrounded by air of temperature 𝑇𝑎, it will gradually cool in 

such a way that 𝑇 is the approximate resulting temperature over time 𝑡, where 

𝑇 = 𝑇𝑎 + (𝑇0 − 𝑇𝑎)𝑒𝑘𝑡 

Example 5: You have some water boiling at a temperature of 212ºF. IF you leave it in a room 

with a temperature of 75ºF, and 𝑘 = −0.09, find the temperature after an hour. 

In this case, 𝑇0 = 212 and 𝑇𝑎 = 75. We also have 𝑡 = 60 (60 min = 1 hr) and we are given 

𝑘 = −0.09. Substituting into our equation gives: 

𝑇 = 75 + (212 − 75)𝑒(−0.09)(60) 
 

Evaluate on calculator 

𝑇 = 75.6188ºF 

 

Final answer 

Example 6: You pull a whole chicken out of an oven. The chicken has a temperature of 165ºF. If 

𝑘 = −0.016 when time is in minutes, and the room has a temperature of 70ºF, how long will it 

take before the chicken cools to 120ºF? 

Here, 𝑇 = 120, 𝑇0 = 165, 𝑇𝑎 = 70 and we are given 𝑘 = −0.016 

120 = 70 + (165 − 70)𝑒(−0.016)𝑡 Simplify parentheses 
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120 = 70 + 95𝑒−0.016𝑡 
 

Subtract 70 from both sides 

50 = 95𝑒−0.016𝑡 
 

Divide by 95 

50

95
= 𝑒−0.016𝑡 

 

Convert to natural log 

ln (
50

95
) = −0.016𝑡 

 

Divide both sides by −0.016 

ln (
50
95

)

−0.016
= 𝑡 

 

Evaluate on calculator 

𝑡 ≈ 40.1159 minutes 

 

Final answer 

Frequency of Keys on a Piano 

The frequency of the 𝑛th key on a standard piano (with the first key, low A having a frequency 

measuring 27.5 Hz) is given by the function 𝑓(𝑛) = 27.5( √2
12

)
𝑛−1

. 

 

 

 

 

Example 7: Middle C has a frequency of about 261.626 Hz. Where does it lie on the keyboard? 

The number 261.626 is the frequency and is substituted for 𝑓(𝑛) 

261.626 = 27.5( √2
12

)
𝑛−1

 

 

Divide both sides by 27.5 

261.626

27.5
= ( √2

12
)

𝑛−1
 

 

Take a natural log of both sides 

ln (
261.626

27.5
) = ln( √2

12
)

𝑛−1
 

 

Move exponent to front 

ln (
261.626

27.5
) = (𝑛 − 1) ln √2

12
 

 

Divide by the natural log 
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ln (
261.626

27.5
)

ln √2
12 = 𝑛 − 1  

 

Add 1 to both sides 

ln (
261.626

27.5
)

ln √2
12

+ 1 = 𝑛 

 

Evaluate on calculator 

𝑛 ≈ 40th
 key 

 

Final answer 
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4.5 Applications of Logarithms and Exponents Practice 

 
1. The half-life of 

234
U is 2.52 × 105 years.  How much of a 100 gram sample remains after 

10,000 years? 

 

2. How much of a 100 gram specimen of 
22

Na remains after 7 years if its half-life is 2.6 

years? 

 

3. 242
Cm has a half-life of 163 days.  How much remains of 10 grams after one week? 

 

4. 239
Np has a half-life of 2.237 days.  How much remains of 10 grams after one week? 

 

5. How much of 10 grams of 
189

Pb remains after a day if its half-life is 4.98 hours? 

 

6. How much of 25 grams of 
234

Pu234 remains after a day if its half-life is 4.98 hours? 

 

7. What is the half-life of cesium 137 (in years) if the decay constant is 𝑘 = −0.0231? 

 

8. What is the half-life of strontium 90 (in years) if the decay constant is 𝑘 = −0.0246? 

 

9. What is the half-life of krypton (in years) if the decay constant is 𝑘 = −0.0641? 

 

10. If the population of Anchorage, Alaska, continued to grow at its 1970 - 1980 rate, the city 

would double in size approximately every 5.4 years.  Estimate its 1990 population if it 

was 48,081 in 1970. 

 

11. Aurora, Colorado, would double in size every 8 years if the population continued to grow 

it its 1970 - 1975 rate.  Estimate its 1985 population if the population was 74,974 in 1970. 

 

12. Every 36 years, Little Rock, Arkansas would double in population if the population 

continued to grow at its 1960-1980 rate.  Estimate the 1985 population of Little Rock if it 

was 107,813 in 1960. 

 

13. Springfield, Missouri, had a population of 95,865 in 1960, and grew from 1960 to 1980 at 

a rate that would cause it to double every 42.23 years.  Estimate Springfield's population 

in 1990. 

 

14. The population of the state of Texas grew from 1950 to 1980 at an annual rate of 

approximately 2%.  If the population in 1950 was 7,711,194, what was the population in 

1980? 

15. Estimate the population of Texas in 1990, using the information in problem 14. 

 

16. Florida grew in population between 1940 and 1980 at an annual rate of 4.09%.  If the 

population was 1,897,414 in 1940, what was the population in 1980? 
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17. What is the anticipated population of Florida in the year 2000 if the data in problem 16 

remains constant? 

 

18. The population of Los Angeles was 1,970,358 in 1950.  It has grown since at an annual 

rate of 1.36%.  Estimate its population in the years 1980, 1990, and 2000. 

 

19. San Jose, CA, has had a phenomenal 6% annual growth since 1950.  Estimate its 

population in the years 1980, 1990, and 2000, if its population was 95,280 in 1950. 

 

20. The decay constant of Strontium-90 is –.0248.  What amount of 250 mg of strontium-90 

is present after 5 years? 

 

21. Radium has a decay constant of –.0004.  How much of 1000 mg of radium remains after 

a century? 

 

22. The growth rate of a certain cell culture is proportional to its size.  Initially, 2 × 105 cells 

were present.  In 10 hours there were approximately 8 × 105 cells.  How long will it take 

until there are 106 cells present. 

 

23. The decay constant for cobalt 60 is 𝑘 = −0.13 when time is measured in years.  Find the 

half-life of cobalt 60. 

 

24. Radioactive potassium is also used for dating fossils.  It has a half-life of 1.3 billion 

years.  Determine the decay constant. 

 

25. The size of a certain insect population is given by 𝑃 = 300𝑒0.1𝑡 where 𝑡 is measured in 

days.  After how many days will the population equal 600?, 1200? 

 

26. The half-life of carbon 14 is approximately 5590 years.  Find the decay constant of 

carbon 14. 

 

27. Some bone artifacts were found at the Lindenmeier site in Northeastern Colorado and 

tested for their carbon 14 content.  If 25% of the original carbon 14 was still present, 

what is the probable age of the artifacts? 

 

28. An artifact was discovered at the Debert site in Nova Scotia.  Tests showed that 28% of 

the original carbon 14 was still present.  What is the probable age of the artifact? 

 

29. An artifact was found and tested for its carbon 14 content.  If 12% of the original carbon 

14 was still present, what is the probable age? 

 

30. An artifact was found and tested for its carbon 14 content.  If 85% of the original carbon 

14 was still present, what is the probable age? 
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31. Sandals woven from strands of tree bark were found in Fort Rock Cave in Oregon.  The 

bark has a carbon 14 ratio of 0.34 times the ratio found in living bark.  Estimate the age 

of the sandals. 

 

32. A 4500 year old wooden chest was found in the tomb of the twenty-fifth century B.C. 

Chaldean king Meskalamdug of Ur.  What carbon 14 ratio would you expect to find in 

the wooden chest? 

 

33. Prehistoric cave paintings were discovered in the Lascaux cave in France.  Charcoal from 

the site was found to have a carbon 14 ratio of 15%.  Estimate the age of the paintings. 

 

34. Before radiocarbon dating was used, historians estimated that the age of the tomb of 

Vizier Hemaka, in Egypt, was constructed about 4900 years ago.  After radiocarbon 

dating became available, wood samples from the tomb were analyzed and it was 

determined that the carbon 14 ratio was about 51%.  Estimate the age of the tomb on this 

basis. 

 

35. Analyses of the oldest campsites of ancient man in the Western Hemisphere reveal a 

carbon 14 ratio of 22.6%.  Determine the probable age of the campsites. 

 

36. The Dead Sea Scrolls are a collection of ancient manuscripts discovered in caves along 

the west bank of the Dead Sea.  (The discovery occurred by accident when an Arab 

herdsman of the Taamireh tribe was searching for a stray goat.)  When the linen 

wrappings on the scrolls were analyzed, the carbon 14 ratio was found to be 72.3%.  

Estimate the age of the scrolls using this information. 

 

37. An island in the Pacific Ocean is contaminated by fallout from a nuclear explosion.  If the 

strontium 90 is 100 times the level that scientists believe is "safe," how many years will it 

take for the island to once again be "safe" for human habitation?  The half-life of 

strontium 90 is 28 years. 

 

38. If a bacteria culture doubles in size every 20 minutes, how long will it take for a 

population of 104 to grow to 108 bacteria? 

 

39. A certain cell culture grows at a rate proportional to the size of the culture.  During a 10 

hour experiment the culture doubled in size every three hours.  At the end of the 

experiment approximately 105 cells were present.  How many cells were present at the 

beginning of the experiment? 
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40. By 1974 the United States had an estimated 80 million gallons of radioactive products 

form nuclear power plants and other nuclear reactors.  These waste products were stored 

in various sorts of containers (made of such materials as stainless steel and cement), and 

the containers were buried in the ground and the ocean.  Scientists feel that the waste 

products must be prevented from contaminating the rest of the earth until more than 

99.99% of the radioactivity is gone (that is, until the level is less than .0001 times the 

original level).  If a storage cylinder contains waste products whose half-life is 1500 

years, how many years must the container survive without leaking?  (Note: Some of the 

containers are already leaking.) 

 

41. The atmospheric pressure 𝑃 (in psi) is approximated by  

𝑃 = 14.7𝑒−0.1ℎ 

where ℎ is the altitude above sea level in miles. 

 

a. Mt. McKinley, in Alaska, is the highest point in North America.  The elevation is 

20,320 feet.  What is the pressure at its summit?  (1 mile = 5280 ft.) 

 

b. The lowest land point in the world is the Dead Sea (Isreal-Jordan), where the 

elevation is 1299 feet below sea level.  What is the atmospheric pressure at this 

point? 

42. A healing law for skin wounds states that  

𝐴 = 𝐴0𝑒−0.1𝑡 
where 𝐴 is the number of square centimeters of unhealed skin after 𝑡 days when the 

original area of the wound was 𝐴.  How many days does it take for half of the wound to 

heal? 

 

43. A law of light absorption of a medium for a beam of light passing through is given by 

𝐼 = 𝐼0𝑒−𝑟𝑡 
where 𝐼0 is the original intensity of the beam in lumens, and 𝐼 is the intensity after 

passing through 𝑡 cm of a medium whose absorption coefficient is 𝑟.  Find the intensity 

of a 100 lumen beam after it passes through 2.54 cm of a medium with absorption 

coefficient of .095. 

 

44. A learning curve describes the rate at which a person learns certain specific tasks.  If 𝑁 is 

the number of words per minute typed by a student, then 

𝑁 = 80(1 − 𝑒−0.16𝑡) 
where 𝑡 is the number of days of instruction.  Assuming Joe is an average student, what is 

his typing rate after 20 days of instruction? 
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45. Members of a discussion group tend to be ranked exponentially by the number of times 

they participate in a discussion.  For a group of ten, the number of times, the 𝑛th ranked 

participant, takes part is given by  

𝑃𝑛 = 𝑃1𝑒0.11(1−𝑛) 
where 𝑃1  is the number of times the first-ranked person participates in the discussion.  

For each 100 times the top-ranked participant enters the discussion, how many times 

should the bottom-ranked person be expected to participate? 

 

 If an object at temperature 𝑇0 is surrounded by air at a temperature 𝑇𝑎, it will gradually cool 

so that the temperature 𝑇 is given by 

𝑇 = 𝑇𝑎 + (𝑇0 − 𝑇𝑎)𝑒𝑘𝑡 

where the constant 𝑘 depends upon the particular object being measured and 𝑡 is given in 

appropriate time units (minutes or hours, etc.).  This formula is called Newton's law of 

cooling.   

46. Solve the formula for the constant 𝑘. 

 

47. You draw a tub of hot water (𝑘 = −0.09 for time measured in minutes) for a bath.  The 

water is 100F when drawn and the room is 72F.  If you are called away to the phone, 

what is the temperature of the water 20 minutes later when you get in? 

 

48. You take a batch of chocolate chip cookies from the oven (250F) when the room 

temperature is 74F.  If the cookies cool for 20 minutes and 𝑘 = −0.095 when time is 

measured in minutes, what is the temperature of the cookies? 

 

49. It is known that the temperature of a given object fell from 120F to 70F in an hour 

when placed in 20F air.  What was the temperature of the object after 30 minutes? 

 

50. An object is initially 100F.  In air of 40F it cools to 45F in 20 minutes. 

a. What is its temperature in 30 minutes? 

b. How long will it take the object to cool to 40F? 

c. How long will it take this object to cool to 75F? 

The logistics equation 𝑄(𝑡) =
𝑀

1+𝑏𝑒𝑘𝑡  is a growth equation used to describe how a population 

quantity 𝑄 grows over time 𝑡.  In this equation 𝑀 represents the maximum population that a 

particular environment will support. 

51. A population of 200 birds is introduced into an environment which will support 800 

birds.  After 6 weeks the population of birds has grown to 450.  How long will it take to 

reach a population of 600 birds? 

 

52. A population of Northern White Bears consists of 60 bears. Population growth is 

encouraged and after 3 years the population expands to 75 bears.  If the environment will 

only support 1200 bears, how long will it take the population to reach 1000 bears? 
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53. An artificial laboratory environment will support 1,000,000 dung flies.  At the beginning 

of an experiment 200 flies are introduced into the environment.  After 30 minutes the 

number of flies has increased to 6000 flies.  How long will it take fly population to 

increase to 800,000 flies? 

 

54. The forest service has determined that Black Lake is capable of supporting a population 

of 8000 fish and that the population needs to be at least 6000 fish before the lake can be 

opened up for fishing.  At the beginning of a survey period it is estimated that there are 

800 fish in the lake.  Two years later the population grows to 1275 fish.  How long will it 

take until the lake can be opened up for fishing? 

 

55. A desert environment is capable of supporting a population of 15000 rock lizards.  

Environmentalists surveying the desert estimate a population of 1875 lizards.  Five years 

later a second survey estimates a population of 9800 lizards.  How long will it take until 

the population is estimated to be 12000 lizards? 

 

56. An environment the will support 300 lemurs is observed to have 50 lemurs in residence. 

Three years later the population grows to 80 lemurs. How many years will it take until 

the population reaches 130 lemurs? 

 

57. The jungles of Soporphia have enough water to support a population of 5000 white tailed 

lynx. A survey team investigating the mating habits of the lynx find that the population is 

200 lynx. Ten years later the population has grown to 900 lynx. How long will it take the 

population to reach 2500 lynx? 

 

58. A genetics experimenter creates an artificial environment that will support 103500 blood 

flies. He puts 2300 of the flies in the environment and observes their growth patterns. 

After 25 weeks the population of flies grows to 53000 flies. How long will it take the 

population to grow to 85000 flies? 

 

59. The mountains of Kalahlalawai have enough food and water to support a population of 

6080 llama. A National Geographic documentary team counts 380 llama in the mountains 

at the beginning of their project. 5 years later the population has grown to 1145 llama. 

How many years will it be until the population of llama reaches 2200? 

 

60. The Siberian wasteland is capable of supporting 4384 snow lizards. An initial survey 

determines that the population is 137 lizards. Six years later the population reaches 260 

snow lizards. Howl long until the population of snow lizards reaches 2100? 
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pH is a measure of the acidity of an aqueous solution. If. 𝐻3𝑂 + refers to the molarity 

(concentration of hydronium ions in moles per liter) of the solution,  

𝑝𝐻 = − log(𝐻3𝑂+) 

61. Pure water lies at 7 on the pH scale. Find its molarity 

 

62. Unripe orange juice lies at 2.9 on the pH scale. Find its molarity 

 

63. Household bleach lies at 12.6 on the pH scale. Find its molarity 

 

Sound Pressure Level: The sound level 𝐿𝑝, in decibels, of a sound with pressure given by 𝑝𝑟𝑚𝑠 

(root mean square) in micropascals against a reference sound of 𝑝𝑟𝑒𝑓 is given by 

𝐿𝑝 = 20 log (
𝑝𝑟𝑚𝑠

𝑝𝑟𝑒𝑓
) 

We usually set 𝑝𝑟𝑒𝑓 = 20 micropascals (the lower threshold of human hearing) as the standard, 

whereas underwater we set 𝑝𝑟𝑒𝑓 = 1 micropascals. 

64. Even with hearing protection, short term exposure to sounds louder than 140 dB can 

cause permanent damage. Find the sound pressure of this noise in micropascals.  

 

65. A power drill has a sound pressure of about 2700 micropascals. Find the decibel level of 

this power drill.  

 

66. You invest $5000 at 8% compounded continuously. How much remains after five years? 

 

67. An 8.5% account earns continuous interest. If $2500 is deposited for 5 years, what is the 

total accumulated? 

 

68. You invest $12123 at 1% compounded continuously. How much remains after six 

months? 

 

69. You lend $100 at 10% continuous interest. If you are repaid 2 months later, what is 

owed? 

 

70. If $1000 is invested at 16% compounded continuously, how long will it take to 

quadruple? 

 

71. How long does it take an amount of money to double if invested at 2% compounded 

continuously? 

 

72. How long does it take an amount of money to triple if invested at 28% compounded 

continuously? 
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The frequency of the 𝑛th key on the piano is given by the function 𝑓(𝑛) = 27.5( √2
12

)
𝑛−1

.  

73. Find the frequency of the 88
th

 key on the piano 

 

74. The A key above middle C has a standard frequency of 440 Hz. Where does it lie on the 

piano? 

 

75. Find the ratio of frequencies of two notes that lie an octave apart, or 12 keys apart.  

 

76. Find the ratio of frequencies of a perfect fifth, or exactly 7 keys apart.  
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Chapter 5 

Trigonometry 
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5.1 Angles 

 
Because many applications involving circles also involve a rotation of the circle, it is natural to 

introduce a measure for the rotation, or angle, between two rays (line segments) emanating from 

the center of a circle.  The angle measurement you are most likely familiar with is degrees, so 

we’ll begin there. 

The measure of an angle is a measurement between two intersecting 

lines, line segments or rays, starting at the initial side and ending at the 

terminal side. It is a rotational measure not a linear measure. 

Measuring Angles 

A degree is a measurement of angle.  One full rotation around the circle is equal to 360 degrees, 

so one degree is 
1

360
 of a circle.   

An angle measured in degrees should always include the unit “degrees” after the number, or 

include the degree symbol °.  For example, 90 degrees is written 90º. 

When measuring angles on a circle, unless otherwise directed, we measure angles in standard 

position:  starting at the positive horizontal axis and with counter-clockwise rotation. 

Example 1: Give the degree measure of the angle shown on the circle. 

The vertical and horizontal lines divide the circle into quarters.  Since one 

full rotation is 360 degrees or 360º, each quarter rotation is 
360°

4
= 90° or 

90 degrees.   

Example 2: Show an angle of 30º on the circle. 

An angle of is 
1

3
 of 90º, so by dividing a quarter rotation into thirds, we 

can sketch a line at 30º. 

Going Greek 

When representing angles using variables, it is traditional to use Greek letters.  Here is a list of 

commonly encountered Greek letters. 

𝜃 𝜑 or 𝜙 α β γ 

theta phi alpha beta gamma 

 

initial side 

terminal side 

angle 
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Working with Angles in Degrees 

Notice that since there are 360 degrees in one rotation, an angle 

greater than 360 degrees would indicate more than 1 full rotation.  

Shown on a circle, the resulting direction in which this angle’s 

terminal side points would be the same as for another angle 

between 0 and 360 degrees.   These angles would be called 

coterminal. 

Coterminal Angles 

After completing their full rotation based on the given angle, two angles are coterminal if they 

terminate in the same position, so their terminal sides coincide (point in the same direction). 

Adding or subtracting a full rotation, 360 degrees, would result in an angle with terminal side 

pointing in the same direction; we can find coterminal angles by adding or subtracting 360 

degrees.    

Example 3: Find an angle 𝜃 that is coterminal with 800º, where 0° ≤ 𝜃 < 360° 

800° 
 

Subtract 360º 

800° − 360° = 440° 
 

Subtract 360º 

440° − 360° = 80° 
 

Final answer 

By finding the coterminal angle between 0 and 360 degrees, it can be easier to see which 

direction the terminal side of an angle points in. 

On a number line a positive number is measured to the right and a negative number is measured 

in the opposite direction (to the left).  Similarly a positive angle is measured counterclockwise 

and a negative angle is measured in the opposite direction (clockwise). 

Example 4: Show the angle −45° on the circle and find a positive angle 𝛼 that is coterminal and 

0° ≤ 𝛼 < 360°. 

Since 45 degrees is half of 90 degrees, we can start at the positive 

horizontal axis and measure clockwise half of a 90 degree angle.   

Since we can find coterminal angles by adding or subtracting a full 

rotation of 360 degrees, we can find a positive coterminal angle here 

by adding 360 degrees: 

−45° + 360° = 315° 

-45° 

315° 
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It can be helpful to have a familiarity 

with the frequently encountered angles 

in one rotation of a circle.  It is 

common to encounter multiples of 30, 

45, 60, and 90 degrees.  These values 

are shown to the right.  Memorizing 

these angles and understanding their 

properties will be very useful as we 

study the properties associated with 

angles 

 

 

Angles in Radians 

While measuring angles in degrees may be familiar, doing so often complicates matters since the 

units of measure can get in the way of calculations.  For this reason, another measure of angles is 

commonly used.  This measure is based on the distance around a circle. 

Arclength 

Arclength is the length of an arc, 𝑠, along a circle of radius 𝑟 

subtended (drawn out) by an angle 𝜃.  It is the portion of the 

circumference between the initial and terminal sides of the angle. 

The length of the arc around an entire circle is called the 

circumference of a circle.  The circumference of a circle is 𝐶 = 2𝜋𝑟.  The ratio of the 

circumference to the radius, produces the constant 2𝜋.  Regardless of the radius, this ratio is 

always the same, just as how the degree measure of an angle is independent of the radius.   

To elaborate on this idea, consider two circles, one with radius 2 and one with radius 3.  Recall 

the circumference (perimeter) of a circle is 𝐶 = 2𝜋𝑟, where 𝑟 is the radius of the circle.  The 

smaller circle then has circumference 2𝜋(2) = 4𝜋 and the larger has circumference  

2𝜋(3) = 6𝜋. 

 

 

 

 

0° 

30° 

60° 
90° 

120° 

150° 

180° 

210° 

240° 
270° 

300° 

330° 

45° 135° 

225° 315° 

θ 
r s 
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Drawing a 45 degree angle on the two circles, we might be 

interested in the length of the arc of the circle that the angle 

indicates.   

In both cases, the 45 degree angle draws out an arc that is 
1

8
 of the 

full circumference, so for the smaller circle, the arclength 
1

8
(4𝜋) =

1

2
𝜋, and for the larger circle, the length of the arc or 

arclength 
1

8
(6𝜋) =

3

4
𝜋. 

Notice what happens if we find the ratio of the arclength divided by the radius of the circle: 

Smaller circle: 

1

2
𝜋

2
=

1

4
𝜋                                    Larger circle: 

3

4
𝜋

3
=

1

4
𝜋 

The ratio is the same regardless of the radius of the circle – it only depends on the angle.  This 

property allows us to define a measure of the angle based on arclength. 

Radians 

The radian measure of an angle is the ratio of the length of the circular arc subtended by the 

angle to the radius of the circle.   

In other words, if 𝑠 is the length of an arc of a circle, and 𝑟 is the radius of the circle, then radian 

measure is found by 𝜃 =
𝑠

𝑟
 

If the circle has radius 1, then the radian measure corresponds to the length of the arc. 

Because radian measure is the ratio of two lengths, it is a unitless measure.  It is not necessary 

to write the label “radians” after a radian measure, and if you see an angle that is not labeled with 

“degrees” or the degree symbol, you should assume that it is a radian measure. 

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation 

equals 360 degrees, 360º.  We can also track one rotation around a circle by finding the 

circumference, 𝐶 = 2𝜋𝑟, and for the unit circle 𝐶 = 2𝜋.  These two different ways to rotate 

around a circle give us a way to convert from degrees to radians.  

1 rotation = 360° = 2𝜋 radians 

1

2
 rotation = 180° = 𝜋 radians 

1

4
 rotation = 90° =

𝜋

2
 radians 

45° 

2 3 
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Example 1: Find the radian measure of one third of a full rotation. 

1

3
 rotation 

 

The arclength is one third of the circumference 

𝐶 =
1

3
(2𝜋𝑟) =

2𝜋𝑟

3
 

 

radian measure is the arclength divided by the radius 

2𝜋𝑟

3
∙

1

𝑟
=

2𝜋

3
 

 

Final answer 

Converting Between Radians and Degrees 

1 degree is 
𝜋

180
 radians, or, to convert from degrees to radians, multiply by 

𝜋 radians

180°
 

1 radian is 
180

𝜋
 degrees, or, to convert from radians to degrees, multiply by 

180°

𝜋 radians
  

Example 2: Convert 
𝜋

6
 radians to degrees. 

𝜋

6
 

 

Multiply by 
180°

𝜋
 

𝜋

6
∙

180°

𝜋
= 30° 

Final answer 

Example 3: Convert 15 degrees to radians. 

15° 
 

Multiply by 
𝜋

180°
 

15° ∙
𝜋

180°
=

𝜋

12
 

Final answer 
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Just as we listed all the common angles 

in degrees on a circle, we should also 

list the corresponding radian values for 

the common measures of a circle 

corresponding to degree multiples of 

30, 45, 60, and 90 degrees.  As with the 

degree measurements, it would be 

advisable to commit these to memory. 

We can work with the radian measures 

of an angle the same way we work with 

degrees. 

When working in degrees, we found 

coterminal angles by adding or 

subtracting 360 degrees, a full rotation.  

Likewise, in radians, we can find 

coterminal angles by adding or 

subtracting full rotations of 2𝜋 radians. 

Example 4: Find an angle 𝛽  that is coterminal with 
19𝜋

4
, where 0 ≤ 𝛽 < 2𝜋 

19𝜋

4
 

 

Subtract 2𝜋 

19𝜋

4
− 2𝜋 =

19𝜋

4
−

8𝜋

4
=

11𝜋

4
 

 

Subtract 2𝜋 

11𝜋

4
− 2𝜋 =

11𝜋

4
−

8𝜋

4
=

3𝜋

4
 

 

Final answer 

Arclength 

Recall that the radian measure of an angle was defined as the ratio of the arclength of a circular 

arc to the radius of the circle, 𝜃 =
𝑠

𝑟
.  From this relationship, we can find arclength along a circle 

given an angle. 

Arclength on a Circle 

The length of an arc, 𝑠, along a circle of radius 𝑟 subtended by angle 𝜃 in radians is 𝑠 = 𝑟𝜃 

 

 

0,  
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Example 5: Mercury orbits the sun at a distance of approximately 36 million miles.  In one Earth 

day, it completes 0.0114 rotation around the sun.  If the orbit was perfectly circular, what 

distance through space would Mercury travel in one Earth day? 

0.0114 rotation 
 

Convert to radians, multiply by 2𝜋 

2𝜋(0.0114) = 0.0716 radians 
 

Use formula 𝑠 = 𝑟𝜃 

𝑆 = 36(0.0716) = 2.578 million miles 
 

Final answer 

Linear and Angular Velocity 

When your car drives down a road, it makes sense to describe its speed in terms of miles per 

hour or meters per second.  These are measures of speed along a line, also called linear velocity.  

When a point on a circle rotates, we would describe its angular velocity, or rotational speed, in 

radians per second, rotations per minute, or degrees per hour. 

Angular and Linear Velocity 

As a point moves along a circle of radius 𝑟, its angular velocity, 𝜔, can be found as the angular 

rotation 𝜃 per unit time, 𝑡. 

𝜔 =
𝜃

𝑡
 

The linear velocity, 𝒗, of the point can be found as the distance travelled, arclength 𝑠, per unit 

time, 𝑡. 

𝑣 =
𝑠

𝑡
 

Example 7: A water wheel completes 1 rotation every 5 seconds.  Find the 

angular velocity in radians per second. 

1 rotation (2𝜋) in 5 seconds 

 
Use formula for angular velocity, 𝜔 =

𝜃

𝑡
 

𝜔 =
2𝜋

5
= 1.257 rad/sec 

 

Final answer 

Combining the definitions above with the arclength equation, 𝑠 = 𝑟𝜃, we can find a relationship 

between angular and linear velocities.  The angular velocity equation can be solved for 𝜃, giving 

𝜃 = 𝜔𝑡.  Substituting this into the arclength equation gives 𝑠 = 𝑟𝜃 = 𝑟𝜔𝑡.   
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Substituting this into the linear velocity equation gives 

𝑣 =
𝑠

𝑡
=

𝑟𝜔𝑡

𝑡
= 𝑟𝜔 

Relationship Between Linear and Angular Velocity 

When the angular velocity is measured in radians per unit time, linear velocity and angular 

velocity are related by the equation 

𝑣 = 𝑟𝜔 

 

Example 8: A bicycle has wheels 28 inches in diameter.  A tachometer determines the wheels are 

rotating at 180 RPM (revolutions per minute).  Find the speed the bicycle is travelling down the 

road. 

Note: Here we have an angular velocity and need to find the corresponding linear velocity, since 

the linear speed of the outside of the tires is the speed at which the bicycle travels down the road.  

180 rotations/minute 
 

Convert 1 rotation is 2𝜋 radians 

180 ∙ 2𝜋 = 360𝜋 radians/minute 
 

Using new linear velocity formula, 𝑣 = 𝑟𝜔 

𝑣 = (14)(360𝜋) = 5040𝜋 in/min 
 

Optional: convert to miles per hour 

5040𝜋 in

min
∙

1 ft

12 in
∙

1 mi

5280 ft
∙
60 min

1 hr
= 14.99 𝑚𝑝ℎ 

 

Final answer 

 

 

Changing to Degree, Minutes, Seconds 

Recall: 1° = 60′ (one degree equals sixty minutes) 

 1′ = 60" (one minute equals sixty seconds) 

The notation 𝜃 = 73° 56′ 18" refers to an angle 𝜃 that measures 73 degrees, 56 minutes, 18 

seconds.  
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Example 9: If 𝜃 = 3, approximate 𝜃 in terms of degrees, minutes, and seconds. 

3 
 

Multiply by 
180

𝜋
 

3 (
180

𝜋
) = 171.8873 

 

Multiply decimal portion by 60′ 

171° + 0.8873(60′) = 171° + 53.238′ 
 

Multiply decimal portion by 60” 

171° + 53′ + 0.238(60)=171° 53' 14"  Final answer 

 

 

Example 10: Express 19° 47′ 23" as a decimal, to the nearest ten-thousandth of a degree 

Note: Since 1′ = (
1

60
) degrees and 1" = (

1

60
) ′ we also have 1" = (

1

3600
) degrees 

19° + 47′ + 23" 
 

Multiply minutes and degrees by above conversion 

19 + 47 (
1

60
) + 23 (

1

3600
) 

 

Multiply 

19 + 0.7833 + 0.0064 
 

Add 

19.7897° Final answer 
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5.1 Angles Practice 
 

1. Indicate each angle on a circle:  30°, 300°, −135°, 70°, 
2𝜋

3
, 

7𝜋

4
 

2. Indicate each angle on a circle:  25°, 315°, −115°, 80°, 
7𝜋

6
, 

3𝜋

4
 

3. Convert the angle 180° to radians. 

4. Convert the angle 30° to radians. 

5. Convert the angle 
5𝜋

6
 from radians to degrees. 

6. Convert the angle 
11𝜋

6
 from radians to degrees. 

7. Find the angle between 0° and 360° that is coterminal with a 685°  angle.  

8. Find the angle between 0° and  360° that is coterminal with a 451°  angle. 

9. Find the angle between 0° and 360° that is coterminal with a −1746°  angle. 

10. Find the angle between 0° and 360° that is coterminal with a −1400°  angle. 

11. Find the angle between 0 and 2𝜋 in radians that is coterminal with the angle 
26𝜋

9
. 

12. Find the angle between 0 and 2𝜋  in radians that is coterminal with the angle 
17𝜋

3
. 

13. Find the angle between 0 and 2𝜋 in radians that is coterminal with the angle −
3𝜋

2
. 

14. Find the angle between 0 and 2𝜋  in radians that is coterminal with the angle −
7𝜋

6
.  

15. On a circle of radius 7 miles, find the length of the arc that subtends a central angle of 5 

radians.  

16. On a circle of radius 6 feet, find the length of the arc that subtends a central angle of 1 

radian.  

17. On a circle of radius 12 cm, find the length of the arc that subtends a central angle of 120 

degrees. 

18. On a circle of radius 9 miles, find the length of the arc that subtends a central angle of 

800 degrees.  
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19. Find the distance along an arc on the surface of the Earth that subtends a central angle of 

5 minutes (1 minute = 
1

60
 degree). The radius of the Earth is 3960 miles.  

20. Find the distance along an arc on the surface of the Earth that subtends a central angle of 

7 minutes (1 minute = 
1

60
 degree). The radius of the Earth is 3960 miles. 

21. On a circle of radius 6 feet, what angle in degrees would subtend an arc of length 3 feet? 

22. On a circle of radius 5 feet, what angle in degrees would subtend an arc of length 2 feet? 

23. A truck with 32-in.-diameter wheels is traveling at 60 mi/h.  Find the angular speed of the 

wheels in rad/min.  How many revolutions per minute do the wheels make?  

24. A bicycle with 24-in.-diameter wheels is traveling at 15 mi/h.  Find the angular speed of 

the wheels in rad/min.  How many revolutions per minute do the wheels make? 

25. A wheel of radius 8 in. is rotating 15°/sec. What is the linear speed 𝑣, the angular speed 

in RPM, and the angular speed in rad/sec? 

26. A wheel of radius 14 in. is rotating 0.5 rad/sec. What is the linear speed 𝑣, the angular 

speed in RPM, and the angular speed in deg/sec? 

27. A CD has diameter of 120 millimeters.  When playing audio, the angular speed varies to 

keep the linear speed constant where the disc is being read.  When reading along the outer edge 

of the disc, the angular speed is about 200 RPM (revolutions per minute).  Find the linear speed. 

28. When being burned in a writable CD-R drive, the angular speed of a CD is often much 

faster than when playing audio, but the angular speed still varies to keep the linear speed 

constant where the disc is being written.  When writing along the outer edge of the disc, the 

angular speed of one drive is about 4800 RPM (revolutions per minute).  Find the linear speed. 

29. You are standing on the equator of the Earth (radius 3960 miles). What is your linear and 

angular speed? 
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30. The restaurant in the Space Needle in Seattle rotates at the rate of one revolution per 

hour. [UW] 

a. Through how many radians does it turn in 100 minutes? 

b. How long does it take the restaurant to rotate through 4 radians? 

c. How far does a person sitting by the window move in 100 minutes if the radius of the 

restaurant is 21 meters? 

31. Express 𝜃 in terms of degrees, minutes, and seconds, to the nearest second. 

a. 𝜃 = 2 

b. 𝜃 = 5 

c. 𝜃 = 4  

32.       Express the angle in terms of degrees, minutes, and seconds, to the nearest second. 

a. 63.169º 

b. 310.6215º 

c. 81.7238º 
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5.2 Right Triangle Trigonometry 
 

Right Triangle Relationships 

Given a right triangle with an angle of 𝜃 

sin(𝜃) =
opposite

hypotenuse
 

cos (𝜃) =
adjacent

hypotenuse
 

tan(𝜃) =
opposite

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
 

A common mnemonic for remembering these relationships is SohCahToa, formed from the first 

letters of “Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is 

opposite over adjacent.” 

Example 1: Given the triangle shown, find the value for cos (𝛼). 

The side adjacent to the angle is 15, and the hypotenuse of the 

triangle is 17, so 

cos(𝛼) =
adjacent

hypotenuse
=

15

17
 

 

When working with general right triangles, the same rules apply regardless of the orientation of 

the triangle.  In fact, we can evaluate the sine and cosine of either of the two acute angles in the 

triangle. 

 

 

 

 
 

Adjacent to α 

Opposite β 

Hypotenuse 

Adjacent to β 

Opposite α 

θ 

adjacent 

opposite 

hypotenuse 

 

15 

8 
17 
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3 

5 

4 

Example 2: Using the triangle shown, evaluate cos (𝛼), sin (𝛼), cos (𝛽), sin (𝛽) 

cos(𝛼) =
adjacent to 𝛼

hypotenuse
=

3

5
 

sin(α) =
opposite 𝛼

hypotenuse
=

4

5
 

cos(𝛽) =
adjacent to 𝛽

hypotenuse
=

4

5
 

sin(𝛽) =
opposite of 𝛽

hypotenuse
=

3

5
 

 

You may have noticed that in the above example that cos(𝛼) = sin (𝛽) and cos(𝛽) = sin(𝛼).  

This makes sense since the side opposite 𝛼 is also adjacent to 𝛽.  Since the three angles in a 

triangle need to add to 𝜋, or 180 degrees, then the other two angles must add to 
𝜋

2
, or 90 degrees, 

so 𝛽 =
𝜋

2
− 𝛼, and 𝛼 =

𝜋

2
− 𝛽.  Since cos(𝛼) = sin(𝛽), then cos(𝛼) = sin (

π

2
− α). 

Cofunction Identities 

The cofunction identities for sine and cosine 

cos(𝜃) = 𝑠𝑖𝑛 (
𝜋

2
− 𝜃) 

sin(𝜃) = cos (
𝜋

2
− 𝜃) 

In the previous examples we evaluated the sine and cosine on triangles where we knew all three 

sides of the triangle.  Right triangle trigonometry becomes powerful when we start looking at 

triangles in which we know an angle but don’t know all the sides. 
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Example 3: Find the unknown sides of the triangle pictured here. 

sin(𝜃) =
opposite

hypotenuse
 

Substitute using 𝜃 = 30 

 

sin(30) =
7

𝑐
 

Solve for 𝑐 

𝑐 =
7

sin(30)
 

Use calculator 

𝑐 = 14 Pythagorean Theorem 

𝑎2 + (7)2 = (14)2 Square 

𝑎2 + 49 = 196 Subtract 49 

𝑎2 = 147 Take square root  

𝑎 = √147 Simplify: √147 = √72 ∙ 3 = 7√3 

𝑎 = 7√3, 𝑐 = 14 Final answer 

Notice that if we know at least one of the non-right angles of a right triangle and one side, we 

can find the rest of the sides and angles. 

Example 4: To find the height of a tree, a person walks to a point 30 feet from the base of the 

tree, and measures the angle from the ground to the top of the tree to be 57 degrees.  Find the 

height of the tree. 

We can introduce a variable, ℎ, to represent the height of the 

tree.  The two sides of the triangle that are most important to us 

are the side opposite the angle, the height of the tree we are 

looking for, and the adjacent side, the side we are told is 30 feet 

long. 

The trigonometric function which relates the side opposite of the angle and the side adjacent to 

the angle is the tangent. 

tan(57) =
opposite

adjacent
=

ℎ

30
 

 

Solve for ℎ 

ℎ = 30 tan(57) 
 

Solve with a calculator 

ℎ = 46.2 ft Final answer 

57° 

30 feet 

30° 

a 

7 

c 
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Example 5: A person standing on the roof of a 100 foot building is looking towards a skyscraper 

a few blocks away, wondering how tall it is.  She measures the angle of declination from the roof 

of the building to the base of the skyscraper to be 20 degrees and the angle of inclination to the 

top of the skyscraper to be 42 degrees.   

To approach this problem, it would be good to start 

with a picture.  Although we are interested in the 

height, ℎ, of the skyscraper, it can be helpful to 

also label other unknown quantities in the picture – 

in this case the horizontal distance 𝑥 between the 

buildings and 𝑎, the height of the skyscraper above 

the person. 

To start solving this problem, notice we have two 

right triangles.  In the top triangle, we know one 

angle is 42 degrees, but we don’t know any of the sides of the triangle, so we don’t yet know 

enough to work with this triangle.   

In the lower right triangle, we know one angle is 20 degrees, and we know the vertical height 

measurement of 100 ft.  Since we know these two pieces of information, we can solve for the 

unknown distance 𝑥. 

tan(20) =
opposite

adjacent
=

100

𝑥
 

 

Solve for 𝑥 

𝑥 =
100

tan(20)
 

 

Now that we have found 𝑥,  

we solve the top right triangle 

tan(42) =
opposite

adjacent
=

𝑎

𝑥
=

𝑎

100
tan(20)

 

 

Multiply by reciprocal 

tan(42) =
𝑎 tan(20)

100
 

 

Solve for 𝑎, multiply by 
100

tan(20)
 

100 tan(42)

tan(20)
= 𝑎 

Use a calculator 

𝑎 = 247.4   

                                            247.4 + 100 = 347.4 ft                                    Final answer 

 

100 ft 

h 

a 

x 
42° 

20° 
100 ft 
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5.2 Right Triangle Trigonometry Practice 
 

In each of the triangles below, find sin(𝐴) , cos(𝐴) , tan(𝐴). 

 

1.    2.  

 

 

In each of the following triangles, solve for the unknown sides and angles. 

3.      4. 

  

  

  

 

  

 

5.  6.  

  

   

  

  

 

7.  8.  

  

 

 

 

 

60° 

a 10 

c 

A 

10° 
b 

a 
12 B 

65° 

b 
a 

10 

B 

A 
8 

1

A 

10 

4 

30° 

7 

c B 

b 

35° 

7 
c B 

b 

62° 

a 10 

c 

A 
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9. A 33-ft ladder leans against a building so that the angle between the ground and the ladder is 

80°.  How high does the ladder reach up the side of the building?  

  

10. A 23-ft ladder leans against a building so that the angle between the ground and the ladder is 

80°.  How high does the ladder reach up the side of the building?  

   

11. The angle of elevation to the top of a building in New York is found to be 9 degrees from the 

ground at a distance of 1 mile from the base of the building. Using this information, find the 

height of the building. 

 

12. The angle of elevation to the top of a building in Seattle is found to be 2 degrees from the 

ground at a distance of 2 miles from the base of the building. Using this information, find the 

height of the building.  

 

13. A radio tower is located 400 feet from a building. From a window in the building, a person 

determines that the angle of elevation to the top of the tower is 36° and that the angle of 

depression to the bottom of the tower is 23°. How tall is the tower? 

 

14. A radio tower is located 325 feet from a building. From a window in the building, a person 

determines that the angle of elevation to the top of the tower is 43° and that the angle of 

depression to the bottom of the tower is 31°. How tall is the tower? 

 

15. A 200 foot tall monument is located in the distance. From a window in a building, a person 

determines that the angle of elevation to the top of the monument is 15° and that the angle of 

depression to the bottom of the tower is 2°. How far is the person from the monument? 

 

16. A 400 foot tall monument is located in the distance. From a window in a building, a person 

determines that the angle of elevation to the top of the monument is 18° and that the angle of 

depression to the bottom of the tower is 3°. How far is the person from the monument? 

 

17. There is an antenna on the top of a building.  From a location 300 feet from the base of the 

building, the angle of elevation to the top of the building is measured to be 40°.  From the 

same location, the angle of elevation to the top of the antenna is measured to be 43°.  Find 

the height of the antenna. 

   

18. There is lightning rod on the top of a building.  From a location 500 feet from the base of the 

building, the angle of elevation to the top of the building is measured to be 36°.  From the 

same location, the angle of elevation to the top of the lightning rod is measured to be 38°.  

Find the height of the lightning rod. 
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19. Find the length x.     20. Find the length x. 

                 

21. Find the length x.     22. Find the length x.   

                       

23. A plane is flying 2000 feet above sea level toward a 

mountain. The pilot observes the top of the mountain to 

be 18
o
 above the horizontal, then immediately flies the 

plane at an angle of 20
o
 above horizontal. The airspeed 

of the plane is 100 mph. After 5 minutes, the plane is 

directly above the top of the mountain. How high is the 

plane above the top of the mountain (when it passes 

over)? What is the height of the mountain?  [UW] 

 

 

 

 

 

 

 

 

x 

82 

63° 39° 

x 

85 

36° 50° 

x 

115 

56° 35° 

x 

119 

70° 26° 
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24. Three airplanes depart SeaTac Airport. A Northwest flight is heading in a direction 50° 

counterclockwise from east, an Alaska flight is heading 115° counterclockwise from east and 

a Delta flight is heading 20° clockwise from east. Find the location of the Northwest flight 

when it is 20 miles north of SeaTac. Find the location of the Alaska flight when it is 50 miles 

west of SeaTac. Find the location of the Delta flight when it is 30 miles east of SeaTac.  

(please note in diagram b, x = 20, and y =  30      [UW] 

 

 

25. The crew of a helicopter needs to land 

temporarily in a forest and spot a flat piece of 

ground (a clearing in the forest) as a potential 

landing site, but are uncertain whether it is 

wide enough. They make two measurements 

from A (see picture) finding α = 25° and β = 

54°. They rise vertically 100 feet to B and 

measure γ = 47°. Determine the width of the 

clearing to the nearest foot.  [UW] 

 

 

26. A Forest Service helicopter needs to determine the 

width of a deep canyon. While hovering, they measure 

the angle γ = 48° at position B (see picture), then 

descend 400 feet to position A and make two 

measurements: α = 13° (the measure of EAD), β = 

53° (the measure of CAD).  Determine the width of 

the canyon to the nearest foot.  [UW] 
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5.3 Non-Right Triangles: Laws of Sines and Cosines 
 

Although right triangles allow us to solve many applications, it is more common to find 

scenarios where the triangle we are interested in does not have a right angle. 

Two radar stations located 20 miles apart both 

detect a UFO located between them.  The angle of 

elevation measured by the first station is 35 degrees.  

The angle of elevation measured by the second 

station is 15 degrees.  What is the altitude of the 

UFO? 

We see that the triangle formed by the UFO and the two stations is not a right triangle.  Of 

course, in any triangle we could draw an altitude, a perpendicular line from one vertex to the 

opposite side, forming two right triangles, but it would be nice to have methods for working 

directly with non-right triangles.  In this section we will expand upon the right triangle 

trigonometry we learned in 5.2, and adapt it to non-right triangles. 

Law of Sines 

Given an arbitrary non-right triangle, we can drop an altitude, which we temporarily label h, to 

create two right triangles.   

Using the right triangle relationships,  

sin(𝛼) =
ℎ

𝑏
 and sin(𝛽) =

ℎ

𝑎
  

Solving both equations for ℎ, we get 𝑏 sin(𝛼) = ℎ and 

𝑎 sin(𝛽) = ℎ.  Since the ℎ is the same in both equations, we 

establish 𝑏 sin(𝛼) = 𝑎 sin(𝛽).  Dividing, we conclude that 

sin(𝛼)

𝑎
=

sin(𝛽)

𝑏
 

Had we drawn the altitude to be perpendicular to side 𝑏 or 𝑎, we could similarly establish  

sin(𝛼)

𝑎
=

sin(𝛾)

𝑐
  and  

sin (𝛽)

𝑏
=

sin(𝛾)

𝑐
 

Collectively, these relationships are called the Law of Sines. 

 

 

α β 

a 
b 

h 

15° 35° 

20 miles 
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Law of Sines 

Given a triangle with angles and sides opposite labeled as shown, the ratio of sine of angle to 

length of the opposite side will always be equal, or, symbolically, 

sin(𝛼)

𝑎
=

sin(𝛽)

𝑏
=

sin(𝛾)

𝑐
 

For clarity, we call side 𝑎 the corresponding side of angle 𝛼. 

Similarly, we call angle 𝛼, the corresponding angle of side 𝑎.   

Likewise for side 𝑏 and angle 𝛽, and for side 𝑐 and angle 𝛾. 

When we use the law of sines, we use any pair of ratios as an equation.  In the most 

straightforward case, we know two angles and one of the corresponding sides. 

Example 1: In the triangle shown here, solve for 

the unknown sides and angle. 

Solving for the unknown angle is relatively easy, 

since the three angles must add to 180 degrees. 

𝛾 
 

Subtract each angle from 180 

𝛾 = 180 − 50 − 30 = 100 
 

Identify known angle and corresponding side 

50° and 10 

 

To find side 𝑏 use its corresponding angle, 30º 

sin(50)

10
=

sin(30)

𝑏
 

 

Multiply both sides by 𝑏 

𝑏 sin(50)

10
= sin(30) 

 

Solve for 𝑏, multiply by 
10

sin(50)
 

𝑏 =
10 sin(30)

sin(50)
 

 

Use a calculator 

𝑏 = 6.527 
 

Similarly for 𝑐 

sin(50)

10
=

sin(100)

𝑐
 

 

Solve and use a calculator 

𝑐 =
10 sin(100)

sin(50)
= 12.856 

 

Final answer 

50° 

10 b 

30° 

c 

γ 

α β 

a b 

c 

γ 
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Example 2: Find the elevation of the UFO from the beginning of the section. 

To find the elevation of the UFO, we first find 

the distance from one station to the UFO, such 

as the side 𝑎 in the picture, then use right 

triangle relationships to find the height of the 

UFO, ℎ. 

𝛾 
 

Subtract each angle from 180 

180 − 15 − 35 = 130 
 

Using 20 miles and 130º we set up Law of Sines 

sin(130)

20
=

sin(35)

𝑎
 

 

Solve for 𝑎, use a calculator 

𝑎 =
20 sin(35)

sin(130)
= 14.975 

 

Use the right triangle relationship to solve for ℎ 

sin(15) =
ℎ

14.975
 

 

Multiply by 14.975 

ℎ = 14.975 sin(15) = 3.876 miles 
 

Final answer 

In addition to solving triangles in which two angles are known, the Law of Sines can be used to 

solve for an angle when two sides and one corresponding angle are known. 

 

 

 

 

 

 

 

 

 

 

 

15° 35° 

20 miles 

h 
a 
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Example 3 In the triangle shown here, solve for the unknown sides 

and angles. 

In choosing which pair of ratios from the Law of Sines to use, we 

always want to pick a pair where we know three of the four pieces 

of information in the equation.  In this case, we know the angle 85° 

and its corresponding side, so we will use that ratio.  Since our only 

other known information is the side with length 9, we will use that 

side and solve for its corresponding angle. 

sin(85)

12
=

sin(𝛽)

9
 

 

Solve for sin(𝛽) 

9 sin(85)

12
= sin(𝛽) 

 

Use inverse sine to find first solution 

𝛽 = sin−1 (
9 sin(85)

12
) = 48.3438° 

 

With inverse sine there are two solutions,  

subtract from 180 to get second possible 

𝛽 = 180 − 48.3438 = 131.6562 
 

Find 𝛼 for each case, subtract angles from 180 

𝛼 = 180 − 85 − 48.3438 = 46.6562 
 

𝛼 = 180 − 85 − 131.6562 = −35.6562 
 

Notice the second option is impossible 

𝛼 = 46.6562, 𝛽 = 48.3438 
 

Using the Law of Sines we can find 𝑎 

sin(85)

12
=

sin(46.6562)

𝑎
 

 

Solve for 𝑎, use calculator 

𝑎 =
12 sin(46.6562)

sin(85)
= 8.7603 

 

Final answer 

Notice that in the problem above, when we use Law of Sines to solve for an unknown angle, 

there can be two possible solutions.  This is called the ambiguous case, and can arise when we 

know two sides and a non-included angle. In the ambiguous case we may find that a particular 

set of given information can lead to 2, 1 or no solution at all.  However, when an accurate picture 

of the triangle or suitable context is available, we can determine which angle is desired.  

 

 

 

9 

12 

a 

85° 

β 

α 
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Example 4: Find all possible triangles if one side has length 4 opposite an angle of 50° and a 

second side has length 10. 

sin(50)

4
 

 

Using the side and angle we know, use Law of Sines 

sin(50)

4
=

sin(𝛼)

10
 

 

Multiply by 10 

10 sin(50)

4
= sin(𝛼) 

 

Use the inverse sine 

𝛼 = sin−1 (
10 sin(50)

4
) = undefined 

 

Since the range of the sine function is [-1, 1], it is 

impossible for the sine value to be 1.915. 

There are no triangles 

 

Final answer 

Example 5: Find all possible triangles if one side has length 6 opposite an angle of 50° and a 

second side has length 4. 

sin(50)

6
 

 

Using given information set up Law of Sines 

sin(50)

6
=

sin(𝛼)

4
 

 

Multiply by 4 

4 sin(50)

6
= sin(𝛼) 

 

Take the sine inverse 

𝛼 = sin−1 (
4 sin(50)

6
) = 30.71 

 

Subtract from 180 to find second case 

𝛼 = 180 − 30.71 = 149.29 
 

Subtract all angles from 180 to find third angle 

𝛽 = 180 − 50 − 30.71 = 99.290 
 

𝛽 = 180 − 50 − 149.29 = −19.29 
 

Only the first option is possible. 

𝛼 = 149.29°, 𝛽 = 99.29° 
 

Using Law of Sines, find missing side 

sin(50)

6
=

sin(99.29)

𝑐
 

 

Solve for 𝑐, use a calculator 

𝑐 =
6 sin(99.29)

sin(50)
= 7.73 

Final answer 
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Law of Cosines 

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels 

another 8 miles.  How far from port is the boat?   

Unfortunately, while the Law of Sines lets us address many non-right triangle 

cases, it does not allow us to address triangles where the one known angle is 

included between two known sides, which means it is not a corresponding 

angle for a known side.  For this, we need another tool. 

Given an arbitrary non-right triangle, we can drop 

an altitude, which we temporarily label ℎ, to create 

two right triangles.  We will divide the base 𝑏 into 

two pieces, one of which we will temporarily label 

𝑥.  From this picture, we can establish the right 

triangle relationship 

cos(𝛼) =
𝑥

𝑐
  or, solving for 𝑥, 𝑥 = 𝑐 cos (𝛼) 

Using the Pythagorean Theorem, we can establish 

(𝑏 − 𝑥)2 + ℎ2 = 𝑎2  and  𝑥2 + ℎ2 = 𝑐2 

Both of these equations can be solved for ℎ2  

ℎ2 = 𝑎2 − (𝑏 − 𝑥)2  and  ℎ2 = 𝑐2 − 𝑥2 

Since the left side of each equation is ℎ2, the right sides must be equal 

𝑐2 − 𝑥2 = 𝑎2 − (𝑏 − 𝑥)2 
 

Multiply out the right 

𝑐2 − 𝑥2 = 𝑎2 − (𝑏2 − 2𝑏𝑥 + 𝑥2) 
 

Distribute negative 

𝑐2 − 𝑥2 = 𝑎2 − 𝑏2 + 2𝑏𝑥 − 𝑥2 
 

Add 𝑥2 to both sides 

𝑐2 = 𝑎2 − 𝑏2 + 2𝑏𝑥 
 

Solve for 𝑎2 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑥 
 

Substitute 𝑥 = 𝑐 cos (𝛼) from above 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos (𝛼) 

 

Law of Cosines 

This result is called the Law of Cosines.  Depending upon which side we dropped the altitude 

down from, we could have established this relationship using any of the angles.  The important 

thing to note is that the right side of the equation involves an angle and the sides adjacent to that 

angle – the left side of the equation involves the side opposite that angle. 

α γ 

a c 
h 

β 

x b - x 
b 

20° 

10 mi 

8 mi 
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Law of Cosines 

Given a triangle with angles and opposite sides labeled as shown, 

𝑎2 = 𝑐2 + 𝑏2 − 2𝑏𝑐 cos (𝛼) 

𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos (𝛽) 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos (𝛾) 

Notice that if one of the angles of the triangle is 90 degrees, cos(90) = 0, so the formula 

simplifies to 𝑐2 = 𝑎2 + 𝑏2 

You should recognize this as the Pythagorean Theorem.  Indeed, the Law of Cosines is 

sometimes called the Generalized Pythagorean Theorem, since it extends the Pythagorean 

Theorem to non-right triangles. 

Example 6: Returning to our question from earlier, suppose a boat leaves port, 

travels 10 miles, turns 20 degrees, and travels another 8 miles.  How far from 

port is the boat? 

The boat turned 20 degrees, so the obtuse angle of the non-right triangle shown 

in the picture is the supplemental angle, 180 − 20 = 160°. 

With this, we can utilize the Law of Cosines to find the missing side of the 

obtuse triangle – the distance from the boat to port. 

𝑥2 = 82 + 102 − 2(8)(10) cos(160) 
 

Evaluate right side on calculator 

𝑥2 = 314.3508 
 

Square root both sides 

𝑥 = 17.73 miles Final answer 

 

 

 

 

 

 

 

α β 

a b 

c 

γ 

20° 

10 mi 

8 mi 
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Example 7: Find the unknown side and angles of 

this triangle. 

Notice that we don’t have both pieces of any 

side/angle pair, so the Law of Sines would not 

work with this triangle.   

Since we have the angle included between the two known sides, we can turn to Law of Cosines.   

𝑥2 = 102 + 122 − 2(10)(12) cos(30) 
 

Evaluate right side on calculator 

𝑥2 = 36.154 
 

Take the square root 

𝑥 = 6.013 
 

Now use law of sines to find another angle 

sin(30)

6.013
=

sin(𝜃)

10
 

 

Multiply by 10 

10 sin(30)

6.013
= sin(𝜃) 

 

Inverse sine 

𝜃 = sin−1 (
10 sin(30)

6.013
) = 56.256 

 

Subtract from 180 to get second case 

𝜃 = 180 − 56.256 = 123.744 
 

Find final angle for each case 

Case 1: 𝛾 = 180 − 30 − 56.256 = 93.744° 

Case 2: 𝛾 = 180 − 30 − 123.744 = 26.256° 

 

Both cases work, we have two triangles 

𝑥 = 6.013, 𝜃 = 56.256°, 𝛾 = 93.744° 
or 

𝑥 = 6.013, 𝜃 = 123.744°, 𝛾 = 26.256° 
 

Final answer 

In addition to solving for the missing side opposite one known angle, the Law of Cosines allows 

us to find the angles of a triangle when we know all three sides. 

 

 

 

 

 

θ 

10 x 

30° 

12 

φ

φ 
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18 

25 

20 
α 

Example 8: Solve for the angle α in the triangle shown. 

202 = 182 + 252 − 2(18)(25) cos(𝛼) Simplify  

400 = 949 − 900 cos(𝛼) Subtract 949 

−549 = −900 cos(𝛼) Divide −900 

549

900
= cos(𝛼) 

Inverse cosine 

𝛼 = cos−1 (
549

900
) = 52.410° 

Final answer  

Notice that since the inverse cosine can return any angle between 0 and 180 degrees, there will 

not be any ambiguous cases when using Law of Cosines to find an angle. 
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Example 9: On many cell phones with GPS, an approximate location can be given before the 

GPS signal is received.  This is done by a process called triangulation, which works by using the 

distance from two known points.  Suppose there are two cell phone towers within range of you, 

located 6000 feet apart along a straight highway that runs east to west, and you know you are 

north of the highway.  Based on the signal delay, it can 

be determined you are 5050 feet from the first tower, 

and 2420 feet from the second.  Determine your position 

north and east of the first tower, and determine how far 

you are from the highway. 

For simplicity, we start by drawing a picture and labeling our given information.  Using the Law 

of Cosines, we can solve for the angle 𝜃.  

24202 = 60002 + 50502 − 2(5050)(6000) cos(𝜃) 
 

Simplify 

5856400 = 61501500 − 60600000 cos(𝜃) 
 

Subtract 

−554646100 = −60600000 cos(𝜃) 
 

Divide 

554646100

60600000
= cos(𝜃) 

 

Inverse cosine 

𝜃 = cos−1 (
554646100

60600000
) = 23.328° 

 

 

 Using this angle,  

use right triangles to find  

the position of the cell phone  

relative to the western tower. 

 

cos(23.3) =
𝑥

5050
 

 

sin(23.3) =
𝑦

5050
 

 

Solve for 𝑥 and y 

𝑥 = 5050 cos(23.3) = 4637.2 ft 

𝑦 = 5050 sin(23.3) = 1999.8 ft 
 

Final answer 

You are about 4637 feet east and 2000 feet north of the first tower. 

 

2420 ft 5050 ft 

6000 ft 

θ 

5050 ft 

23.3° 
y 

x 
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Note that if you didn’t know whether you were north or south of the towers, our calculations 

would have given two possible locations, one north of the highway and one south. To resolve 

this ambiguity in real world situations, locating a position using triangulation requires a signal 

from a third tower.  

Example 10: To measure the height of a hill, a woman measures the angle of elevation to the top 

of the hill to be 24 degrees.  She then moves back 200 feet and measures the angle of elevation to 

be 22 degrees.  Find the height of the hill. 

As with many problems of this nature, it will be helpful to draw a picture. 

 

Notice there are three triangles formed here – the right triangle including the height ℎ and the 22 

degree angle, the right triangle including the height ℎ and the 24 degree angle, and the (non-

right) obtuse triangle including the 200 ft side.  Since this is the triangle we have the most 

information for, we will begin with it.  It may seem odd to work with this triangle since it does 

not include the desired side ℎ, but we don’t have enough information to work with either of the 

right triangles yet. 

We can find the obtuse angle of the triangle, since it and the angle of 24 degrees complete a 

straight line – a 180 degree angle.  The obtuse angle must be 180 − 24 = 156°.  From this, we 

can determine that the third angle is 2°.  We know one side is 200 feet, and its corresponding 

angle is 2°, so by introducing a temporary variable 𝑥 for one of the other sides (as shown below), 

we can use Law of Sines to solve for this length 𝑥 

 

 

 

24° 22° 
200 ft 

h 

24° 
22° 

200 ft 

h 

156° 

2° 

x 
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𝑥

sin(22)
=

200

sin(2)
 

 

Solve for 𝑥 

𝑥 =
200 sin(22)

sin(2)
= 2146.77 ft 

 

Use right triangle properties 

sin(24) =
ℎ

2146.77
 

 

Solve for ℎ 

ℎ = 2146.77 sin(24) = 873.17 ft Final answer 
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5.3 Non-Right Triangles: Laws of Sines and Cosines Practice 
 

Solve for the unknown sides and angles of the triangles shown. 

1.    2.  

3.    4.  

5.    6.  

7.    8.  

Assume 𝛼 is opposite side 𝑎, 𝛽 is opposite side 𝑏, and 𝛾 is opposite side 𝑐.  Solve each triangle 

for the unknown sides and angles if possible.  If there is more than one solution, give both. 

9. 20, 69, 43  b     10. 19, 73, 35  b  

11. 14, 26, 119  ba     12. 32, 10, 113  cb  

13. 45,105, 50  ba     14. 38,49, 67  ba  

15. 8.242,2.184, 1.43  ba    16. 2.242,2.186, 6.36  ba  

70° 50° 

10 

40° 110° 

18 

120° 

6 

25° 

75° 

45° 

15 

65° 

5 6 

70° 

90 

100 

18 

40° 

25 

30 

50 30° 
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Solve for the unknown sides and angles of the triangles shown. 

17.    18.  

19.    20.  

 

Assume   is opposite side a,   is opposite side b, and   is opposite side c.  Solve each triangle 

for the unknown sides and angles if possible.  If there is more than one possible solution, give 

both. 

21. 13.3, 49.2, 2.41  ba    22. 7.15, 6.10, 7.58  ca  

23. 7, 6, 120  cb     24. 23,18, 115  ba  

25. Find the area of a triangle with sides of length 18, 21, and 32. 

 

26. Find the area of a triangle with sides of length 20, 26, and 37. 

 

27. To find the distance across a small lake, a surveyor has taken 

the measurements shown. Find the distance across the lake. 
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10 
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28. To find the distance between two cities, a satellite 

calculates the distances and angle shown (not to scale). 

Find the distance between the cities. 

 

 

29. To determine how far a boat is from shore, two radar stations 

500 feet apart determine the angles out to the boat, as shown.  

Find the distance of the boat from the station A, and the 

distance of the boat from shore. 

 

 

 

30. The path of a satellite orbiting the earth causes it to pass 

directly over two tracking stations A and B, which are 69 mi 

apart. When the satellite is on one side of the two stations, 

the angles of elevation at A and B are measured to be 83.9° 

and 86.2°, respectively.  How far is the satellite from 

station A and how high is the satellite above the ground? 

 

 

31. A communications tower is located at the top of a steep 

hill, as shown. The angle of inclination of the hill is 

67°. A guy-wire is to be attached to the top of the tower 

and to the ground, 165 m downhill from the base of the 

tower. The angle formed by the guy-wire and the hill is 

16°. Find the length of the cable required for the guy 

wire. 

 

 

 

 

 

350 km 
370 km 

2.1° 

70° 
A 

60° 

B 

86.2° 83.9° 

A B 

67° 

16° 

165m 
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32. The roof of a house is at a 20° angle.  An 8 foot solar 

panel is to be mounted on the roof, and should be 

angled 38° relative to the horizontal for optimal 

results.  How long does the vertical support holding 

up the back of the panel need to be? 

 

 

33. A 127 foot tower is located on a hill that is inclined 

38° to the horizontal.  A guy-wire is to be attached to 

the top of the tower and anchored at a point 64 feet 

downhill from the base of the tower.  Find the length 

of wire needed. 

 

 

34. A 113 foot tower is located on a hill that is inclined 

34° to the horizontal.  A guy-wire is to be attached to 

the top of the tower and anchored at a point 98 feet 

uphill from the base of the tower.  Find the length of 

wire needed. 

 

 

35. A pilot is flying over a straight highway. He determines 

the angles of depression to two mileposts, 6.6 km apart, 

to be 37° and 44°, as shown in the figure.  Find the 

distance of the plane from point A, and the elevation of 

the plane. 

 

 

36. A pilot is flying over a straight highway. He determines 

the angles of depression to two mileposts, 4.3 km apart, 

to be 32° and 56°, as shown in the figure.  Find the 

distance of the plane from point A, and the elevation of 

the plane. 

 

 

 

 

38° 

64 ft 

127 ft 

20° 

38° 

8 ft 

34° 

98 ft 

113 ft 
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37° 44° 
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37. To estimate the height of a building, two students find the angle of elevation from a point (at 

ground level) down the street from the building to the top of the building is 39°. From a point 

that is 300 feet closer to the building, the angle of elevation (at ground level) to the top of the 

building is 50°. If we assume that the street is level, use this information to estimate the 

height of the building. 

 

38. To estimate the height of a building, two students find the angle of elevation from a point (at 

ground level) down the street from the building to the top of the building is 35°. From a point 

that is 300 feet closer to the building, the angle of elevation (at ground level) to the top of the 

building is 53°. If we assume that the street is level, use this information to estimate the 

height of the building. 

 

39. A pilot flies in a straight path for 1 hour 30 min. She then makes a course correction, heading 

10 degrees to the right of her original course, and flies 2 hours in the new direction. If she 

maintains a constant speed of 680 miles per hour, how far is she from her starting position? 

 

40. Two planes leave the same airport at the same time.  One flies at 20 degrees east of north at 

500 miles per hour.  The second flies at 30 east of south at 600 miles per hour.  How far apart 

are the planes after 2 hours? 
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5.4 Points on Circles 
 

While it is convenient to describe the location of a point on a circle using an angle or a distance 

along the circle, relating this information to the 𝑥 and 𝑦 coordinates and the circle equation is an 

important application of trigonometry.  

A distress signal is sent from a sailboat during a storm, but the transmission is unclear and the 

rescue boat sitting at the marina cannot determine the sailboat’s location.  Using high powered 

radar, they determine the distress signal is coming from a distance of 20 miles at an angle of 225 

degrees from the marina.  How many miles east/west and north/south of the rescue boat is the 

stranded sailboat? 

In a general sense, to investigate this, we begin by drawing 

a circle centered at the origin with radius 𝑟, and marking the 

point on the circle indicated by some angle 𝜃.  This point 

has coordinates (𝑥, 𝑦).   

If we drop a line segment vertically down from this point to 

the 𝑥 axis, we would form a right triangle inside of the 

circle.   

No matter which quadrant our angle 𝜃 puts us in we can 

draw a triangle by dropping a perpendicular line segment to 

the 𝑥 axis, keeping in mind that the values of 𝑥 and 𝑦 may be positive or negative, depending on 

the quadrant. 

Additionally, if the angle 𝜃 puts us on an axis, we simply measure the radius as the 𝑥 or 𝑦 with 

the other value being 0, again ensuring we have appropriate signs on the coordinates based on 

the quadrant. 

 Triangles obtained from different radii will all be similar triangles, meaning corresponding sides 

scale proportionally.  While the lengths of the sides may change, the ratios of the side lengths 

will always remain constant for any given angle. 

To be able to refer to these ratios more easily, we will give them names.  Since the ratios depend 

on the angle, we will write them as functions of the angle 𝜃. 

 

 

(x, y) 

r 

θ 
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Sine and Cosine 

For the point (𝑥, 𝑦) on a circle of radius 𝑟 at an angle of 𝜃, we can 

define two important functions as the ratios of the sides of the 

corresponding triangle: 

The sine function: sin(𝜃) =
𝑦

𝑟
 

The cosine function: cos(𝜃) =
𝑥

𝑟
 

In this section, we will explore these functions using both circles and right triangles.  In future 

sections we will take a closer look at the behavior and characteristics of the sine and cosine 

functions. 

Example 1: The point (3, 4) is on the circle of radius 5 at some angle 𝜃.  Find cos(𝜃) and sin (𝜃). 

cos(𝜃) =
𝑥

𝑟
 

sin(𝜃) =
𝑦

𝑟
 

Using the formulas evaluate each 

cos(𝜃) =
3

5
 

sin(𝜃) =
4

5
 

Final answer 

There are a few cosine and sine values which we can determine fairly easily because the 

corresponding point on the circle falls on the 𝑥 or 𝑦 axis. 

Example 2: Find )90cos(   and )90sin(   

On any circle, the terminal side of a 90 degree angle points 

straight up, so the coordinates of the corresponding point on the 

circle would be (0, r).  Using our definitions of cosine and sine, 

cos(90) =
𝑥

𝑟
=

0

𝑟
= 0 

sin(90) =
𝑦

𝑟
=

𝑟

𝑟
= 1 

 

(x, y) 

r 

θ 

y 

x 

r 

90° 

(0, r) 
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Notice that the definitions above can also be stated as: 

Coordinates of the Point on a Circle at a Given Angle 

On a circle of radius 𝑟 at an angle of 𝜃, we can find the coordinates of the point (𝒙, 𝒚)  at that 

angle using 

𝑥 = 𝑟 cos (𝜃) 

𝑦 = 𝑟 sin (𝜃) 

On a unit circle, a circle with radius 1, 𝑥 = cos (𝜃) and 𝑦 = sin(𝜃). 

Utilizing the basic equation for a circle centered at the origin, 𝑥2 + 𝑦2 = 𝑟2, combined with the 

relationships above, we can establish a new identity. 

𝑥2 + 𝑦2 = 𝑟2 Substituting the relations above, 

(𝑟 cos(𝜃))2 + (𝑟 sin(𝜃))2 = 𝑟2 Simplifying, 

𝑟2(cos(θ))2 + 𝑟2(sin(𝜃))2 = 𝑟2 Dividing by 𝑟2 

(cos(𝜃))2 + (sin(𝜃))2 = 1 Or, using shorthand notation 

cos2(𝜃) + sin2(𝜃) = 1 Rewritten in “common” form 

sin2(𝜃) + cos2(𝜃) = 1 Pythagorean Identity! 

Here cos2(𝜃) is a commonly used shorthand notation for (cos(𝜃))2.  Be aware that many 

calculators and computers do not understand the shorthand notation. 

We can relate the Pythagorean Theorem 𝑎2 + 𝑏2 = 𝑐2 to the basic equation of a circle  

𝑥2 + 𝑦2 = 𝑟2, which we have now used to arrive at the Pythagorean Identity. 

Pythagorean Identity 

The Pythagorean Identity.  For any angle 𝜃, sin2(𝜃) + cos2(𝜃) = 1. 

One use of this identity is that it helps us to find a cosine value of an angle if we know the sine 

value of that angle or vice versa.  However, since the equation will yield two possible values, we 

will need to utilize additional knowledge of the angle to help us find the desired value. 
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Example 3: If sin(𝜃) =
3

7
 and 𝜃 is in the second quadrant, find cos (𝜃). 

sin2(𝜃) + cos2(𝜃) = 1 Substitute known value 

(
3

7
)

2

+ cos2(𝜃) = 1 
Square fraction 

9

49
+ cos2(𝜃) = 1 Subtract 

9

49
 

cos2(𝜃) =
40

49
 

Square root 

cos(𝜃) = ±
√40

7
= ±

2√10

7
 

Angle is in second quadrant, 𝑥 is negative 

cos(𝜃) = −
2√10

7
 

Final answer 

Values for Sine and Cosine 

At this point, you may have noticed that we haven’t found any cosine or sine values from angles 

not on an axis.  To do this, we will need to utilize our knowledge of triangles. 

First, consider a point on a circle at an angle of 45 degrees, or 
𝜋

4
.  

At this angle, the 𝑥 and 𝑦 coordinates of the corresponding point 

on the circle will be equal because 45 degrees divides the first 

quadrant in half.  Since the 𝑥 and 𝑦 values will be the same, the 

sine and cosine values will also be equal.  Utilizing the 

Pythagorean Identity, 

sin2 (
𝜋

4
) + cos2 (

𝜋

4
) = 1 

As sin and cos are equal, replace sin with cos 

cos2 (
𝜋

4
) + cos2 (

𝜋

4
) = 1 

Add like terms 

2 cos2 (
𝜋

4
) = 1 

Divide 

cos2 (
𝜋

4
) =

1

2
 

Square root (first quadrant, positive 𝑥) 

1 

45° 

y 

x 

(x, y) = (x, x) 
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cos (
𝜋

4
) = √

1

2
=

1

√2
 

Rationalize denominator 

cos (
𝜋

4
) =

√2

2
 

As sin and cos are equal we also know 

sin (
𝜋

4
) =

√2

2
 

 

The (𝑥, 𝑦) coordinates for a point on a circle of radius 1 at an angle of 45 degrees are (
√2

2
,

√2

2
). 

Example 4: Find the coordinates of the point on a circle of radius 6 at an angle of 
𝜋

4
. 

𝑟 = 6, 𝜃 =
𝜋

4
 Using 𝑥 = 𝑟 cos(𝜃) and 𝑦 = 𝑟 sin(𝜃) 

𝑥 = 6 cos (
𝜋

4
) = 6 (

√2

2
) = 3√2 

𝑦 = 6 sin (
𝜋

4
) = 6 (

√2

2
) = 3√2 

Final answer 

Next, we will find the cosine and sine at an angle of 

30 degrees, or 
𝜋

6
.  To do this, we will first draw a 

triangle inside a circle with one side at an angle of 30 

degrees, and another at an angle of −30 degrees.  If 

the resulting two right triangles are combined into one 

large triangle, notice that all three angles of this larger 

triangle will be 60 degrees.   

 

 

60° 

60° 

60° 

r 

r 

y 

y 

r 

30° 

(x, y) 
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Since all the angles are equal, the sides will all be equal as well.  The vertical line has length 2𝑦, 

and since the sides are all equal we can conclude that 2𝑦 = 𝑟, or 𝑦 =
𝑟

2
.  Using this, we can find 

the sine value: 

sin (
𝜋

6
) =

𝑦

𝑟
=

𝑟
2
𝑟

=
𝑟

2
∙

1

𝑟
=

1

2
 

Using the Pythagorean Identity, we can find the cosine value: 

sin2 (
𝜋

6
) + cos2 (

𝜋

6
) = 1 Substitute sin (

𝜋

6
) =

1

2
 

(
1

2
)

2

+ cos2 (
𝜋

6
) = 1 

Square fraction 

1

4
+ cos2 (

𝜋

6
) = 1 Subtract 

1

4
 

cos2 (
𝜋

6
) =

3

4
 

Square root (first quadrant, positive 𝑥) 

cos (
𝜋

6
) = √

3

4
=

√3

2
 

 

The (x, y) coordinates for the point on a circle of radius 1 at an angle of 30 degrees are (
√3

2
,

1

2
). 

By drawing a triangle inside the unit circle with a 30 degree angle and reflecting it over the line 

𝑦 = 𝑥, we can find the cosine and sine for 60 degrees, or 
𝜋

3
, without any additional work. 

 

 

 

 

 
30° 

 

 

 

1 

y = x 

30° 

 

 

1 

60° 

 

y = x 
2

3  
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By this symmetry, we can see the coordinates of the point on the unit circle at an angle of 60 

degrees will be (
1

2
,

√3

2
), giving 

cos (
𝜋

3
) =

1

2
     and     sin (

𝜋

3
) =

√3

2
 

We have now found the cosine and sine values for all of the commonly encountered angles in the 

first quadrant of the unit circle.   

 
Radians 

 
0 

𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

Degrees 0° 30° 45° 60° 90° 

Cos θ √
4

4 
= 1 √

3

4 
=

√3

2
 √

2

4 
=

√2

2
 √

1

4 
=

1

2
 √

0

4 
= 0 

Sin θ √
0

4
= 0 √

1

4 
=

1

2
 √

2

4 
=

√2

2
 √

3

4 
=

√3

2
 √

4

4 
= 1 

 

For any given angle in the first quadrant, there will be an angle in another quadrant with the 

same sine value, and yet another angle in yet another quadrant with the same cosine value.  Since 

the sine value is the 𝑦 coordinate on the unit circle, the other angle with the same sine will share 

the same 𝑦 value, but have the opposite 𝑥 value.  Likewise, the angle with the same cosine will 

share the same 𝑥 value, but have the opposite 𝑦 value. 

As shown here, angle 𝛼 has the same sine value as angle 𝜃; the cosine values would be 

opposites.  The angle 𝛽 has the same cosine value as the angle; the sine values would be 

opposites. 

)sin()sin(    and  )cos()cos(    )sin()sin(    and  )cos()cos(    

 

 

 

 

(x, y) 

r 
θ 

α 

(x, y) 

r 
θ 

β 
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It is important to notice the relationship between the angles.  If, from the angle, you measured the 

smallest angle to the horizontal axis, all would have the same measure in absolute value.  We say 

that all these angles have a reference angle of 𝜃 

Reference Angle 

An angle’s reference angle is the size of the smallest angle 

to the horizontal axis. 

A reference angle is always an angle between 0 and 90 

degrees, or 0 and 
𝜋

2
 radians. 

Angles share the same cosine and sine values as their 

reference angles, except for signs (positive or negative) 

which can be determined from the quadrant of the angle. 

Example 5: Find the reference angle of 150 degrees.  Use it to find cos (150) and sin(150). 

150° 30º short of horizontal axis at 180º 

Reference angle: 30º Find sin and cos of this angle 

sin(30) =
1

2
, cos(30) =

√3

2
 

150 is in second quadrant, 𝑥 is negative, 𝑦 is positive 

sin(150) =
1

2
, cos(150) = −

√3

2
 

Final answer 

The (𝑥, 𝑦) coordinates for the point on a unit circle at an angle of 150  are (−
√3

2
,

1

2
). 

Using symmetry and reference angles, we can fill in cosine and sine values at the rest of the 

special angles on the unit circle.  Take time to learn the (𝑥, 𝑦) coordinates of all of the major 

angles in the first quadrant! 

(x, y) 

θ 

θ 

θ 

θ 
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Example 6: Find the coordinates of the point on a circle of radius 12 at an angle of 
7𝜋

6
. 

Note that this angle is in the third quadrant, where both 𝑥 and 𝑦 are negative.  Keeping this in 

mind can help you check your signs of the sine and cosine function. 
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𝑥 = 12 cos (
7𝜋

6
) = 12 (−

√3

2
) = −6√3 

𝑦 = 12 sin (
7𝜋

6
) = 12 (−

1

2
) = −6 

The coordinates of the point are (−6√3, −6). 

Example 7: We now have the tools to return to the sailboat question posed at the beginning of 

this section.  

A distress signal is sent from a sailboat during a storm, but the 

transmission is unclear and the rescue boat sitting at the 

marina cannot determine the sailboat’s location.  Using high 

powered radar, they determine the distress signal is coming 

from a distance of 20 miles at an angle of 225 degrees from 

the marina.  How many miles east/west and north/south of the 

rescue boat is the stranded sailboat? 

 

𝑟 = 20, 𝜃 = 225 Use formulas for 𝑥 and 𝑦 

𝑥 = 20 cos(225) = 20 (−
√2

2
) ≈ −14.142 

𝑦 = 20 sin(225) = 20 (−
√2

2
) ≈ −14.142 

Final answer 

The sailboat is located 14.142 miles west and 14.142 miles south of the marina. 

The special values of sine and cosine in the first quadrant are very useful to know, since knowing 

them allows you to quickly evaluate the sine and cosine of very common angles without needing 

to look at a reference or use your calculator.  However, scenarios do come up where we need to 

know the sine and cosine of other angles. 

To find the cosine and sine of any other angle, we turn to a computer or calculator.  Be aware:  

most calculators can be set into “degree” or “radian” mode, which tells the calculator the units 

for the input value.  When you evaluate “cos(30)” on your calculator, it will evaluate it as the 

cosine of 30 degrees if the calculator is in degree mode, or the cosine of 30 radians if the 

calculator is in radian mode.  Most computer software with cosine and sine functions only 

operates in radian mode. 

20 mi 

225° 
E W 

N 

S 
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Example 8: Evaluate the cosine of 20 degrees using a calculator or computer. 

On a calculator that can be put in degree mode, you can evaluate this directly to be 

approximately 0.939693.   

On a computer or calculator without degree mode, you would first need to convert the angle to 

radians, or equivalently evaluate the expression cos (20 ∙
𝜋

180
). 
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5.4 Points on Circles Practice 
 

1. Find the quadrant in which the terminal point determined by 𝑡 lies if 

 

a. sin(𝑡) < 0 and cos(𝑡) < 0  b. sin(𝑡) > 0 and cos(𝑡) < 0 

 

2. Find the quadrant in which the terminal point determined by 𝑡 lies if  

 

a. sin(𝑡) < 0 and cos(𝑡) > 0  b. sin(𝑡) > 0 and cos(𝑡) > 0 

 

3. The point 𝑃 is on the unit circle. If the 𝑦-coordinate of 𝑃 is 
3

5
, and 𝑃 is in quadrant II, find the 

𝑥 coordinate. 

 

4. The point 𝑃 is on the unit circle. If the 𝑥-coordinate of 𝑃 is 
1

5
, and 𝑃 is in quadrant IV, find 

the 𝑦 coordinate. 

  

5. If cos(𝜃) =
1

7
 and 𝜃 is in the 4

th
 quadrant, find sin (𝜃). 

 

6. If cos(𝜃) =
2

9
 and 𝜃 is in the 1

st
 quadrant, find sin (𝜃). 

 

7. If sin(𝜃) =
3

8
 and 𝜃 is in the 2

nd
 quadrant, find cos (𝜃).  

 

8. If sin(𝜃) = −
1

4
 and 𝜃 is in the 3

rd
 quadrant, find cos (𝜃).  

 

9. For each of the following angles, find the reference angle and which quadrant the angle lies 

in.  Then compute sine and cosine of the angle. 

 

a.  225°  b. 300°  c. 135°  d. 210° 

 

10. For each of the following angles, find the reference angle and which quadrant the angle lies 

in.  Then compute sine and cosine of the angle. 

 

a. 120°  b. 315°  c. 250°  d. 150° 

 

11. For each of the following angles, find the reference angle and which quadrant the angle lies 

in.  Then compute sine and cosine of the angle. 

 

a. 
5𝜋

4
  b. 

7𝜋

6
  c. 

5𝜋

3
  d. 

3𝜋

4
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12. For each of the following angles, find the reference angle and which quadrant the angle lies 

in.  Then compute sine and cosine of the angle. 

 

a. 
4𝜋

3
  b. 

2𝜋

3
  c. 

5𝜋

6
  d. 

7𝜋

4
 

 

13. Give exact values for sin (𝜃) and cos (𝜃) for each of these angles. 

 

a. −
3𝜋

4
  b. 

23𝜋

6
  c. −

𝜋

2
  d. 5𝜋 

 

14. Give exact values for sin (𝜃) and cos (𝜃) for each of these angles. 

 

a. −
2𝜋

3
  b. 

17𝜋

4
  c. −

𝜋

6
  d. 10𝜋 

 

15. Find an angle 𝜃 with 0° < 𝜃 < 360° or 0 < 𝜃 < 2𝜋 that has the same sine value as: 

 

a. 
𝜋

3
  b.  80°  c. 140°  d. 

4𝜋

3
  e. 305°  

 

16. Find an angle 𝜃 with 0° < 𝜃 < 360°  or 0 < 𝜃 < 2𝜋 that has the same sine value as: 

 

a. 
𝜋

4
  b.  15°  c. 160°  d. 

7𝜋

6
  e. 340°  

 

17. Find an angle 𝜃 with 0° < 𝜃 < 360°   or 0 < 𝜃 < 2𝜋 that has the same cosine value as: 

 

a. 
𝜋

3
  b.  80°  c. 140°  d. 

4𝜋

3
  e. 305°  

 

18. Find an angle 𝜃 with 0° < 𝜃 < 360° or 0 < 𝜃 < 2𝜋 that has the same cosine value as: 

 

a. 
𝜋

4
  b.  15°  c. 160°  d. 

7𝜋

6
  e. 340°  

 

19. Find the coordinates of the point on a circle with radius 15 corresponding to an angle of 

220°. 

 

20. Find the coordinates of the point on a circle with radius 20 corresponding to an angle of 

280°.  
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21. Marla is running clockwise around a circular track. She runs at a constant speed of 3 meters 

per second. She takes 46 seconds to complete one lap of the track. From her starting point, it 

takes her 12 seconds to reach the northernmost point of the track. Impose a coordinate system 

with the center of the track at the origin, and the northernmost point on the positive y-axis. 

 

a) Give Marla’s coordinates at her starting point. 

b) Give Marla’s coordinates when she has been running for 10 seconds. 

c) Give Marla’s coordinates when she has been running for 901.3 seconds. 
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5.5 Other Trigonometric Functions 
 

In the previous section, we defined the sine and cosine functions as ratios of the sides of a right 

triangle in a circle.  Since the triangle has 3 sides there are 6 possible combinations of ratios.  

While the sine and cosine are the two prominent ratios that can be formed, there are four others, 

and together they define the 6 trigonometric functions. 

Tangent, Secant, Cosecant, and Cotangent Functions 

For the point (𝑥, 𝑦) on a circle of radius 𝑟 at an angle of 𝜃, we can define four additional 

important functions as the ratios of the sides of the corresponding triangle: 

The tangent function: tan(𝜃) =
𝑦

𝑥
 

The secant function: sec(𝜃) =
𝑟

𝑥
  

The cosecant function: csc(𝜃) =
𝑟

𝑦
 

The cotangent function: cot(𝜃) =
𝑥

𝑦
 

Geometrically, notice that the definition of tangent corresponds with the slope of the line 

segment between the origin (0, 0) and the point (𝑥, 𝑦).   This relationship can be very helpful in 

thinking about tangent values. 

You may also notice that the ratios defining the secant, cosecant, and cotangent are the 

reciprocals of the ratios defining the cosine, sine, and tangent functions, respectively.  

Additionally, notice that using our results from the last section, 

tan(𝜃) =
𝑦

𝑥
=

𝑟 sin(𝜃)

𝑟 cos (𝜃)
=

sin(𝜃)

cos(𝜃)
 

Applying this concept to the other trig functions we can state the other reciprocal identities. 

 

 

 

(x, y) 

r 

θ 

y 

x 
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Identities 

The other four trigonometric functions can be related back to the sine and cosine functions using 

these basic relationships: 

tan(𝜃) =
sin(𝜃)

cos(𝜃)
,   sec(𝜃) =

1

cos(𝜃)
,    csc(𝜃) =

1

sin(𝜃)
,    cot(𝜃) =

1

tan(𝜃)
=

cos(𝜃)

sin(𝜃)
 

These relationships are called identities.  Identities are statements that are true for all values of 

the input on which they are defined.  Identities are usually something that can be derived from 

definitions and relationships we already know, similar to how the identities above were derived 

from the circle relationships of the six trig functions.  The Pythagorean Identity we learned 

earlier was derived from the Pythagorean Theorem and the definitions of sine and cosine.  We 

will discuss the role of identities more after an example. 

Example 1: Evaluate tan (45°) 

tan(45°) Rewrite with sine and cosine 

tan(45°) =
sin(45°)

cos(45°)
 

Recall values for sine and cosine and simplify 

tan(45°) =
sin(45°)

cos(45°)
=

√2
2

√2
2

= 1 

Final answer 

Notice this result is consistent with our interpretation of the tangent value as the slope of the line 

passing through the origin at the given angle: a line at 45 degrees would indeed have a slope of 1. 
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Example 2: Evaluate sec (
5𝜋

6
) 

sec (
5𝜋

6
) 

Rewrite with cosine 

sec (
5𝜋

6
) =

1

cos (
5𝜋
6 )

 
Evaluate cosine and simplify 

sec (
5𝜋

6
) =

1

cos (
5𝜋
6 )

=
1

−
√3
2

= −
2

√3
 

Rationalize denominator 

−
2√3

3
 

Final answer 

Just as we often need to simplify algebraic expressions, it is often also necessary or helpful to 

simplify trigonometric expressions.  To do so, we utilize the definitions and identities we have 

established. 

Example 3: Simplify 
sec(𝜃)

tan(𝜃)
. 

sec(𝜃)

tan(𝜃)
 

Rewrite in terms of sine and cosine 

1
cos(𝜃)

sin(𝜃)
cos(𝜃)

 

Multiply by the reciprocal 

1

cos(𝜃)
∙

cos(𝜃)

sin(𝜃)
 

Reduce the cosines 

1

sin(𝜃)
 

Simplify using the identity 

csc(𝜃) Final answer 

By showing that 
sec(𝜃)

tan(𝜃)
 can be simplified to csc(𝜃), we have, in fact, established a new identity:  

that 
sec(𝜃)

tan(𝜃)
= csc (𝜃).   
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Occasionally a question may ask you to “prove the identity” or “establish the identity.”  This is 

the same idea as when an algebra book asks a question like “show that (𝑥 − 1)2 = 𝑥2 − 2𝑥 +

1.”  In this type of question we must show the algebraic manipulations that demonstrate that the 

left and right side of the equation are in fact equal.  You can think of a “prove the identity” 

problem as a simplification problem where you know the answer: you know what the end goal of 

the simplification should be, and just need to show the steps to get there. 

To prove an identity, in most cases you will start with the expression on one side of the identity 

and manipulate it using algebra and trigonometric identities until you have simplified it to the 

expression on the other side of the equation.  Do not treat the identity like an equation to solve – 

it isn’t! The proof is establishing if the two expressions are equal, so we must take care to work 

with one side at a time rather than applying an operation simultaneously to both sides of the 

equation. 

Example 4: Prove the identity 
1+cot(𝛼)

csc(𝛼)
= sin(𝛼) + cos (𝛼). 

Since the left side seems a bit more complicated, we will start there and simplify the expression 

until we obtain the right side.  We can use the right side as a guide for what might be good steps 

to make.  In this case, the left side involves a fraction while the right side doesn’t, which 

suggests we should look to see if the fraction can be reduced.   

Additionally, since the right side involves sine and cosine and the left does not, it suggests that 

rewriting the cotangent and cosecant using sine and cosine might be a good idea. 

1 + cot(𝛼)

csc(𝛼)
 

Rewrite with sine and cosine 

1 +
cos(𝛼)
sin(𝛼)
1

sin(𝛼)

 

Multiply by the reciprocal 

(1 +
cos(𝛼)

sin(𝛼)
) sin(𝛼) 

Distribute 

sin(𝛼) +
cos(𝛼) sin(𝛼)

sin(𝛼)
 

Reduce 

sin(𝛼) + cos(𝛼) Final answer 
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Notice that in the second step, we could have combined the 1 and 
cos(𝛼)

sin(𝛼)
 before inverting and 

multiplying.  It is very common when proving or simplifying identities for there to be more than 

one way to obtain the same result. 

We can also utilize identities we have previously learned, like the Pythagorean Identity, while 

simplifying or proving identities. 

Example 5: Establish the identity 
cos2(𝜃)

1+sin (𝜃)
= 1 − sin(𝜃). 

Since the left side of the identity is more complicated, it makes sense to start there.  To simplify 

this, we will have to reduce the fraction, which would require the numerator to have a factor in 

common with the denominator.  Additionally, we notice that the right side only involves sine.  

Both of these suggest that we need to convert the cosine into something involving sine. 

Recall the Pythagorean Identity told us sin2(𝜃) + cos2(𝜃) = 1.  By moving one of the trig 

functions to the other side, we can establish: 

sin2(𝜃) = 1 − cos2(𝜃)      and     cos2(𝜃) = 1 − sin2(𝜃) 

Utilizing this, we now can establish the identity.  We start on one side and manipulate: 

cos2(𝜃)

1 + sin(𝜃)
 

Replace cos2(𝜃) with Pythagorean identity 

1 − sin2(𝜃)

1 + sin(𝜃)
 

Factor the numerator 

(1 + sin(𝜃))(1 − sin(𝜃))

1 + sin(𝜃)
 

Reducing the like factors 

1 − sin(𝜃) Final answer 
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We can also build new identities from previously established identities.  For example, if we 

divide both sides of the Pythagorean Identity by cosine squared (which is allowed since we’ve 

already shown the identity is true), we find a new identity: 

sin2(𝜃) + cos2(𝜃) = 1 Divide both sides by cos2(𝜃) 

sin2(𝜃) + cos2(𝜃)

cos2(𝜃)
=

1

cos2(𝜃)
 

Divide each term on the right 

sin2(𝜃)

cos2(𝜃)
+

cos2(𝜃)

cos2(𝜃)
=

1

cos2(𝜃)
 

Simplify using definition of tan(𝜃) and sec(𝜃) 

tan2(𝜃) + 1 = sec2(𝜃) New identity 

Similarly, by dividing the original Pythagorean identity by sin2(𝜃) it can be shown that 

1 + cot2(𝜃) = csc2(𝜃) 

Alternate forms of the Pythagorean Identity 

tan2(𝜃) + 1 = sec2(𝜃) 

1 + cot2(𝜃) = csc2(𝜃) 

Example 6: If tan(𝜃) =
2

7
 and 𝜃 is in the 3

rd
 quadrant, find cos (𝜃). 

There are two approaches to this problem, both of which work equally well. 

Approach 1 

Since tan(𝜃) =
𝑦

𝑥
 and the angle is in the third quadrant, we can imagine a triangle in a circle of 

some radius so that the point on the circle is (−7, −2).  Using the Pythagorean Theorem, we can 

find the radius of the circle: 

(−7)2 + (−2)2 = 𝑟2 Simplify and solve for 𝑟 

𝑟 = √53 Now find cos(𝜃) =
𝑥

𝑟
 

cos(𝜃) =
𝑥

𝑟
= −

7

√57
= −

7√53

53
 

Final answer 
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Approach 2 

Using the tan2(𝜃) + 1 = sec2(𝜃) form of the Pythagorean Identity with the known tangent, 

tan2(𝜃) + 1 = sec2(𝜃) Substitute 
2

7
 for tan(𝜃) 

(
2

7
)

2

+ 1 = sec2(𝜃) 
Simplify left side 

53

49
= sec2(𝜃) 

Square root 

±
√53

7
= sec(𝜃) 

Cosine is the reciprocal of secant 

±
7

√53
= cos(𝜃) 

Third quadrant, 𝑥 or cosine is negative 

cos(𝜃) = −
7

√53
 

Rationalize denominator 

cos(𝜃) = −
7√53

53
 

Final answer 

 

  



292 
 

5.5 Other Trigonometric Functions Practice 

 

1. If 𝜃 =
𝜋

4
 , find exact values for sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

2. If 𝜃 =
7𝜋

4
 , find exact values for sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

3. If 𝜃 =
5𝜋

6
 , find exact values for sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

4. If 𝜃 =
𝜋

6
 , find exact values for sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

5. If 𝜃 =
2𝜋

3
 , find exact values for sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

6. If 𝜃 =
4𝜋

3
 , find exact values for sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

7. Evaluate: a. sec (135°)   b. csc (210°)   c. tan (60°)   d. cot (225°) 

8. Evaluate: a. sec (30°)    b. csc (315°)  c. tan (135°)  d. cot (150°) 

9. If sin(𝜃) =
3

4
, and 𝜃 is in quadrant II, find cos(𝜃) , sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

10. If sin(𝜃) =
2

7
, and 𝜃 is in quadrant II, find cos(𝜃) , sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

11. If cos(𝜃) = −
1

3
, and 𝜃 is in quadrant III, find sin(𝜃) , sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

12. If cos(𝜃) =
1

5
, and 𝜃 is in quadrant I, find sin(𝜃) , sec(𝜃) , csc(𝜃) , tan(𝜃) , cot (𝜃). 

13. If tan(𝜃) =
12

5
, and 0 ≤ 𝜃 <

𝜋

2
, find sin(𝜃) , cos(𝜃) , sec(𝜃) , csc(𝜃) , cot (𝜃). 

14. If tan(𝜃) = 4, and 0 ≤ 𝜃 <
𝜋

2
, find sin(𝜃) , cos(𝜃) , sec(𝜃) , csc(𝜃) , cot (𝜃). 

15. Use a calculator to find sine, cosine, and tangent of the following values: 

a. 0.15  b. 4  c. 70°  d. 283°  

16. Use a calculator to find sine, cosine, and tangent of the following values: 

a. 0.5  b. 5.2  c. 10°  d. 195°  
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Simplify each of the following to an expression involving a single trig function with no fractions. 

17. csc(𝑡) tan(𝑡) 18. cos(𝑡) csc(𝑡) 

19. sec(𝑡)

csc(𝑡)
 

20. cot(𝑡)

csc(𝑡)
 

21. sec(𝑡) − cos(𝑡)

sin(𝑡)
 

22. tan(𝑡)

sec(𝑡) − cos(𝑡)
 

23. 1 + cot(𝑡)

1 + tan(𝑡)
 

24. 1 + sin(𝑡)

1 + csc(𝑡)
 

25. sin2(𝑡) + cos2(𝑡)

cos2(𝑡)
 

26. 1 − sin2(𝑡)

sin2(𝑡)
 

Prove the identities. 

27. sin2(𝜃)

1 + cos(𝜃)
= 1 − cos(𝜃) 

28. 
tan2(𝑡) =

1

cos2(𝑡)
− 1 

29. sec(𝑎) − cos(𝑎) = sin(𝑎) tan(𝑎) 30. 1 + tan2(𝑏)

tan2(𝑏)
= csc2(𝑏) 

31. csc2(𝑥) − sin2(𝑥)

csc(𝑥) + sin(𝑥)
= cos(𝑥) cot(𝑥) 

32. sin(𝜃) − cos(𝜃)

sec(𝜃) − csc(𝜃)
= sin(𝜃) cos(𝜃) 

33. csc2(𝛼) − 1

csc2(𝛼) − csc(𝛼)
= 1 + sin(𝛼) 

34. 1 + cot(𝑥) = cos(𝑥) (sec(𝑥) + csc(𝑥)) 

35. 1 + cos(𝑢)

sin(𝑢)
=

sin(𝑢)

1 − cos(𝑢)
 

36. 
2 sec2(𝑡) =

1 − sin(𝑡)

cos2(𝑡)
+

1

1 − sin(𝑡)
 

37. sin2(𝛾) − cos2(𝛾)

sin(γ) − cos(γ)
= sin(γ) + cos(γ) 

38. (1 + cos(𝐴))(1 − cos(𝐴))

sin(𝐴)
= sin(𝐴) 

39. (sec(𝜃) + tan (𝜃))(1 − sin(𝜃))

= cos(𝜃) 

40. tan(𝜃) + cos(𝜃)

sin(𝜃)
= sec(𝜃) + cot (𝜃) 
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5.6 Graphs of Trig Functions 
 

The London Eye is a huge Ferris wheel with diameter 135 

meters (443 feet) in London, England, which completes one 

rotation every 30 minutes.  When we look at the behavior of 

this Ferris wheel it is clear that it completes 1 cycle, or 1 

revolution, and then repeats this revolution over and over 

again.   

This is an example of a periodic function, because the Ferris 

wheel repeats its revolution or one cycle every 30 minutes, and 

so we say it has a period of 30 minutes. 

In this section, we will work to sketch a graph of a rider’s 

height above the ground over time and express this height as a 

function of time.   

Periodic Functions 

A periodic function is a function for which a specific horizontal shift, 𝑃, results in the original 

function: 𝑓(𝑥 + 𝑃) = 𝑓(𝑥) for all values of 𝑥.   When this occurs we call the smallest such 

horizontal shift with 𝑃 > 0 the period of the function.  

You might immediately guess that there is a connection here to finding points on a circle, since 

the height above ground would correspond to the 𝑦 value of a point on the circle. We can 

determine the 𝑦 value by using the sine function.  To get a better sense of this function’s 

behavior, we can create a table of values we know, and use them to sketch a graph of the sine 

and cosine functions.  

Listing some of the values for sine and cosine on a unit circle, 

𝜃 0 
𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

2𝜋

3
 

3𝜋

4
 

5𝜋

6
 𝜋 

cos 1 
√3

2
 

√2

2
 

1

2
 0 −

1

2
 −

√2

2
 −

√3

2
 −1 

sin 0 
1

2
 

√2

2
 

√3

2
 1 

√3

2
 

√2

2
 

1

2
 0 

 

Here you can see how for each angle, we use the 𝑦 value of the point on the circle to determine 

the output value of the sine function. 
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Plotting more points gives the full shape of the sine and cosine functions. 

 

Notice how the sine values are positive between 0 and 𝜋, which correspond to the values of sine 

in quadrants 1 and 2 on the unit circle, and the sine values are negative between 𝜋 and 2𝜋, 

corresponding to quadrants 3 and 4. 

 

Like the sine function we can track the value of the cosine function through the 4 quadrants of 

the unit circle as we place it on a graph. 

 

    

θ 

f(θ) = sin(θ) 

θ 

f(θ) = sin(θ) 

g(θ) = cos(θ) 

θ 
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Both of these functions are defined for all real numbers, since we can evaluate the sine and 

cosine of any angle.  By thinking of sine and cosine as coordinates of points on a unit circle, it 

becomes clear that the range of both functions must be the interval [−1,1]. 

Domain and Range of Sine and Cosine 

The domain of sine and cosine is all real numbers, (−∞, ∞). 

The range of sine and cosine is the interval [−1,1]. 

Both these graphs are called sinusoidal graphs. 

In both graphs, the shape of the graph begins repeating after 2𝜋.  Indeed, since any coterminal 

angles will have the same sine and cosine values, we could conclude that sin(𝜃 + 2𝜋) = sin (𝜃) 

and cos(𝜃 + 2𝜋) = cos (𝜃). 

In other words, if you were to shift either graph horizontally by 2𝜋, the resulting shape would be 

identical to the original function.  Sinusoidal functions are a specific type of periodic function. 

Period of Sine and Cosine 

The periods of the sine and cosine functions are both 2𝜋. 

Looking at these functions on a domain centered at the vertical axis helps reveal symmetries. 

sine      cosine 

          

 

The sine function is symmetric about the origin, the same symmetry the cubic function has, 

making it an odd function. The cosine function is clearly symmetric about the 𝑦 axis, the same 

symmetry as the quadratic function, making it an even function. 

Negative Angle Identities 

The sine is an odd function, symmetric about the origin, so sin(−𝜃) = −sin (𝜃). 

The cosine is an even function, symmetric about the 𝑦-axis, so cos(−𝜃) = cos(𝜃). 

These identities can be used, among other purposes, for helping with simplification and proving 

identities. 
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You may recall the cofunction identity from an earlier section: sin(𝜃) = cos (
𝜋

2
− 𝜃).  

Graphically, this tells us that the sine and cosine graphs are horizontal transformations of each 

other.  We can prove this by using the cofunction identity and the negative angle identity for 

cosine. 

sin(𝜃) = cos (
𝜋

2
− 𝜃) = cos (−𝜃 +

𝜋

2
) = cos (− (𝜃 −

𝜋

2
)) = cos (𝜃 −

𝜋

2
) 

Now we can clearly see that if we horizontally shift the cosine function to the right by 
𝜋

2
 we get 

the sine function. 

Remember this shift is not representing the period of the function.  It only shows that the cosine 

and sine function are transformations of each other. 

Example 1: Simplify 
sin(−𝜃)

tan(𝜃)
. 

sin(−𝜃)

tan(𝜃)
 

 

Use the even/odd identity 

− sin(𝜃)

tan(𝜃)
 

 

Rewrite the tangent 

− sin(𝜃)

sin(θ)
cos(θ)

 

 

Multiply by the reciprocal 

− sin(𝜃) ∙
cos(𝜃)

sin(𝜃)
 

 

Reduce 

− cos(𝜃) Final answer 
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Transforming Sine and Cosine 

Example 2: A point rotates around a circle of radius 3.  

Sketch a graph of the y coordinate of the point. 

Recall that for a point on a circle of radius 𝑟, the 𝑦 

coordinate of the point is 𝑦 = 𝑟𝑠𝑖𝑛(𝜃), so in this case, 

we get  the equation 𝑦(𝜃) = 3sin (𝜃).   

The constant 3 causes a vertical stretch of the y values 

of the function by a factor of 3.   

Notice that the period of the function does not change. 

Since the outputs of the graph will now oscillate between -3 and 3, we say that the amplitude of 

the sine wave is 3. 

Example 3: A circle with radius 3 feet is mounted with its 

center 4 feet off the ground.  The point closest to the ground 

is labeled P.  Sketch a graph of the height above ground of 

the point P as the circle is rotated, then find a function that 

gives the height in terms of the angle of rotation. 

Sketching the height, we note that it will start 1 foot 

above the ground, then increase up to 7 feet above 

the ground, and continue to oscillate 3 feet above 

and below the center value of 4 feet. 

Although we could use a transformation of either 

the sine or cosine function, we start by looking for 

characteristics that would make one function easier 

to use than the other.  

We decide to use a cosine function because it starts at the highest or lowest value, while a sine 

function starts at the middle value.  A standard cosine starts at the highest value, and this graph 

starts at the lowest value, so we need to incorporate a vertical reflection.   

Second, we see that the graph oscillates 3 above and below the center, while a basic cosine has 

an amplitude of one, so this graph has been vertically stretched by 3, as in the last example. 

Finally, to move the center of the circle up to a height of 4, the graph has been vertically shifted 

up by 4.  Putting these transformations together, 

ℎ(𝜃) = −3 cos(𝜃) + 4 

3 ft 

4 ft 

P 
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To answer the Ferris wheel problem at the beginning of the section, we need to be able to 

express our sine and cosine functions at inputs of time.  To do so, we will utilize composition.  

Since the sine function takes an input of an angle, we will look for a function that takes time as 

an input and outputs an angle.  If we can find a suitable 𝜃(𝑡) function, then we can compose this 

with our 𝑓(𝜃) = cos (𝜃) function to obtain a sinusoidal function of time: 𝑓(𝑡) = cos (𝜃(𝑡)). 

Example 4: A point completes 1 revolution every 2 minutes around a circle of radius 5.  Find the 

x coordinate of the point as a function of time, if it starts at (5, 0).  

Normally, we would express the 𝑥 coordinate of a point on a unit circle using  

𝑥 = 𝑟 cos (𝜃), here we write the function 𝑥(𝜃) = 5cos (𝜃). 

The rotation rate of 1 revolution every 2 minutes is an angular velocity.  We can use this rate to 

find a formula for the angle as a function of time.  The point begins at an angle of 0.  Since the 

point rotates 1 revolution is 2𝜋 radians every 2 

minutes, it rotates 𝜋 radians every minute.  After 𝑡 

minutes, it will have rotated: 

𝜃(𝑡) = 𝜋𝑡 radians 

Composing this with the cosine function, we obtain 

a function of time. 

𝑥(𝑡) = 5 cos(𝜃(𝑡)) = 5cos (𝜋𝑡) 

Notice that this composition has the effect of a horizontal compression, changing the period of 

the function. 

To see how the period relates to the stretch or compression coefficient 𝐵 in the equation  

𝑓(𝑡) = sin (𝐵𝑡), note that the period will be the time it takes to complete one full revolution of a 

circle.  If a point takes 𝑃 minutes to complete 1 revolution, then the angular velocity is 
2𝜋 radians

𝑃 mintues
.  

Then 𝜃(𝑡) =
2𝜋

𝑃
𝑡.  Composing with a sine function, 𝑓(𝑡) = sin(𝜃(𝑡)) = sin (

2𝜋

𝑃
𝑡) 

From this, we can determine the relationship between the coefficient 𝐵 and the period: 𝐵 =
2𝜋

𝑃
.  

Notice that the stretch or compression coefficient 𝐵 is a ratio of the “normal period of a 

sinusoidal function” to the “new period.”   If we know the stretch or compression coefficient 𝐵, 

we can solve for the “new period”: 𝑃 =
2𝜋

𝐵
. 

 

 

x(θ) 
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Example 5: What is the period of the function 𝑓(𝑡) = sin (
𝜋

6
𝑡)? 

sin (
𝜋

6
𝑡) 

 

Use formula 𝑃 =
2𝜋

𝐵
 where 𝐵 =

𝜋

6
 

2𝜋
𝜋
6

 

 

Multiply by reciprocal 

2𝜋 ∙
6

𝜋
 

 

Simplify 

12 
 

Final answer 

While it is common to compose sine or cosine with functions involving time, the composition 

can be done so that the input represents any reasonable quantity. 

Example 6: A bicycle wheel with radius 14 inches has the bottom-most point on the wheel 

marked in red.  The wheel then begins rolling down the street.  Write a formula for the height 

above ground of the red point after the bicycle has travelled 𝑥 

inches. 

The height of the point begins at the lowest value, 0, increases 

to the highest value of 28 inches, and continues to oscillate 

above and below a center height of 14 inches.  In terms of the 

angle of rotation, 𝜃:  

ℎ(𝜃) = −14 cos(𝜃) + 14 

In this case, 𝑥 is representing a linear distance the wheel has 

travelled, corresponding to an arclength along the circle.  Since 

arc length and angle can be related by 𝑠 = 𝑟𝜃, in this case we 

can write 𝑥 = 14𝜃, which allows us to express the angle in 

terms of 𝑥: 𝜃(𝑥) =
𝑥

14
 

Composing this with our cosine-based function from above, 

ℎ(𝑥) = ℎ(𝜃(𝑥)) = −14 cos (
𝑥

14
) + 14 = −14 cos (

1

14
𝑥) + 14 

The period of this function would be =
2𝜋

𝐵
=

2𝜋
1

14

= 2𝜋 ∙ 14 = 28𝜋, the circumference of the 

circle.  This makes sense – the wheel completes one full revolution after the bicycle has travelled 

a distance equivalent to the circumference of the wheel. 

θ 

Starting 

Rotated by θ 

14in 

x 
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Summarizing our transformations so far: 

Transformations of Sine and Cosine 

Given an equation in the form 𝑓(𝑡) = 𝐴 sin (𝐵𝑡) + 𝑘 or 𝑓(𝑡) = 𝐴 cos(𝐵𝑡) + 𝑘 

𝐴 is the vertical stretch, and is the amplitude of the function.  

𝐵 is the horizontal stretch/compression, and is related to the period, 𝑷, by 𝑃 =
2𝜋

𝐵
. 

𝑘 is the vertical shift 

 

 

 

 

 

 

 

Example 7: Determine the vertical shift, amplitude, and period of the function  

𝑓(𝑡) = 3 sin(2𝑡) + 1. 

The amplitude is 3 

The period is 𝑃 =
2𝜋

𝐵
=

2𝜋

2
= 𝜋 

The vertical shift is up 1. 

Amplitude, vertical shift, and period, when combined with vertical reflections across the 

horizontal axis, allow us to write equations for a variety of sinusoidal situations.  

 

 

 

 

 

y = k 
A 

A 

P 

P 
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Example 8: Find a formula for the sinusoidal 

function graphed here. 

The graph oscillates from a low of -1 to a high of 3, 

putting the vertical shift at up 1, halfway between. 

The amplitude will be 2, the distance from the 

vertical shift to the highest value (or lowest value) 

of the graph. 

The period of the graph is 8.  We can measure this from the first peak at 𝑥 = −2 to the second at 

𝑥 = 6.  Since the period is 8, the stretch/compression factor we will use will be 

𝐵 =
2𝜋

𝑃
=

2𝜋

8
=

𝜋

4
 

At x = 0, the graph is at the middle value, which tells us the graph can most easily be represented 

as a sine function.  Since the graph then decreases, this must be a vertical reflection of the sine 

function.  Putting this all together, 

𝑓(𝑡) = −2 sin (
𝜋

4
𝑡) + 1 

With these transformations, we are ready to answer the Ferris wheel problem from the beginning 

of the section. 

Example 9: The London Eye is a huge Ferris wheel with diameter 135 meters (443 feet) in 

London, England, which completes one rotation every 30 minutes.  Riders board from a platform 

2 meters above the ground.  Express a rider’s height above ground as a function of time in 

minutes. 

With a diameter of 135 meters, the wheel has a radius of 67.5 meters.  The height will oscillate 

with amplitude of 67.5 meters above and below the center. 

Passengers board 2 meters above ground level, so the center of the wheel must be located 

67.5 + 2 = 69.5 meters above ground level.  The vertical shift of the oscillation will be at 69.5 

meters. 

The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with period of 

30 minutes. 

Lastly, since the rider boards at the lowest point, the height will start at the smallest value and 

increase, following the shape of a reflected cosine curve with respect to the horizontal axis. 
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Putting these together: 

Amplitude: 67.5 

Midline: 69.5 

Period: 30, so 𝐵 =
2𝜋

30
=

𝜋

15
  

Shape: − cos  function 

An equation for the rider’s height would be 

ℎ(𝑡) = −67.5 cos (
𝜋

15
𝑡) + 69.5 

While these transformations are sufficient to represent many situations, occasionally we 

encounter a sinusoidal function that does not have a vertical intercept at the lowest point, highest 

point, or midline.  In these cases, we need to use horizontal shifts.  Recall that when the inside of 

the function is factored, it reveals the horizontal shift. 

Horizontal Shifts of Sine and Cosine 

Given an equation in the form 𝑓(𝑡) = 𝐴 sin(𝐵(𝑡 − ℎ)) + 𝑘 or 𝑓(𝑡) = 𝐴 cos(𝐵(𝑡 − ℎ)) + 𝑘 

 ℎ is the horizontal shift of the function 

Example 10: Sketch a graph of (𝑡) = 3 sin (
𝜋

4
𝑡 −

𝜋

4
). 

To reveal the horizontal shift, we first need to factor inside the function:  

𝑓(𝑡) = 3 sin (
𝜋

4
(𝑡 − 1)) 

This graph will have the shape of a sine function, starting at the middle and increasing, with an 

amplitude of 3.  The period of the graph will be 𝑃 =
2𝜋

𝐵
=

2𝜋
𝜋

4

= 2𝜋 ∙
4

𝜋
= 8.  Finally, the 

graph will be shifted to the right by 1.   
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In some physics and mathematics books, you will hear the horizontal shift referred to as phase 

shift.  In other physics and mathematics books, they would say the phase shift of the equation 

above is
𝜋

4
, the value in the unfactored form.  Because of this ambiguity, we will not use the term 

phase shift any further, and will only talk about the horizontal shift. 

Example 11: Find a formula for the function graphed 

here. 

With highest value at 1 and lowest value at −5, the 

middle will be halfway between at −2.   

The distance from the middle to the highest or lowest 

value gives an amplitude of 3. 

The period of the graph is 6, which can be measured from the peak at 𝑥 = 1 to the next peak at 

𝑥 = 7, or from the distance between the lowest points.  This gives 𝐵 =
2𝜋

𝑃
=

2𝜋

6
=

𝜋

3
. 

For the shape and shift, we have more than one option.  We could either write this as: 

 A cosine function shifted 1 to the right 

 A negative cosine function shifted 2 to the left 

 A sine function shifted 
1

2
 to the left 

 A negative sine function shifted 2.5 to the right 

While any of these would be fine, the cosine shifts are easier to work with than the sine shifts in 

this case, because they involve integer values.  Writing these: 

𝑦(𝑥) = 3 cos (
π

3
(𝑥 − 1)) − 2     or     𝑦(𝑥) = −3 cos (

𝜋

3
(𝑥 + 2)) − 2 

Again, these functions are equivalent, so both yield the same graph. 

Next, we will explore the graphs of the other four trigonometric functions.  We’ll begin with the 

tangent function.  Recall that we defined tangent as 
𝑦

𝑥
 or 

sin

cos
, so you can think of the tangent as 

the slope of a line through the origin making the given angle with the positive 𝑥 axis.  At an 

angle of 0, the line would be horizontal with a slope of zero.  As the angle increases towards 
𝜋

2
, 

the slope increases more and more.  At an angle of 
𝜋

2
, the line would be vertical and the slope 

would be undefined.  Immediately past 
𝜋

2
, the line would have a steep negative slope, giving a 
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large negative tangent value.  There is a break in the function at 
𝜋

2
, where the tangent value jumps 

from large positive to large negative.   

We can use these ideas along with the definition of tangent 

to sketch a graph.  Since tangent is defined as 
sin

cos
, we 

can determine that tangent will be zero when sine is zero:  

at −𝜋, 0, 𝜋, and so on.  Likewise, tangent will be undefined 

when cosine is zero:  at −
𝜋

2
,

𝜋

2
, and so on. 

The tangent is positive from 0 to 
𝜋

2
 and 𝜋 to 

3𝜋

2
, 

corresponding to quadrants 1 and 3 of the unit circle. 

Using technology, we can obtain a graph of tangent on a standard grid. 

Notice that the graph appears to repeat itself.  For any 

angle on the circle, there is a second angle with the same 

slope and tangent value halfway around the circle, so the 

graph repeats itself with a period of 𝜋; we can see one 

continuous cycle from −
𝜋

2
 to 

𝜋

2
, before it jumps and 

repeats itself.  

The graph has vertical asymptotes and the tangent is 

undefined wherever a line at that angle would be vertical: 

at 
𝜋

2
, 

3𝜋

2
, and so on.  While the domain of the function is 

limited in this way, the range of the function is all real numbers. 

Features of the Graph of Tangent 

The graph of the tangent function 𝑚(𝜃) = tan (𝜃)  

The period of the tangent function is 𝜋 

The domain of the tangent function is 𝜃 ≠
𝜋

2
+ 𝑘𝜋, where 𝑘 is an integer 

The range of the tangent function is all real numbers, (−∞, ∞). 

With the tangent function, like the sine and cosine functions, horizontal stretches/compressions 

are distinct from vertical stretches/compressions.  The horizontal stretch can typically be 

determined from the period of the graph.  With tangent graphs, it is often necessary to determine 

a vertical stretch using a point on the graph. 
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Example 12: 

Find a formula for the function graphed here. 

The graph has the shape of a tangent function, 

however the period appears to be 8. We can see 

one full continuous cycle from −4 to 4, 

suggesting a horizontal stretch.  To stretch 𝜋 to 8, 

the input values would have to be multiplied by 
8

𝜋
.  

Since the constant 𝑘 in 𝑓(𝜃) = 𝑎 tan (𝑘𝜃) is the 

reciprocal of the horizontal stretch 
8

𝜋
, the equation 

must have form 

𝑓(𝜃) = 𝑎 tan (
𝜋

8
𝜃) 

We can also think of this the same way we did with sine and cosine.  The period of the tangent 

function is 𝜋 but it has been transformed and now it is 8; remember the ratio of the “normal 

period” to the “new period” is 
𝜋

8
 and so this becomes the value on the inside of the function that 

tells us how it was horizontally stretched. 

To find the vertical stretch 𝑎, we can use a point on the graph.  Using the point (2, 2) 

2 = 𝑎 tan (
𝜋

8
∙ 2) = 𝑎 tan (

𝜋

4
) = 𝑎 

So 𝑎 = 2 

This function would have a formula 𝑓(𝜃) = 2 tan (
𝜋

8
𝜃). 

For the graph of secant, we remember the reciprocal identity where sec(𝜃) =
1

cos(𝜃)
.   Notice 

that the function is undefined when the cosine is 0, leading to a vertical asymptote in the graph at 
𝜋

2
,

3𝜋

2
, etc.  Since the cosine is always no more than one in absolute value, the secant, being the 

reciprocal, will always be no less than one in absolute value.  Using technology, we can generate 

the graph.  The graph of the cosine is shown dashed so you can see the relationship. 
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𝑓(𝜃) = sec(𝜃) =
1

cos(𝜃)
 

 

 

The graph of cosecant is similar.  In fact, since sin(𝜃) = cos (
𝜋

2
− 𝜃), it follows that 

csc(𝜃) = sec (
𝜋

2
− 𝜃), suggesting the cosecant graph is a horizontal shift of the secant graph.  

This graph will be undefined where sine is 0.  Recall from the unit circle that this occurs at 

0, 𝜋, 2𝜋, etc.  The graph of sine is shown dashed along with the graph of the cosecant. 

𝑓(𝜃) = csc(𝜃) =
1

sin(𝜃)
 

 

Features of the Graph of Secant and Cosecant 

The secant and cosecant graphs have period 2𝜋 like the sine and cosine functions. 

Secant has domain 𝜃 ≠
𝜋

2
+ 𝑘𝜋, where 𝑘 is an integer 

Cosecant has domain 𝜃 ≠ 𝑘𝜋, where 𝑘 is an integer 
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Both secant and cosecant have range of (−∞, −1] ∪ [1, ∞)  

Example 13: Sketch a graph of 𝑓(𝜃) = 2 csc (
𝜋

2
𝜃) + 1.  What is the domain and range of 

this function? 

The basic cosecant graph has vertical asymptotes at the integer multiples of 𝜋.  Because of the 

factor 
𝜋

2
 inside the cosecant, the graph will be compressed by 

2

𝜋
, so the vertical asymptotes will 

be compressed to 𝜃 =
2

𝜋
∙ 𝑘𝜋 = 2𝑘.  In other words, the graph will have vertical asymptotes at 

the integer multiples of 2, and the domain will correspondingly be 𝜃 ≠ 2𝑘, where 𝑘 is an integer. 

The basic sine graph has a range of [−1,1].  The vertical stretch by 2 will stretch this to [−2,2], 

and the vertical shift up 1 will shift the range of this function to [−1,3]. 

The basic cosecant graph has a range of (−∞, −1] ∪ [1, ∞). The vertical stretch by 2 will stretch 

this to (−∞, −2] ∪ [2, ∞), and the vertical shift up 1 will shift the range of this function to 

(−∞, −1] ∪ [3, ∞). 

Sketching a graph, 

 

Notice how the graph of the transformed cosecant relates to the graph of 𝑓(𝜃) =

2 sin (
𝜋

2
𝜃) + 1 shown dashed. 

Finally, we’ll look at the graph of cotangent.  Based on its definition as the ratio of cosine to 

sine, it will be undefined when the sine is zero:  at 0, 𝜋, 2𝜋, etc.  The resulting graph is similar to 

that of the tangent.  In fact, it is a horizontal flip and shift of the tangent function, as we’ll see 

shortly in Example 14. 

𝑓(𝜃) = cot(𝜃) =
1

tan(𝜃)
=

cos(𝜃)

sin(𝜃)
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Features of the Graph of Cotangent 

The cotangent graph has period 𝜋 

Cotangent has domain 𝜃 ≠ 𝑘𝜋, where 𝑘 is an integer 

Cotangent has range of all real numbers, (−∞, ∞) 

Earlier, we determined that the sine function was an odd function and the cosine was an even 

function by observing the graph and establishing the negative angle identities for cosine and sine.  

Similarly, you may notice from its graph that the tangent function appears to be odd.  We can 

verify this using the negative angle identities for sine and cosine: 

tan(−𝜃) =
sin(−𝜃)

cos(−𝜃)
=

− sin(𝜃)

cos(𝜃)
= −tan (𝜃) 

The secant, like the cosine it is based on, is an even function, while the cosecant, like the sine, is 

an odd function. 

Negative Angle Identities Tangent, Cotangent, Secant and Cosecant 

tan(−𝜃) = − tan(𝜃) 
 

cot(−𝜃) = − cot(𝜃) 

sec(−𝜃) = sec(𝜃) 
 

csc(−𝜃) = −csc (𝜃) 
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Example 14: Prove that tan(𝜃) = − cot (𝜃 −
𝜋

2
) 

tan(𝜃) 
 

Use the definition of tangent 

sin(𝜃)

cos(𝜃)
 

 

Use the cofunction identity 

cos (
𝜋
2 − 𝜃)

sin (
𝜋
2 − 𝜃)

 

 

Use the definition of cotangent 

cot (
𝜋

2
− 𝜃) 

 

Factor out negative 

cot (− (𝜃 −
𝜋

2
)) 

 

Use the negative angle identity 

− cot (𝜃 −
𝜋

2
) 

Final answer 
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5.6 Graphs of Trig Functions Practice 
 

1. Sketch a graph of 𝑓(𝑥) = −3 sin (𝑥). 

 

2. Sketch a graph of 𝑓(𝑥) = 4 sin (𝑥). 

 

3. Sketch a graph of 𝑓(𝑥) = 2 cos (𝑥). 

 

4. Sketch a graph of 𝑓(𝑥) = −4 cos (𝑥). 

For the graphs below, determine the amplitude, vertical shift, and period, then find a formula for 

the function. 

5.       6.  

  
 

7.       8. 
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9.       10.  

  

 

  

For each of the following equations, find the amplitude, period, horizontal shift, and vertical 

shift. 

 

11. 𝑦 = 3 sin(8(𝑥 + 4)) + 8 12. 
𝑦 = 4 sin (

𝜋

2
(𝑥 − 3)) + 7 

 

13. 𝑦 = 2 sin(3𝑥 − 21) + 4 
 

14. 𝑦 = 5 sin(5𝑥 + 20) − 2 

15. 𝑦 = sin (
𝜋

6
𝑥 + 𝜋) 

16. 
𝑦 = 8 sin (

7𝜋

6
𝑥 +

7𝜋

2
) + 6 

 

 

Find a formula for each of the functions graphed below.   

 

17.  
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18.  

19.  

 

20.  

  

21. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 50 degrees at midnight and the high and low 

temperature during the day are 57 and 43 degrees, respectively. Assuming 𝑡 is the number of 

hours since midnight, find a function for the temperature, 𝐷, in terms of 𝑡. 

 

22. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 68 degrees at midnight and the high and low 

temperature during the day are 80 and 56 degrees, respectively. Assuming 𝑡 is the number of 

hours since midnight, find a function for the temperature, 𝐷, in terms of 𝑡. 
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23. A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meters above 

the ground. The six o'clock position on the Ferris wheel is level with the loading platform. 

The wheel completes 1 full revolution in 10 minutes. The function ℎ(𝑡) gives your height in 

meters above the ground 𝑡 minutes after the wheel begins to turn.   

a. Find the amplitude, vertical shift, and period of ℎ(𝑡). 

b. Find a formula for the height function ℎ(𝑡). 

c. How high are you off the ground after 5 minutes? 

 

24. A Ferris wheel is 35 meters in diameter and boarded from a platform that is 3 meters above 

the ground. The six o'clock position on the Ferris wheel is level with the loading platform. 

The wheel completes 1 full revolution in 8 minutes. The function ℎ(𝑡) gives your height in 

meters above the ground 𝑡 minutes after the wheel begins to turn.   

a. Find the amplitude, vertical shift, and period of ℎ(𝑡). 

b. Find a formula for the height function ℎ(𝑡). 

c. How high are you off the ground after 4 minutes? 

Match each trigonometric function with one of the graphs. 

25. 𝑓(𝑥) = tan(𝑥) 
 

26. 𝑓(𝑥) = sec(𝑥) 

27. 𝑓(𝑥) = csc(𝑥) 28. 𝑓(𝑥) = cot (𝑥) 

  I       II  

III     IV  
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Find the period and horizontal shift of each of the following functions. 

29. 𝑓(𝑥) = 2 tan(4𝑥 − 32) 
 

30. 𝑔(𝑥) = 3 tan(6𝑥 + 42) 

31. 
ℎ(𝑥) = 2 sec (

𝜋

4
(𝑥 + 1)) 

 

32. 
𝑘(𝑥) = 3 sec (2 (𝑥 +

𝜋

2
)) 

33. 𝑚(𝑥) = 6 csc (
𝜋

3
𝑥 + 𝜋) 

34. 
𝑛(𝑥) = 4 csc (

5𝜋

3
𝑥 −

20𝜋

3
) 

 

35. Sketch a graph of #31 above. 

 

36. Sketch a graph of #32 above. 

37. Sketch a graph of #33 above. 

 

38. Sketch a graph of #34 above. 

39. Sketch a graph of: 

𝑗(𝑥) = tan (
𝜋

2
𝑥) 

 

40. Sketch a graph of: 

𝑝(𝑡) = 2 tan (𝑡 −
𝜋

2
) 

Find a formula for each function graphed below. 

  

41.   42.  
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43.  44.  

 

45. If tan 𝑥 = −1.5, find tan (−𝑥) 

 

46. If tan 𝑥 = 3, find tan (−𝑥) 

47. If sec 𝑥 = 2, find sec (−𝑥) 

 

48. If sec 𝑥 = −4, find sec (−𝑥) 

49. If csc 𝑥 = −5, find csc(−𝑥) 

 

50. If csc 𝑥 = 2, find csc(−𝑥) 

Simplify each of the following expressions completely. 

51. cos(−𝑥) cot (−𝑥) + sin(−𝑥) 52. cos(−𝑥) + tan(−𝑥) sin (−𝑥) 
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5.7 Inverse Trig Functions 
 

In previous sections we have evaluated the trigonometric functions at various angles, but at times 

we need to know what angle would yield a specific sine, cosine, or tangent value.  For this, we 

need inverse functions.  Recall that for a one-to-one function, if 𝑓(𝑎) = 𝑏, then an inverse 

function would satisfy 𝑓−1(𝑏) = 𝑎. 

You probably are already recognizing an issue – that the sine, cosine, and tangent functions are 

not one-to-one functions.  To define an inverse of these functions, we will need to restrict the 

domain of these functions to yield a new function that is one-to-one.  We choose a domain for 

each function that includes the angle zero. 

Sine, limited to [−
𝜋

2
,

𝜋

2
] Cosine, limited to [0, 𝜋] Tangent, limited to (−

𝜋

2
,

𝜋

2
) 

         

On these restricted domains, we can define the inverse sine, inverse cosine, and inverse tangent 

functions. 

Inverse Sine, Cosine, and Tangent Functions 

For angles in the interval [−
𝜋

2
,

𝜋

2
], if sin(𝜃) = 𝑎, then sin−1(𝑎) = 𝜃 

For angles in the interval [0, 𝜋], if cos(𝜃) = 𝑎, then cos−1(𝑎) = 𝜃 

For angles in the interval (−
𝜋

2
,

𝜋

2
), if tan(𝜃) = 𝑎, then tan−1(𝑎) = 𝜃 

sin−1(𝑥) has domain [−1,1] and range [−
𝜋

2
,

𝜋

2
] 

cos−1(𝑥) has domain [−1,1] and range [0, 𝜋] 

tan−1(𝑥) has domain of all real numbers and range (−
𝜋

2
,

𝜋

2
) 
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The sin−1(𝑥) is sometimes called the arcsine function, and notated arcsin (𝑎).  

The cos−1(𝑥) is sometimes called the arccosine function, and notated arccos (𝑎).  

The tan−1(𝑥) is sometimes called the arctangent function, and notated arctan (𝑎).  

The graphs of the inverse functions are shown here: 

sin−1(𝑥)   cos−1(𝑥)   tan−1(𝑥) 

   

Notice that the output of each of these inverse functions is an angle.   

Example 1: Evaluate sin−1 (
1

2
) 

Evaluating sin−1 (
1

2
) is the same as asking what angle would have a sine value of 

1

2
.  In other 

words, what angle θ would satisfy sin(𝜃) =
1

2
?  There are multiple angles that would satisfy 

this relationship, such as 
𝜋

6
 and 

5𝜋

6
, but we know we need the angle in the  interval [−

𝜋

2
,

𝜋

2
], so 

the answer will be:  

sin−1 (
1

2
) =

𝜋

6
 

Example 2: Evaluate sin−1 (−
√2

2
) 

We know that 
5𝜋

4
 and 

7𝜋

4
 both have a sine value of −

√2

2
, but neither is in the interval [–

𝜋

2
,

𝜋

2
].  

For that, we need the negative angle coterminal with 
7𝜋

4
. 

Sin−1 (−
√2

2
) = −

𝜋

4
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Example 3: Evaluate cos−1 (−
√3

2
) 

We are looking for an angle in the interval [0, 𝜋] with a cosine value of −
√3

2
.  The angle that 

satisfies this is: 

cos−1(−
√3

2
) =

5𝜋

6
 

Example 4: Evaluate tan−1(1) 

We are looking for an angle in the interval (−
𝜋

2
,

𝜋

2
) with a tangent value of 1.  The correct 

angle is: 

tan−1(1) =
𝜋

4
 

Example 5: Evaluate sin−1(0.97) using your calculator. 

Since the output of the inverse function is an angle, your calculator will give you a degree value 

if in degree mode, and a radian value if in radian mode. 

In radian mode, sin−1(0.97) = 1.3252  

In degree mode, sin−1(0.97) = 75.93° 

In Section 5.2, we worked with trigonometry on a right triangle to solve for the sides of a triangle 

given one side and an additional angle.  Using the inverse trig functions, we can solve for the 

angles of a right triangle given two sides. 

Example 6: Solve the triangle for the angle θ. 

Since we know the hypotenuse and the side adjacent to the 

angle, it makes sense for us to use the cosine function. 

cos(𝜃) =
9

12
 

 

Use the definition of the inverse 

cos−1 (
9

12
) = 𝜃 

 

Evaluate 

𝜃 = 0.7227 radians 

 

𝜃 = 41.4096° 
 

Final answer (radians and degrees) 

12 

9 

θ 
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There are times when we need to compose a trigonometric function with an inverse 

trigonometric function.  In these cases, we can find exact values for the resulting expressions 

Example 7: Evaluate sin−1 (cos (
13𝜋

6
)).  

sin−1 (cos (
13𝜋

6
)) 

 

Evaluate the inside 

cos (
13𝜋

6
) =

√3

2
 

 

Evaluate the inverse sine of 
√3

2
 

sin−1 (
√3

2
) =

𝜋

3
 

 

Final answer 

Example 8: Find an exact value for sin (𝑐𝑜𝑠−1 (
4

5
)). 

sin (𝑐𝑜𝑠−1 (
4

5
)) 

 

Evaluate inside function 

cos−1 (
4

5
) 

 

Rewrite 

cos(𝜃) =
4

5
 

 

Square 

sin2(𝜃) + (
4

5
)

2

= 1 

 

Use Pythagorean identity 

sin2(𝜃) +
16

25
= 1 

 

Subtract 

sin2(𝜃) =
9

25
 

 

Square root 

sin(𝜃) = ±
3

5
 

 

Inverse cosine is positive, so sine must be positive 

3

5
 

 

Final answer 
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Example 9: Find an exact value for sin (𝑡𝑎𝑛−1 (
7

4
)). 

While we could use a similar technique as in the last example, we will 

demonstrate a different technique here.  From the inside, we know there is 

an angle so tan(𝜃) =
7

4
.  We can envision this as the opposite and 

adjacent sides on a right triangle. Using the Pythagorean Theorem: 

42 + 72 = hypotenuse
2
 

 

Solve for missing side 

√65 
 

Evaluate the sine 

sin(𝜃) =
7

√65
=

7√65

65
 

 

Final answer 

We can also find compositions involving algebraic expressions. 

Example 10: Find a simplified expression for cos (𝑠𝑖𝑛−1 (
𝑥

3
)), for −3 ≤ 𝑥 ≤ 3. 

cos (𝑠𝑖𝑛−1 (
𝑥

3
)) 

 

Evaluate inside function 

sin−1 (
𝑥

3
) 

 

Rewrite 

sin(𝜃) =
𝑥

3
 

 

Square 

(
𝑥

3
)

2

+ cos2 𝑥 = 1 

 

Use Pythagorean identity 

𝑥2

9
+ cos2(𝑥) = 1 

 

Subtract 

cos2(𝑥) =
9 − 𝑥2

9
 

 

Square root 

cos(𝜃) = ±
√9 − 𝑥2

3
 

 

Inverse sine is on interval [−
𝜋

2
,

𝜋

2
], so cosine must be positive 

√9 − 𝑥2

3
 

 

Final answer 

 

7 

4 

θ 
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5.7 Inverse Trig Functions Practice 
 

Evaluate the following expressions 

1. 
sin−1 (

√2

2
) 

 

2. 
sin−1 (

√3

2
) 

3. 
sin−1 (−

1

2
) 

4. 
sin−1 (−

√2

2
) 

5. 
cos−1 (

1

2
) 

6. 
cos−1 (

√2

2
) 

 

7. 
cos−1 (−

√2

2
) 

8. 
cos−1 (−

√3

2
) 

9. tan−1(1) 10. tan−1(√3) 

 

11. tan−1(−√3) 12. tan−1(−1) 

Use your calculator to evaluate each expression 

13. cos−1(−0.4) 14. cos−1(0.8) 
 

15. sin−1(−0.8) 16. tan−1(6) 

Find the angle 𝜃 

17. 

 

18. 

 
Evaluate the following expressions: 

19. sin−1 (cos (
𝜋

4
)) 

20. cos−1 (sin (
𝜋

6
)) 

 

21. 
sin−1 (cos (

4𝜋

3
)) 

22. 
cos−1 (sin (

5𝜋

4
)) 

 

23. 
cos (𝑠𝑖𝑛−1 (

3

7
)) 

24. 
sin (𝑐𝑜𝑠−1 (

4

9
)) 

 

25. cos(tan−1(4)) 26. 
tan (𝑠𝑖𝑛−1 (

1

3
)) 

 

Find a simplified expression for each of the following: 

27. sin (𝑐𝑜𝑠−1 (
𝑥

5
)) , for − 5 ≤ 𝑥 ≤ 5 

 

28. tan (𝑐𝑜𝑠−1 (
𝑥

2
)) , for − 2 ≤ 𝑥 ≤ 2 

29. sin(tan−1(3𝑥)) 
 

30. cos (tan−1(4𝑥)) 

10 
7 

θ 

12 

19 

θ 
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Chapter 6 

Analytic Trigonometry  
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6.1 Solving Trigonometric Equations 

In Section 5.6, we determined the height of a rider on the London Eye Ferris wheel could be 

determined by the equation ℎ(𝑡) = −67.5 cos (
𝜋

15
𝑡) + 69.5.   

If we wanted to know length of time during which the rider is more than 100 meters above 

ground, we would need to solve equations involving trig functions. 

Solving using known values 

In the last chapter, we learned sine and cosine values at commonly encountered angles.  We can 

use these to solve sine and cosine equations involving these common angles. 

Example 1: Solve sin(𝑡) =
1

2
 for all possible values of 𝑡. 

Notice this is asking us to identify all angles, 𝑡, that have a sine value of 𝑡 =
1

2
.  While 

evaluating a function always produces one result, solving for an input can yield multiple 

solutions.  Two solutions should immediately jump to mind from the last chapter: 𝑡 =
𝜋

6
 and 

𝑡 =
5𝜋

6
 because they are the common angles on the unit circle. 

Looking at a graph confirms that there are more than these two solutions.  While eight are seen 

on this graph, there are an infinite number of solutions! 

 

Remember that any coterminal angle will also have the same sine value, so any angle coterminal 

with these two is also a solution.  Coterminal angles can be found by adding full rotations of 2π, 

so we end up with a set of solutions: 

𝑡 =
𝜋

6
+ 2𝜋𝑘 where 𝑘 is an integer, and 𝑡 =

5𝜋

6
+ 2𝜋𝑘 where 𝑘 is an integer 
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Example 2: A circle of radius 5√2 intersects the line 𝑥 = −5 at two points.  Find the angles 𝜃 on 

the interval 0 ≤ 𝜃 < 2𝜋, where the circle and line intersect.  

The 𝑥 coordinate of a point on a circle can be found as 𝑥 = 𝑟𝑐𝑜𝑠(𝜃), so the 𝑥 coordinate of 

points on this circle would be 𝑥 = 5√2 cos(𝜃).  To find where the 

line 𝑥 = −5 intersects the circle, we can solve for where the 𝑥 value 

on the circle would be −5 

−5 = 5√2 cos(𝜃) Divide by 5√2 

 

−
1

√2
= cos(𝜃) 

 

Rationalize denominator 

−
√2

2
= cos(𝜃) 

 

 

We can recognize this as one of our special cosine values from our unit circle, and it corresponds 

with angles 𝜃 =
3𝜋

4
 and 𝜃 =

5𝜋

4
 

Example 3: The depth of water at a dock rises and falls with the tide, following the equation 

𝑓(𝑡) = 4 sin (
𝜋

12
𝑡) + 7, where 𝑡 is measured in hours after midnight.  A boat requires a 

depth of 9 feet to tie up at the dock.   Between what times will the depth be 9 feet? 

To find when the depth is 9 feet, we need to solve f(t) = 9. 

4 sin (
𝜋

12
𝑡) + 7 = 9 

 

Subtract 7 

4 sin (
𝜋

12
𝑡) = 2 

 

Divide by 4 

sin (
𝜋

12
𝑡) =

1

2
 

 

Sine is 
1

2
 at 

𝜋

6
+ 2𝜋𝑘 and 

5𝜋

6
+ 2𝜋𝑘 

𝜋

12
𝑡 =

𝜋

6
+ 2𝜋𝑘    or    

𝜋

12
𝑡 =

5𝜋

6
+ 2𝜋𝑘 

 

Solve by multiplying by 
12

𝜋
 

𝑡 = 2 + 24𝑘     or     𝑡 = 10 + 24𝑘 
 

This is 2 hours and 10 hours past midnight 

Between 2:00 am and 10:00am 

 

Final answer 
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Notice how in both scenarios, the 24k shows how 

every 24 hours the cycle will be repeated. 

In the previous example, looking back at the original 

simplified equation sin (
𝜋

12
𝑡) =

1

2
, we can use the 

ratio of the “normal period” to the stretch factor to 

find the period. 
2𝜋
𝜋

12

= 2𝜋 (
12

𝜋
) = 24; notice that 

the sine function has a period of 24, which is reflected in the solutions: there were two unique 

solutions on one full cycle of the sine function, and additional solutions were found by adding 

multiples of a full period. 

Example 4: Use the inverse sine function to find one solution to sin(𝜃) = 0.8. 

Since this is not a known unit circle value, calculating the inverse, 𝜃 = sin−1(0.8).  This requires 

a calculator and we must approximate a value for this angle.  If your calculator is in degree 

mode, your calculator will give you an angle in degrees as the output.  If your calculator is in 

radian mode, your calculator will give you an angle in radians.  In radians,  

𝜃 = sin−1(0.8) = 0.927, or in degrees, 𝜃 = sin−1(0.8) = 53.130°. 

If you are working with a composed trig function and you are not solving for an angle, you will 

want to ensure that you are working in radians.  In calculus, we will almost always want to work 

with radians since they are unit-less. 

Notice that the inverse trig functions do exactly what you would expect of any function – for 

each input they give exactly one output.  While this is necessary for these to be a function, it 

means that to find all the solutions to an equation like sin(𝜃) = 0.8, we need to do more than 

just evaluate the inverse function. 

Example 5: Find all solutions to sin(θ) = 0.8. 

We would expect two unique angles on one cycle to have this sine 

value.  In the previous example, we found one solution to be 

𝜃 = sin−1(0.8) = 0.927.  To find the other, we need to answer the 

question “what other angle has the same sine value as an angle of 

0.927?”  On a unit circle, we would recognize that the second angle 

would have the same reference angle and reside in the second 

quadrant.  This second angle would be located at  

𝜃 = 𝜋 − sin−1(0.8), or approximately 𝜃 = 𝜋 − 0.927 = 2.214  

To find more solutions we recall that angles coterminal with these two would have the same sine 

value, so we can add full cycles of 2𝜋. 

0.8 

1 

0.929 
θ 
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𝜃 = sin−1(0.8) + 2𝜋𝑘 and 𝜃 = 𝜋 − sin−1(0.8) + 2𝜋𝑘 where 𝑘 is an integer, 

or approximately, 𝜃 = 0.927 + 2𝜋𝑘 and 𝜃 = 2.214 + 2𝜋𝑘 where 𝑘 is an integer. 

Example 6: Find all solutions to sin(𝑥) = −
8

9
 on the interval 0° ≤ 𝑥 < 360. 

First we will turn our calculator to degree mode.  Using the inverse, we can find one solution 

𝑥 = sin−1 (−
8

9
) = −62.734°.  While this angle satisfies the equation, it does not lie in the 

domain we are looking for.  To find the angles in the desired domain, we start looking for 

additional solutions.   

First, an angle coterminal with −62.734°will have the same sine.  By adding a full rotation, we 

can find an angle in the desired domain with the same sine. 

𝑥 = −62.734° + 360° = 297.266° 

There is a second angle in the desired domain that lies in the third quadrant.  Notice that 62.734º 

is the reference angle for all solutions, so this second solution would be 62.734º past 180º  

𝑥 = 62.734° + 180 = 242.734° 

The two solutions on 0° ≤ 𝑥 < 360° are 𝑥 = 297.266° and 𝑥 = 242.734° 

Example 7: Find all solutions to tan(𝑥) = 3 on 0 ≤ 𝑥 < 2𝜋. 

Using the inverse tangent function, we can find one solution 

𝑥 = tan−1(3) = 1.249.  Unlike the sine and cosine, the tangent 

function only attains any output value once per cycle, so there is 

no second solution in any one cycle. 

By adding 𝜋, a full period of tangent function, we can find a 

second angle with the same tangent value.  If additional solutions 

were desired, we could continue to add multiples of 𝜋, so all 

solutions would take on the form 𝑥 = 1.249 + 𝑘𝜋, however we 

are only interested in 0 ≤ 𝑥 < 2𝜋. 

𝑥 = 1.249 + 𝜋 = 4.391 

The two solutions on 0 ≤ 𝑥 < 2𝜋 are 𝑥 = 1.249 and 𝑥 = 4.391. 

 

 

 

1 

1.249 

4.391 
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Example 8: Solve 3 cos(𝑡) + 4 = 2 for all solutions on one cycle, 0 ≤ 𝑡 < 2𝜋 

3 cos(𝑡) + 4 = 2 
 

Isolate the cosine, subtract 4 

3 cos(𝑡) = −2 
 

Divide by 3 

cos(𝑡) = −
2

3
 

 

Calculate inverse 

cos−1 (−
2

3
) = 2.301 

 

 

Thinking back to the circle, a second angle with the same cosine 

would be located in the third quadrant.  Notice that the location of 

this angle could be represented as 𝑡 = −2.301.  To represent this 

as a positive angle we could find a coterminal angle by adding a 

full cycle. 

𝑡 = −2.301 + 2𝜋 = 3.982 

 

The equation has two solutions between 0 and 2𝜋, at 𝑡 = 2.301 and 𝑡 = 3.982. 

Example 9: Solve cos(3𝑡) = 0.2 for all solutions on two cycles, 0 ≤ 𝑡 <
4𝜋

3
. 

As before, with a horizontal compression it can be helpful to make a substitution, 𝑢 = 3𝑡.  

Making this substitution simplifies the equation to a form we have already solved.  

cos(𝑢) = 0.2 
 

Inverse cosine 

𝑢 = cos−1(0.2) = 1.369 
 

Second solution in 4
th

 quadrant 

𝑢 = 2𝜋 − 1.369 = 4.914 
 

Need two cycles, add 2𝜋 to each solution 

𝑢 = 1.369 + 2𝜋 = 7.653 

𝑢 = 4.914 + 2𝜋 = 11.197 
 

Undo the substitution 

3𝑡 = 1.369, 4.914, 7.653, 11.197 
 

Divide each solution by 3 

𝑡 = 0.456, 1.638, 2.551,3.732 
 

Final answer 

 

 

1

2.301

-2.301 

or 3.982 
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Example 10: Solve 3 sin(𝜋𝑡) = −2 for all solutions. 

3 sin(𝜋𝑡) = −2 
 

Divide by 3 

sin(𝜋𝑡) = −
2

3
 

 

Substitution 𝑢 = 𝜋𝑡 

sin(𝑢) = −
2

3
 

 

Inverse sine 

𝑢 = sin−1 (−
2

3
) = −0.730 

 

Second angle in third quadrant 

𝑢 = 𝜋 + 0.730 = 3.871 
 

All solution by adding 2𝜋𝑘 where 𝑘 is an integer 

𝑢 = −0.730 + 2𝜋𝑘 

𝑢 = 3.871 + 2𝜋𝑘 
 

Undo substitution 

𝜋𝑡 = −0.730 + 2𝜋𝑘 

𝜋𝑡 = 3.871 + 2𝜋𝑘 
 

Divide each solution by 𝜋 

𝑡 = −0.232 + 2𝑘 

𝑡 = 1.232 + 2𝑘 
 

Final answer 

Solving Trig Equations 

1. Isolate the trig function on one side of the equation 

2. Make a substitution for the inside of the sine, cosine, or tangent (or other trig function) 

3. Use inverse trig functions to find one solution 

4. Use symmetries to find a second solution on one cycle (when a second exists) 

5. Find additional solutions if needed by adding full periods 

6. Undo the substitution  
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We now can return to the question we began the section with. 

Example 11: The height of a rider on the London Eye Ferris wheel can be determined by the 

equation ℎ(𝑡) = −67.5 cos (
𝜋

15
𝑡) + 69.5.  How long is the rider more than 100 meters 

above ground?   

To find how long the rider is above 100 meters, we first find the times at which the rider is at a 

height of 100 meters by solving ℎ(𝑡) = 100. 

100 = −67.5 cos (
𝜋

15
𝑡) + 69.5 

 

Isolate the cosine, subtract 69.5 

30.5 = −67.5 cos (
𝜋

15
𝑡) 

 

Divide by −67.5 

30.5

−67.5
= cos (

𝜋

15
𝑡) 

 

Substitution 

30.5

−67.5
= cos(𝑢) 

 

Inverse cosine 

𝑢 = cos−1 (
30.5

−67.5
) = 2.040 

 

Use unit circle 

This angle is in the second quadrant.  A second angle with the 

same cosine would be symmetric in the third quadrant.  This 

angle could be represented as 𝑢 = −2.040, but we need a 

coterminal positive angle, so we add 2𝜋: 

𝑢 = 2𝜋 − 2.040 = 4.244 

Now we can undo the substitution to solve for 𝑡 

𝜋

15
𝑡 = 2.040, so 𝑡 = 9.74 minutes after the start of the ride 

𝜋

15
𝑡 = 4.244 so 𝑡 = 20.264 minutes after the start of the ride 

A rider will be at 100 meters after 9.740 minutes, and again after 20.264.  From the behavior of 

the height graph, we know the rider will be above 100 meters between these times.  A rider will 

be above 100 meters for 20.265 − 9.740 = 10.523 minutes of the ride. 

 

 

1 

u = 2.040 

u = -2.040 

or 4.244 



331 
 

6.1 Solving Trigonometric Equations Practice 
 

Find all solutions on the interval 0 ≤ 𝜃 < 2𝜋 

1. 2 sin(𝜃) = −√2 
 

2. 2 sin(𝜃) = √3 3. 2 cos(𝜃) = 1 4. 2 cos(𝜃) = −√2 

5. sin(𝜃) = 1 
 

6. sin(𝜃) = 0 7. cos(𝜃) = 0 8. cos(𝜃) = −1 

Find all solutions 

9. 2 cos(𝜃) = √2 
 

10. 2 cos(𝜃) = −1 11. 2 sin(𝜃) = −1 12. 2 sin(𝜃) = −√3 

Find all solutions 

13. 2 sin(3𝜃) = 1 
 

14. 2 sin(2𝜃) = √3 15. 2 sin(3𝜃) = −√2 

16. 2 sin(3𝜃) = −1 17. 2 cos(2𝜃) = 1 18. 2 cos(2𝜃) = √3 
 

19. 2 cos(3𝜃) = −√2 20. 2 cos(2𝜃) = −1 21. cos (
𝜋

4
𝜃) = −1 

 

22. sin (
𝜋

3
𝜃) = −1 

 

23. 2 sin(𝜋𝜃) = 1 24. 2 cos (
𝜋

5
𝜃) = √3 

Find all solutions on the interval 0 ≤ 𝑥 < 2𝜋 

25. sin(𝑥) = 0.27 
 

26. sin(𝑥) = 0.48 27. sin(𝑥) = −0.58 

28. sin(𝑥) = −0.34 
 

29. cos(𝑥) = −0.55 30. sin(𝑥) = 0.28 

31. cos(𝑥) = 0.71 
 

32. cos(𝑥) = −0.07   

Find the first two positive solutions. 

33. 7 sin(6𝑥) = 2 
 

34. 7 sin(5𝑥) = 6 35. 5 cos(3𝑥) = −3 

36. 3 cos(4𝑥) = 2 37. 3 sin (
𝜋

4
𝑥) = 2 

 

38. 7 sin (
𝜋

5
𝑥) = 6 

39. 5 cos (
𝜋

3
𝑥) = 1 

40. 3 cos (
𝜋

2
𝑥) = −2 
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6.2 Modeling with Trigonometric Functions 
 

Solving right triangles for angles 

In Section 5.2, we used trigonometry on a right triangle to solve for the sides of a triangle given 

one side and an additional angle.  Using the inverse trig functions, we can solve for the angles of 

a right triangle given two sides. 

Example 1: An airplane needs to fly to an airfield located 300 miles east and 200 miles north of 

its current location.  At what heading should the airplane fly?   In other words, if we ignore air 

resistance or wind speed, how many degrees north of east should the airplane fly? 

We might begin by drawing a picture and labeling all of the 

known information.  Drawing a triangle, we see we are looking 

for the angle 𝛼.  In this triangle, the side opposite the angle 𝛼 is 

200 miles and the side adjacent is 300 miles.  Since we know 

the values for the  opposite and adjacent sides, it makes sense to 

use the tangent function. 

tan(𝛼) =
200

300
 

 

Inverse 

𝛼 = tan−1 (
200

300
) = 0.588    or   33.7° 

 

Final answer 

The airplane needs to fly at a heading of 33.7 degrees north of east. 

Example 2: OSHA safety regulations require that the base of a ladder be placed 1 

foot from the wall for every 4 feet of ladder length.  Find the angle such a ladder 

forms with the ground. 

For any length of ladder, the base needs to be one quarter of the distance the foot of 

the ladder is away from the wall.  Equivalently, if the base is 𝑎 feet from the wall, 

the ladder can be 4𝑎 feet long.  Since 𝑎 is the side adjacent to the angle and 4𝑎 is 

the hypotenuse, we use the cosine function. 

cos(𝜃) =
𝑎

4𝑎
=

1

4
 

 

Inverse 

𝜃 = cos−1 (
1

4
) = 75.52° 

 

Final answer 

The ladder forms a 75.52 degree angle with the ground. 

 

200 

300 

α 

a 

4a 

θ 



333 
 

Example 3: In a video game design, a map shows the location of other characters relative to the 

player, who is situated at the origin, and the direction they are facing.  A character currently 

shows on the map at coordinates (−3, 5).  If the player rotates counterclockwise by 20 degrees, 

then the objects in the map will correspondingly rotate 20 degrees clockwise.  Find the new 

coordinates of the character. 

To rotate the position of the character, we can imagine it as a 

point on a circle, and we will change the angle of the point by 

20 degrees.  To do so, we first need to find the radius of this 

circle and the original angle. 

Drawing a right triangle inside the circle, we can find the 

radius using the Pythagorean Theorem: 

(−3)2 + 52 = 𝑟2 

𝑟 = √9 + 25 = √34 

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, 

the reference angle, or if we are going to find the angle measured in standard position.  While 

either approach will work, in this case we will do the latter.  Since for any point on a circle we 

know 𝑥 = 𝑟 cos (𝜃), using our given information we get 

−3 = √34 cos(𝜃) 
 

Divide by √34 

−
3

√34
= cos(𝜃) 

 

Inverse 

𝜃 = cos−1 (−
3

√34
) = 120.964° 

 

Second quadrant as desired 

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 100.964 

degrees.  We can then evaluate the coordinates of the rotated point 

𝑥 = √34 cos(100.964°) = −1.109 

𝑦 = √34 sin(100.964°) = 5.725 

The coordinates of the character on the rotated map will be (−1.109, 5.725). 

Modeling with sinusoidal functions 

Many modeling situations involve functions that are periodic.  Previously we learned that 

sinusoidal functions are a special type of periodic function.  Problems that involve quantities that 
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oscillate can often be modeled by a sine or cosine function and once we create a suitable model 

for the problem we can use that model to answer various questions. 

Example 4: The hours of daylight in Seattle oscillate from a low of 8.5 hours in January to a high 

of 16 hours in July.  When should you plant a garden if you want to do it during a month where 

there are 14 hours of daylight? 

To model this, we first note that the hours of daylight oscillate with a period of 12 months.  With 

a low of 8.5 and a high of 16, the vertical shift will be halfway between these values, at 
16+8.5

2
= 12.25.  The amplitude will be half the difference between the highest and lowest 

values: 
16−8.5

2
= 3.75, or equivalently the distance from the vertical shift to the high or low 

value, 16 − 12.25 = 3.75.  Letting January be 𝑡 = 0, the graph starts at the lowest value, so it 

can be modeled as a flipped cosine graph.  Putting this together, we get a model: 

ℎ(𝑡) = −3.75 cos (
𝜋

6
𝑡) + 12.25 

−𝑐𝑜𝑠(𝑡) represents the flipped cosine,   

3.75 is the amplitude,  

12.25 is the vertical shift,  

2𝜋

12
=

𝜋

6
 corresponds to the horizontal stretch, found by 

using the ratio of the “original period / new period” 

ℎ(𝑡) is our model for hours of day light 𝑡 months after January.   

To find when there will be 14 hours of daylight, we solve ℎ(𝑡) = 14 

14 = −3.75𝑐𝑜𝑠 (
𝜋

6
𝑡) + 12.25 

 

Subtract 12.5 

1.75 = −3.75 cos (
𝜋

6
𝑡) 

 

Divide −3.75 

−
1.75

3.75
= cos (

𝜋

6
𝑡) 

 

Inverse cosine 

𝜋

6
𝑡 = cos−1 (−

1.75

3.75
) = 2.0563 

 

Multiply by reciprocal 

𝑡 = 2.0563 ∙
6

𝜋
= 3.927 months 

 

Final answer 

3.75 y=12.25 
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While there would be a second time in the year when there are 14 hours of daylight, since we are 

planting a garden, we would want to know the first solution, in spring, so we do not need to find 

the second solution in this case. 

Example 5: An object is connected to the wall with a spring that has a 

natural length of 20 cm.  The object is pulled back 8 cm past the natural 

length and released.  The object oscillates 3 times per second.  Find an 

equation for the horizontal position of the object ignoring the effects of friction.  How much time 

during each cycle is the object more than 27 cm from the wall? 

If we use the distance from the wall, 𝑥, as the desired output, then the object will oscillate 

equally on either side of the spring’s natural length of 20, putting the vertical shift of the function 

at 20 cm.   

If we release the object 8 cm past the natural length, the amplitude of the oscillation will be 8 

cm.   

We are beginning at the largest value and so this function can most easily be modeled using a 

cosine function. 

Since the object oscillates 3 times per second, it has a frequency of 3 and the period of one 

oscillation is 
1

3
 of second. Using this we find the horizontal compression using the ratios of the 

periods: 
2𝜋

1

3

= 6𝜋. 

Using all this, we can build our model: 

𝑥(𝑡) = 8 cos(6𝜋𝑡) + 20 

To find when the object is 27 cm from the wall, we can solve 𝑥(𝑡) = 27 

27 = 8 cos(6𝜋𝑡) + 20 
 

Subtract 20 

7 = 8 cos(6𝜋𝑡) 
 

Divide by 8 

7

8
= cos(6𝜋𝑡) 

 

Inverse 

6𝜋𝑡 = cos−1 (
7

8
) = 0.505 

 

Divide by 6𝜋 

𝑡 =
0.505

6𝜋
= 0.0268 

 

Consider the graph 
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Based on the shape of the graph, we can conclude that the 

object will spend the first 0.0268 seconds more than 27 cm 

from the wall.  Based on the symmetry of the function, the 

object will spend another 0.0268 seconds more than 27 cm from 

the wall at the end of the cycle.  Altogether, the object spends 

0.0536 seconds each cycle at a distance greater than 27 cm from 

the wall. 

In some problems, we can use trigonometric functions to model behaviors more complicated 

than the basic sinusoidal function. 

Example 6: A rigid rod with length 10 cm is 

attached to a circle of radius 4cm at point 𝐴 as 

shown here.  The point 𝐵 is able to freely move 

along the horizontal axis, driving a piston
1
.  If the 

wheel rotates counterclockwise at 5 revolutions 

per second, find the location of point 𝐵 as a 

function of time.  When will the point 𝐵 be 12 cm 

from the center of the circle? 

To find the position of point 𝐵, we can begin by finding the coordinates of point 𝐴.  Since it is a 

point on a circle with radius 4, we can express its coordinates as (4 cos(𝜃) , 4 sin(𝜃)), where 𝜃 is 

the angle shown.   

The angular velocity is 5 revolutions per second, or equivalently 10𝜋 radians per second.  After 𝑡 

seconds, the wheel will rotate by 𝜃 = 10𝜋𝑡 radians.  Substituting this, we can find the 

coordinates of 𝐴 in terms of 𝑡. 

(4 cos(10𝜋𝑡) , 4 sin(10𝜋𝑡)) 

Notice that this is the same value we would have obtained by observing that the period of the 

rotation is 
1

5
 of a second and calculating the stretch/compression factor: 

2𝜋

1
5

= 10𝜋 

 

 

 

                                                           
1
 For an animation of this situation, see http://www.mathdemos.org/mathdemos/sinusoidapp/engine1.gif  

A 

B 
10 cm 4cm 

θ 

http://www.mathdemos.org/mathdemos/sinusoidapp/engine1.gif
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Now that we have the coordinates of the point 𝐴, we can 

relate this to the point 𝐵.  By drawing a vertical line 

segment from 𝐴 to the horizontal axis, we can form a 

right triangle.  The height of the triangle is the 𝑦 

coordinate of the point 𝐴: 4sin (10𝜋𝑡).  Using the 

Pythagorean Theorem, we can find the base length of 

the triangle: 

(4 sin(10𝜋𝑡))2 + 𝑏2 = 102 
 

Solve for 𝑏2 

𝑏2 = 100 − 16 sin2(10𝜋𝑡) 
 

Square root 

𝑏 = √100 − 16 sin2(10𝜋𝑡) 

 

 

Looking at the 𝑥 coordinate of the point 𝐴, we can see that the triangle we drew is shifted to the 

right of the 𝑦 axis by 4cos (10𝜋𝑡).  Combining this offset with the length of the base of the 

triangle gives the 𝑥 coordinate of the point 𝐵: 

𝑥(𝑡) = 4 cos(10𝜋𝑡) + √100 − 16 sin2(10𝜋𝑡) 

To solve for when the point 𝐵 will be 12 cm from the center of the circle, we need to solve 

𝑥(𝑡) = 12. 

12 = 4 cos(10𝜋𝑡) + √100 − 16 sin2(10𝜋𝑡) 

 

Isolate the square root 

12 − 4 cos(10𝜋𝑡) = √100 − 16 sin2(10𝜋𝑡) 

 

Square both sides 

144 − 96 cos(10𝜋𝑡) + 16 cos2(10𝜋𝑡)
= 100 − 16 sin2(10𝜋𝑡) 

 

Move all terms to the left 

44 − 96 cos(10𝜋𝑡) + 16 sin2(10𝜋𝑡) + 16 cos2(10𝜋𝑡) = 0 
 

Factor out 16 

44 − 96 cos(10𝜋𝑡) + 16(sin2(10𝜋𝑡) + cos2(10𝜋𝑡)) = 0 
 

Simplify: sin2(𝜃) + cos2(𝜃) =
1 

44 − 96 cos(10𝜋𝑡) + 16 = 0 
 

Combine like terms 

−96 cos(10𝜋𝑡) + 60 = 0 
 

Subtract 60 

−96 cos(10𝜋𝑡) = −60 
 

Divide −96 

cos(10𝜋𝑡) =
60

96
 

 

Substitution 

A 

B 

10 cm 

b 
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cos(𝑢) =
60

96
 

 

Inverse cosine 

𝑢 = cos−1 (
60

96
) = 0.896 

 

Second solution by symmetry 

𝑢 = 2𝜋 − 0.896 = 5.388 
 

Undo substitution 

10𝜋𝑡 = 0.896, 5.388 
 

Divide each by 10𝜋 

𝑡 = 0.0285, 0.1715 seconds 
 

Final answer 

 The point 𝐵 will be 12 cm from the center of the circle 0.0285 seconds after the process begins, 

0.1715 seconds after the process begins, and every 
1

5
 of a second after each of those values. 
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6.2 Modeling with Trigonometric Functions Practice 
 

In each of the following triangles, solve for the unknown side and angles. 

1.             2.  

 

 

3.  4.   

    

 Find a possible formula for the trigonometric function whose values are in the following tables. 

5. 

𝒙 0 1 2 3 4 5 6 
𝒚 −2 4 10 4 −2 4 10 

 

6.  

𝒙 0 1 2 3 4 5 6 

𝒚 1 −3 −7 −3 1 −3 −7 

 

7. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 63 degrees and the low temperature of 37 

degrees occurs at 5 AM. Assuming 𝑡 is the number of hours since midnight, find an equation for 

the temperature, 𝐷, in terms of 𝑡. 

8. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 92 degrees and the low temperature of 78 

degrees occurs at 4 AM. Assuming 𝑡 is the number of hours since midnight, find an equation for 

the temperature, 𝐷, in terms of 𝑡. 

9. A population of rabbits oscillates 25 above and below an average of 129 during the year, 

hitting the lowest value in January (𝑡 = 0).  

a. Find an equation for the population, 𝑃, in terms of the months since January, 𝑡. 

b. What if the lowest value of the rabbit population occurred in April instead? 

 

 

A 

5 

8 

B 

c 

B 

7 

3 

A 

c 

A 

b 

7 

15 
B 

B 

a 
10 

12 

A 
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10. A population of elk oscillates 150 above and below an average of 720 during the year, hitting 

the lowest value in January (𝑡 = 0).  

a. Find an equation for the population, 𝑃, in terms of the months since January, 𝑡. 

b. What if the lowest value of the elk population occurred in March instead? 

 

11. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature of 105 degrees occurs at 5 PM and the average 

temperature for the day is 85 degrees. Find the temperature, to the nearest degree, at 9 AM. 

12. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature of 84 degrees occurs at 6 PM and the average 

temperature for the day is 70 degrees. Find the temperature, to the nearest degree, at 7 AM. 

13. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 47 and 63 degrees during the day and the 

average daily temperature first occurs at 10 AM. How many hours after midnight does the 

temperature first reach 51 degrees? 

14. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 64 and 86 degrees during the day and the 

average daily temperature first occurs at 12 AM. How many hours after midnight does the 

temperature first reach 70 degrees? 

15. A Ferris wheel is 20 meters in diameter and boarded from a platform that is 2 meters above 

the ground. The six o'clock position on the Ferris wheel is level with the loading platform. The 

wheel completes 1 full revolution in 6 minutes. How many minutes of the ride are spent higher 

than 13 meters above the ground? 

16. A Ferris wheel is 45 meters in diameter and boarded from a platform that is 1 meter above 

the ground. The six o'clock position on the Ferris wheel is level with the loading platform. The 

wheel completes 1 full revolution in 10 minutes. How many minutes of the ride are spent higher 

than 27 meters above the ground? 

17. The sea ice area around the North Pole fluctuates between about 6 million square kilometers 

in September to 14 million square kilometers in March.  Assuming sinusoidal fluctuation, during 

how many months are there less than 9 million square kilometers of sea ice? 

18. The sea ice area around the South Pole fluctuates between about 18 million square kilometers 

in September to 3 million square kilometers in March.  Assuming sinusoidal fluctuation, during 

how many months are there more than 15 million square kilometers of sea ice? 
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19. A respiratory ailment called “Cheyne-Stokes Respiration” causes the volume per breath to 

increase and decrease in a sinusoidal manner, as a function of time. For one particular patient 

with this condition, a machine begins recording a plot of volume per breath versus time (in 

seconds). Let 𝑏(𝑡) be a function of time 𝑡 that tells us the volume (in liters) of a breath that starts 

at time 𝑡. During the test, the smallest volume per breath is 0.6 liters and this first occurs for a 

breath that starts 5 seconds into the test. The largest volume per breath is 1.8 liters and this first 

occurs for a breath beginning 55 seconds into the test. 

a. Find a formula for the function 𝑏(𝑡) whose graph will model the test data for this patient. 

b. If the patient begins a breath every 5 seconds, what are the breath volumes during the first 

minute of the test? 

20. Suppose the high tide in Seattle occurs at 1:00 a.m. and 1:00 p.m, at which time the water is 

10 feet above the height of low tide. Low tides occur 6 hours after high tides. Suppose there are 

two high tides and two low tides every day and the height of the tide varies sinusoidally. 

a. Find a formula for the function 𝑦 = ℎ(𝑡) that computes the height of the tide above low tide at 

time 𝑡. (In other words, 𝑦 = 0 corresponds to low tide.) 

b. What is the tide height at 11:00 a.m.? 

21. A communications satellite orbits the earth 𝑡 

miles above the surface. Assume the radius of 

the earth is 3,960 miles. The satellite can only 

“see” a portion of the earth’s surface, bounded 

by what is called a horizon circle. This leads to a 

two-dimensional cross-sectional picture we can 

use to study the size of the horizon slice:  

a. Find a formula for 𝛼 in terms of 𝑡. 

b. If 𝑡 = 30,000 miles, what is 𝛼? What 

percentage of the circumference of the earth is 

covered by the satellite? What would be the 

minimum number of such satellites required to 

cover the circumference? 

c. If 𝑡 = 1,000 miles, what is 𝛼? What percentage of the circumference of the earth is covered 

by the satellite? What would be the minimum number of such satellites required to cover the 

circumference? 

d. Suppose you wish to place a satellite into orbit so that 20% of the circumference is covered by 

the satellite. What is the required distance 𝑡? 
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22. Tiffany is a model rocket enthusiast. She has been working on a pressurized rocket filled 

with nitrous oxide. According to her design, if the atmospheric pressure exerted on the rocket is 

less than 10 pounds/sq.in., the nitrous oxide chamber inside the rocket will explode. Tiff worked 

from a formula 𝑝 = 14.7𝑒−ℎ/10 pounds/sq.in. for the atmospheric pressure ℎ miles above sea 

level. Assume that the rocket is launched at an angle of 𝛼 above level ground at sea level with an 

initial speed of 1400 feet/sec. Also, assume the height (in feet) of the rocket at time 𝑡 seconds is 

given by the equation 𝑦(𝑡) = −16𝑡2 + 1600sin (𝛼)𝑡.      

a. At what altitude will the rocket explode? 

b. If the angle of launch is 𝛼 = 12°, determine the minimum atmospheric pressure exerted on the 

rocket during its flight. Will the rocket explode in midair? 

c. If the angle of launch is 𝛼 = 82°, determine the minimum atmospheric pressure exerted on the 

rocket during its flight. Will the rocket explode in midair? 

d. Find the largest launch angle 𝛼 so that the rocket will not explode. 
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6.3 Solving Trigonometric Equations with Identities 
 

In section 6.1, we solved basic trigonometric equations.  In this section, we explore the 

techniques needed to solve more complicated trig equations.   

Building from what we already know makes this a much easier task.  

Consider the function 𝑓(𝑥) = 2𝑥2 + 𝑥.  If you were asked to solve 𝑓(𝑥) = 0, it require simple 

algebra: 

2𝑥2 + 𝑥 = 0 
 

Factor 

𝑥(2𝑥 + 1) = 0 
 

Set each factor equal to zero 

𝑥 = 0   or   2𝑥 + 1 = 0 
 

Solve for 𝑥 

𝑥 = 0, −
1

2
 

 

Final answer 

Similarly, for 𝑔(𝑡) = sin (𝑡), if we asked you to solve 𝑔(𝑡) = 0, you can solve this using unit 

circle values: 

sin(𝑡) = 0   for   𝑡 = 0, 𝜋, 2𝜋, and so on 

Using these same concepts, we consider the composition of these two functions: 

𝑓(𝑔(𝑡)) = 2(sin(𝑡))2 + (sin(𝑡)) = 2 sin2(𝑡) + sin (𝑡) 

This creates an equation that is a polynomial trig function.  With these types of functions, we use 

algebraic techniques like factoring and the quadratic formula, along with trigonometric identities 

and techniques, to solve equations. 

As a reminder, here are some of the essential trigonometric identities that we have learned so far: 
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Identities 

Pythagorean Identities 

sin2(𝑡) + cos2(𝑡) = 1 
 

1 + cot2(𝑡) = csc2(𝑡) tan2(𝑡) + 1 = sec2(𝑡) 

Negative Angle Identities 

sin(−𝑡) = − sin(𝑡) 
 

cos(−𝑡) = cos(𝑡) tan(−𝑡) = − tan(𝑡) 

csc(−𝑡) = − csc(𝑡) 
 

sec(−𝑡) = sec(𝑡) cot(−𝑡) = −cot (𝑡) 

Reciprocal Identities 

)cos(

1
)sec(

t
t   

)sin(

1
)csc(

t
t   

)cos(

)sin(
)tan(

t

t
t   

)tan(

1
)cot(

t
t   

Example 1: Solve 2 sin2(𝑡) + sin(𝑡) = 0 for all solutions with 0 ≤ 𝑡 < 2𝜋. 

This equation kind of looks like a quadratic equation, but with sin (𝑡) in place of an algebraic 

variable (we often call such an equation “quadratic in sine”).  As with all quadratic equations, we 

can use factoring techniques or the quadratic formula.  This expression factors nicely, so we 

proceed by factoring out the common factor of sin (𝑡): 

2 sin2(𝑡) + sin(𝑡) = 0 
 

Factor sin(𝑡) 

sin(𝑡) [2 sin(𝑡) + 1] = 0 
 

Set each factor equal to zero 

sin(𝑡) = 0     or     2 sin(𝑡) + 1 = 0 
 

Solve each for sin(𝑡) 

sin(𝑡) = 0     or     sin(𝑡) = −
1

2
 

 

From our special angles 

𝑡 = 0, 𝜋,
7𝜋

6
,
11𝜋

6
 

 

Final answer 

We could check these answers are reasonable by graphing the function and comparing the zeros. 
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Example 2: Solve 3 sec2(𝑡) − 5 sec(𝑡) − 2 = 0 for all solutions with 0 ≤ 𝑡 < 2𝜋. 

Since the left side of this equation is quadratic in secant, we can try to factor it, and hope it 

factors nicely. 

3 sec2(𝑡) − 5 sec(𝑡) − 2 = 0 
 

Factor 

(3 sec(𝑡) + 1)(sec(𝑡) − 2) = 0 
 

Set each factor equal to zero 

3 sec(𝑡) + 1 = 0     or     sec(𝑡) − 2 = 0 
 

Solve for sec(𝑡) 

sec(𝑡) = −
1

3
     or     sec(𝑡) = 2 

 

Rewrite as cosine 

1

cos(𝑡)
= −

1

3
     or     

1

cos(𝑡)
= 2 

 

Invert both sides 

cos(𝑡) = −3     or     cos(𝑡) =
1

2
 

 

Cosine domain [−1,1], only cos(𝑡) =
1

2
 has solution 

𝑡 =
𝜋

3
,
5𝜋

3
 

 

Final answer 

By utilizing technology to graph the function  

𝑓(𝑡) = 3 sec2(𝑡) − 5 sec(𝑡) − 2, a look at a graph confirms 

there are only two zeros for this function on the interval 

[0,2𝜋), which assures us that we didn’t miss anything.  

 

 

When solving some trigonometric equations, it becomes necessary to first rewrite the equation 

using trigonometric identities.  One of the most common is the Pythagorean Identity, 

 sin2(𝜃) + cos2(𝜃) = 1 which allows you to rewrite sin2(𝜃) in terms of cos2(𝜃) or vice versa, 

sin2(𝜃) = 1 − cos2(𝜃) 

cos2(𝜃) = 1 − sin2(𝜃) 

This identity becomes very useful whenever an equation involves a combination of sine and 

cosine functions. 
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Example 3: Solve 2 sin2(𝑡) − cos(𝑡) = 1 for all solutions with 0 ≤ 𝑡 < 2𝜋. 

Since this equation has a mix of sine and cosine functions, it becomes more complicated to solve.  

It is usually easier to work with an equation involving only one trig function.  This is where we 

can use the Pythagorean Identity. 

2 sin2(𝑡) − cos(𝑡) = 1 
 

Use sin2(𝜃) = 1 − cos2(𝜃) 

2(1 − cos2(𝑡)) − cos(𝑡) = 1 
 

Distribute 

2 − 2 cos2(𝑡) − cos(𝑡) = 1 
 

Subtract 1 and reorder terms 

−2 cos2(𝑡) − cos(𝑡) + 1 = 0 
 

Multiply by −1 to change signs 

2 cos2(𝑡) + cos(𝑡) − 1 = 0 
 

Factor 

(2 cos(𝑡) − 1)(cos(𝑡) + 1) = 0 
 

Set each factor equal to zero 

2 cos(𝑡) − 1 = 0     or     cos(𝑡) + 1 = 0 
 

Solve for cos(𝑡) 

cos(𝑡) =
1

2
     or     cos(𝑡) = −1 

 

Evaluate each special angle 

𝑡 =
𝜋

3
,
5𝜋

3
, 𝜋 

 

Final answer 

In addition to the Pythagorean Identity, it is often necessary to rewrite the tangent, secant, 

cosecant, and cotangent as part of solving an equation. 
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Example 4: Solve tan(𝑥) = 3sin (𝑥) for all solutions with 0 ≤ 𝑥 < 2𝜋. 

With a combination of tangent and sine, we might try rewriting tangent 

tan(𝑥) = 3 sin(𝑥) Substitute tan(𝑥) =
sin(𝑥)

cos(𝑥)
 

 
sin(𝑥)

cos(𝑥)
= 3sin (𝑥) 

 

Multiply by cos(𝑥) 

sin(𝑥) = 3 sin(𝑥) cos(𝑥) 
 

 

At this point, you may be tempted to divide both sides of the equation by sin (𝑥).  Resist the 

urge.  When we divide both sides of an equation by a quantity, we are assuming the quantity is 

never zero.  In this case, when sin(𝑥) = 0 the equation is satisfied, so we’d lose those solutions 

if we divided by the sine.  Instead we make the equation equal zero by subtracting 

3 sin(𝑥) cos (𝑥) 

sin(𝑥) − 3 sin(𝑥) cos(𝑥) = 0 
 

Factor GCF of sin(𝑥) 

sin(𝑥) (1 − 3 cos(𝑥)) = 0 
 

Make each factor equal zero 

sin(𝑥) = 0     or     1 − 3 cos(𝑥) = 0 
 

Solve 

sin(𝑥) = 0     or     cos(𝑥) =
1

3
 

 

The cosine we will need a calculator to evaluate 

𝑥 = cos−1 (
1

3
) = 1.231 

 

Using symmetry find the second solution 

𝑥 = 2𝜋 − 1.231 = 5.052 
 

Evaluate sin(𝑥) = 0 using special angles 

𝑥 = 0, 𝜋 
 

List all solutions 

𝑥 = 0, 𝜋, 1.231, 5.052 
 

Final answer 
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Example 5: Solve 
4

sec2(𝜃)
+ 3 cos(𝜃) = 2cot (𝜃)tan (𝜃) for all solutions with 0 ≤ 𝜃 < 2𝜋. 

4

sec2(𝜃)
+ 3 cos(𝜃) = 2 cot(𝜃) tan(𝜃) 

 

Use reciprocal identities 

4 cos2(𝜃) + 3 cos(𝜃) = 2 ∙
1

tan(𝜃)
tan(𝜃) 

 

Simplify 

4 cos2(𝜃) + 3 cos(𝜃) = 2 

 

Subtract 2 

4 cos2(𝜃) + 3 cos(𝜃) − 2 = 0 
 

Can’t factor, use quadratic formula 

cos(𝜃) =
−3 ± √32 − 4(4)(−2)

2(4)
= −1.175, 0.425 

 

Cosine domain [−1,1], only 

cos(𝜃) = 0.425 has solution 

𝜃 = cos−1(0.425) = 1.131 
 

By symmetry find second solution 

𝜃 = 2𝜋 − 1.131 = 5.152 
 

List answers 

𝜃 = 1.131, 5.152 
 

Final answer 
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6.3 Solving Trigonometric Equations with Identities Practice 
 

Find all solutions on the interval 0 ≤ 𝜃 < 2𝜋 

1. 2 sin(𝜃) = −1 
 

2. 2 sin(𝜃) = √3 3. 2 cos(𝜃) = 1 4. 2 cos(𝜃) = −√2 

Find all solutions 

5. 2 sin (
𝜋

4
𝑥) = 1 

 

6. 2 sin (
𝜋

3
𝑥) = √2 

7. 2 cos(2𝑡) = −√3 

8. 2 cos(3𝑡) = −1 9. 3 cos (
𝜋

5
𝑥) = 2 

 

10. 8 cos (
𝜋

2
𝑥) = 6 

11. 7 sin(3𝑡) = −2 
 

12. 4 sin(4𝑡) = 1   

Find all solutions on the interval [0,2𝜋) 

13. 10 sin(𝑥) cos(𝑥) = 6 cos(𝑥) 
 

14. −3 sin(𝑡) = 15 cos(𝑡) sin(𝑡) 

15. csc(2𝑥) − 9 = 0 
 

16. sec(2𝜃) = 3 

17. sec(𝑥) sin(𝑥) − 2 sin(𝑥) = 0 
 

18. tan(𝑥) sin(𝑥) − sin(𝑥) = 0 

19. 
sec2(𝑥) =

1

4
 

 

20. 
cos2(𝜃) =

1

2
 

21. sec2(𝑥) = 7 
 

22. csc2(𝑡) = 3 

23. 2 sin2(𝑤) + 3 sin(𝑤) + 1 = 0 
 

24. 8 sin2(𝑥) + 6 sin(𝑥) + 1 = 0 

25. 2 cos2(𝑡) + cos(𝑡) = 1 
 

26. 8 cos2(𝜃) = 3 − 2 cos(𝜃) 

27. 4 cos2(𝑥) − 4 = 15 cos(𝑥) 
 

28. 9 sin(𝑤) − 2 = 4 sin2(𝑤) 

29. 12 sin2(𝑡) + cos(𝑡) − 6 = 0 
 

30. 6 cos2(𝑥) + 7 sin(𝑥) − 8 = 0 

31. cos2(𝜙) = −6 sin(𝜙) 
 

32. sin2(𝑡) = cos(𝑡) 

33. tan3(𝑥) = 3 tan(𝑥) 
 

34. cos3(𝑡) = − cos(𝑡) 

35. tan5(𝑥) = tan(𝑥) 
 

36. tan5(𝑥) − 9 tan(𝑥) = 0 

37. 4 sin(𝑥) cos(𝑥) + 2 sin(𝑥) − 2 cos(𝑥) = 1 

 
38. 2 sin(𝑥) cos(𝑥) − sin(𝑥) + 2 cos(𝑥) = 1 

39. tan(𝑥) − 3 sin(𝑥) = 0 
 

40. 3 cos(𝑥) = cot(𝑥) 

41. 2 tan2(𝑡) = 3 sec(𝑡) 42. 1 − 2 tan(𝑤) = tan2(𝑤) 
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6.4 Addition and Subtraction Identities 
 

In this section, we begin expanding our repertoire of trigonometric identities.   

Identities 

The sum and difference identities 

cos(𝛼 − 𝛽) = cos(𝛼) cos(𝛽) + sin (𝛼)sin (𝛽) 

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin (𝛼)sin (𝛽) 

sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + cos (𝛼)sin (𝛽) 

sin(𝛼 − 𝛽) = sin(𝛼) cos(𝛽) − cos (𝛼)sin (𝛽) 

We will prove the difference of angles identity for cosine.  The rest of the identities can be 

derived from this one. 

 

Proof of the difference of angles identity for cosine 

Consider two points on a unit circle: 

 𝑃 at an angle of 𝛼 from the positive 𝑥 axis with 

coordinates (cos(𝛼) , sin(𝛼))  

𝑄 at an angle of 𝛽 with coordinates (cos(𝛽) , sin(𝛽)) 

Notice the measure of angle 𝑃𝑂𝑄 is 𝛼 − 𝛽.  Label 

two more points: 

𝐶 at an angle of 𝛼 − 𝛽, with coordinates  

(cos(𝛼 − 𝛽) , sin(𝛼 − 𝛽)), 

𝐷 at the point (1,0). 

Notice that the distance from 𝐶 to 𝐷 is the same as the distance from 𝑃 to 𝑄 because triangle 

𝐶𝑂𝐷 is a rotation of triangle 𝑃𝑂𝐷. 

 

Using the distance formula to find the distance from P to Q yields 

√(cos(𝛼) − cos(𝛽))2 + (sin(𝛼) − sin(𝛽))2 

β 

α - β α 

P 

Q 

C 

D 

O 



351 
 

Expanding this 

√cos2(𝛼) − 2 cos(𝛼) cos(𝛽) + cos2(𝛽) + sin2(𝛼) − 2 sin(𝛼) sin(𝛽) + sin2(𝛽) 

Applying the Pythagorean Identity and simplifying 

√2 − 2 cos(𝛼) cos(𝛽) − 2 sin(𝛼) sin(𝛽) 

Similarly, using the distance formula to find the distance from 𝐶 to 𝐷  

√(cos(𝛼 − 𝛽) − 1)2 + (sin(𝛼 − 𝛽) − 0)2 

Expanding this 

√cos2(𝛼 − 𝛽) − 2 cos(𝛼 − 𝛽) + 1 + sin2(𝛼 − 𝛽) 

Applying the Pythagorean Identity and simplifying 

√−2 cos(𝛼 − 𝛽) + 2 

Since the two distances are the same we set these two formulas equal to each other and simplify 

√2 − 2 cos(𝛼) cos(𝛽) − 2 sin(𝛼) sin(𝛽) = √−2 cos(𝛼 − 𝛽) + 2 

 

Square both sides 

2 − 2 cos(𝛼) cos(𝛽) − 2 sin(𝛼) sin(𝛽) = −2 cos(𝛼 − 𝛽) + 2 
 

Divide terms by −2 

1 + cos(𝛼) cos(𝛽) + sin(𝛼) sin(𝛽) = cos(𝛼 − 𝛽) + 1 
 

Subtract 1 

cos(𝛼) cos(𝛽) + sin(𝛼) sin(𝛽) = cos(𝛼 − 𝛽) 
 

Identity 

By writing cos (𝛼 + 𝛽) as cos (𝛼 − (−𝛽)), we can show the sum of angles identity for cosine 

follows from the difference of angles identity proven above. 

The sum and difference of angles identities are often used to rewrite expressions in other forms, 

or to rewrite an angle in terms of simpler angles. 
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Example 1: Find the exact value of cos (75°). 

cos(75°) 
 

Write 75 as 30 + 45 

cos(30° + 45°) 
 

Use sum of angles formula 

cos(30°) cos(45°) − sin(30°) cos(45°) 
 

Evaluate 

(
√3

2
) (

√2

2
) − (

1

2
) (

√2

2
) 

 

Simplify 

√6 − √2

4
 

 

Final answer 

Additionally, these identities can be used to simplify expressions or prove new identities 

Example 2: Prove 
tan(𝑎)+tan(𝑏)

tan(𝑎)−tan(𝑏)
=

sin(𝑎+𝑏)

sin(𝑎−𝑏)
  

As with any identity, we need to first decide which side to begin with.  Let’s start with the left 

side. 

tan(𝑎) + tan(𝑏)

tan(𝑎) − tan(𝑏)
 

 

Rewrite with sine and cosine 

sin(𝑎)
cos(𝑎)

+
sin(𝑏)
cos(𝑏)

sin(𝑎)
cos(𝑎)

−
sin(𝑏)
cos(𝑏)

 

 

Multiply top and bottom by cos(𝑎) cos(𝑏) 

(
sin(𝑎)
cos(𝑎)

+
sin(𝑏)
cos(𝑏)

) ∙ cos(𝑎) cos (𝑏)

(
sin(𝑎)
cos(𝑎)

−
sin(𝑏)
cos(𝑏)

) ∙ cos(𝑎) cos (𝑏)
 

 

Distribute and simplify 

sin(𝑎) cos(𝑏) + sin(𝑏) cos(𝑎)

sin(𝑎) cos(𝑏) − sin(𝑏) cos(𝑎)
 

 

Use sum and difference of angles 

sin(𝑎 + 𝑏)

sin(𝑎 − 𝑏)
 

 

Final answer 
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These identities can also be used to solve equations. 

Example 3: Solve sin(𝑥) sin(2𝑥) + cos(𝑥) cos(2𝑥) =
√3

2
. 

By recognizing the left side of the equation as the result of the difference of angles identity for 

cosine, we can simplify the equation 

sin(𝑥) sin(2𝑥) + cos(𝑥) cos(2𝑥) =
√3

2
 

 

Apply difference of angles 

cos(𝑥 − 2𝑥) =
√3

2
 

 

Simplify 

cos(−𝑥) =
√3

2
 

 

Use negative angle identity 

cos(𝑥) =
√3

2
 

 

Evaluate for both values on one cycle 

𝑥 =
𝜋

6
,
11𝜋

6
 

 

For all values, where 𝑘 is an integer 

𝑥 =
𝜋

6
+ 2𝜋𝑘,

11𝜋

6
+ 2𝜋𝑘 

 

Final answer 

Combining Waves of Equal Period 

A sinusoidal function of the form 𝑓(𝑥) = 𝐴 sin (𝐵𝑥 + 𝐶) can be rewritten using the sum of 

angles identity. 

Example 4: Rewrite 𝑓(𝑥) = 4 sin (3𝑥 +
𝜋

3
) as a sum of sine and cosine. 

4 sin (3𝑥 +
𝜋

3
) 

 

Sum of angles formula 

4 [sin(3𝑥) cos (
𝜋

3
) + cos(3𝑥) sin (

𝜋

3
)] 

 

Evaluate sine and cosine 

4 [sin(3𝑥) (
1

2
) + cos(3𝑥) (

√3

2
)] 

 

Distribute and simplify 

2 sin(3𝑥) + 2√3 cos(3𝑥) 
 

Final answer 
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Notice that the result is a stretch of the sine added to a different stretch of the cosine, but both 

have the same horizontal compression, which results in the same period. 

We might ask now whether this process can be reversed – can a combination of a sine and cosine 

of the same period be written as a single sinusoidal function?  To explore this, we will look in 

general at the procedure used in the example above. 

𝑓(𝑥) = 𝐴 sin(𝐵𝑥 + 𝐶) 
 

Sum of angles 

𝐴[sin(𝐵𝑥) cos(𝐶) + cos(𝐵𝑥) sin(𝐶)] 
 

Distribute 

𝐴 sin(𝐵𝑥) cos(𝐶) + 𝐴 cos(𝐵𝑥) sin(𝐶) 
 

Rearrange 

𝐴 cos(𝐶) sin(𝐵𝑥) + 𝐴 sin(𝐶) cos(𝐵𝑥) 
 

 

Based on this result, if we have an expression of the form 𝑚 sin(𝐵𝑥) + 𝑛 cos (𝐵𝑥), we could 

rewrite it as a single sinusoidal function if we can find values 𝐴 and 𝐶 so that  

𝑚 sin(𝐵𝑥) + 𝑛 cos(𝐵𝑥) = 𝐴 cos(𝐶) sin(𝐵𝑥) + 𝐴 sin(𝐶) cos (𝐵𝑥), which will require that: 

𝑚 = 𝐴 cos(𝐶)      which can be rewritten as     
𝑚

𝐴
= cos (𝐶) 

𝑛 = 𝐴 sin(𝐶)      which can be rewritten as     
𝑛

𝐴
= sin (𝐶) 

To find 𝐴, consider the expression 𝑚2 + 𝑛2 

𝑚2 + 𝑛2 = (𝐴 cos(𝐶))2 + (𝐴 sin(𝐶))2 
 

Evaluate exponents 

𝑚2 + 𝑛2 = 𝐴2 cos2(𝐶) + 𝐴2 sin2(𝐶) 
 

Factor 𝐴2 

𝑚2 + 𝑛2 = 𝐴2(cos2(𝐶) + sin2(𝐶)) 
 

Apply Pythagorean Identity 

𝑚2 + 𝑛2 = 𝐴2 
 

Solution for 𝐴2 

 Rewriting a Sum of Sine and Cosine as a Single Sine 

To rewrite 𝑚 sin(𝐵𝑥) + 𝑛 cos (𝐵𝑥) as 𝐴𝑠𝑖𝑛(𝐵𝑥 + 𝐶) 

𝐴2 = 𝑚2 + 𝑛2, cos(𝐶) =
𝑚

𝐴
, sin(𝐶) =

𝑛

𝐴
 

We can use either of the last two equations to solve for possible values of C.  Since there will 

usually be two possible solutions, we will need to look at both to determine which quadrant C is 

in and determine which solution for C satisfies both equations. 
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Example 5: Rewrite 4√3 sin(2𝑥) − 4cos (2𝑥) as a single sinusoidal function. 

4√3 sin(2𝑥) − 4 cos(2𝑥) 
 

Using formulas above, 

𝐴2 = (4√3)
2

+ (−4)2 

 

Simplify 

𝐴2 = 16(3) + 16 = 48 + 16 = 64 
 

Square root 

𝐴 = 8 
 

Use formulas for 𝐶 

cos(𝐶) =
4√3

8
=

√3

2
 

sin(𝐶) = −
4

8
= −

1

2
 

 

Solve both for 𝐶 

From cosine: 𝐶 =
𝜋

6
,

11𝜋

6
 

From sine: 𝐶 =
7𝜋

6
,

11𝜋

6
 

 

Use the angle that works for both 

𝐶 =
11𝜋

6
 

 

This gives the function 

8 sin (2𝑥 +
11𝜋

6
) 

 

Final answer 

Rewriting a combination of sine and cosine of equal periods as a single sinusoidal function 

provides an approach for solving some equations. 
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Example 6: Solve 3 sin(2𝑥) + 4 cos(2𝑥) = 1 to find two positive solutions. 

To approach this, since the sine and cosine have the same period, we can rewrite them as a single 

sinusoidal function.   

3 sin(2𝑥) + 4 cos(2𝑥) = 1 
 

Find A 

𝐴2 = 32 + 42 = 25, 𝐴 = 5 
 

Find cos(𝐶) 

cos(𝐶) =
3

5
 

 

Use it to find possible 𝐶 

𝐶 = cos−1 (
3

5
) = 0.927 

2𝜋 − 0.927 = 5.356 
 

Find sin(𝐶) 

sin(𝐶) =
4

5
 

 

Use it to find possible 𝐶 

𝐶 = sin−1 (
4

5
) = 0.927 

𝜋 − 0.927 = 2.214 
 

Use the angle that works for both 

𝐶 = 0.927 
 

Rewrite equation 

5 sin(2𝑥 + 0.927) = 1 
 

Divide by 5 

sin(2𝑥 + 0.927) =
1

5
 

 

Use substitution, 𝑢 = 2𝑥 + 0.927 

sin(𝑢) =
1

5
 

 

Evaluate 

𝑢 = sin−1 (
1

5
) = 0.201 

𝑢 = 𝜋 − 0.201 = 2.940 
 

Find a third solution 

𝑢 = 0.201 + 2𝜋 = 6.485 
 

Undo substitution and solve for each 

2𝑥 + 0.927 = 0.201 

2𝑥 = −0.726 

𝑥 = −0.363 
 

2𝑥 + 0.927 = 2.940 

2𝑥 = 2.013 

𝑥 = 1.007 

Use first two positive solutions 
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2𝑥 + 0.927 = 6.485 

2𝑥 = 5.558 

𝑥 = 2.779 
 

𝑥 = 1.007, 2.779 
 

Final answer 

The Product-to-Sum and Sum-to-Product Identities 

The Product-to-Sum Identities 

sin(𝛼) cos(𝛽) =
1

2
(sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)) 

sin(𝛼) sin(𝛽) =
1

2
(cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽)) 

cos(𝛼) cos(𝛽) =
1

2
(cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽)) 

We will prove the first of these, using the sum and difference of angles identities from the 

beginning of the section.  The proofs of the other two identities are similar and are left as an 

exercise. 

Proof of the product-to-sum identity for 𝑠𝑖𝑛 (𝛼)𝑐𝑜𝑠 (𝛽)  

Recall the sum and difference of angles identities from earlier  

sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + cos (𝛼)sin (𝛽) 

sin(𝛼 − 𝛽) = sin(𝛼) cos(𝛽) − cos (𝛼)sin (𝛽) 

Adding these two equations, we obtain 

sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽) = 2sin (𝛼)cos (𝛽) 

Dividing by 2, we establish the identity 

1

2
(sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)) = sin (𝛼)cos (𝛽) 

 

 

 

 



358 
 

Example 7: Write sin(2𝑡) sin (4𝑡) as a sum or difference. 

sin(2𝑡) sin(4𝑡) 
 

Use product-to-sum identity 

1

2
(cos(2𝑡 − 4𝑡) − cos(2𝑡 + 4𝑡)) 

 

Simplify 

1

2
(cos(−2𝑡) − cos(6𝑡)) 

 

Apply negative angle identity 

1

2
(cos(2𝑡) − cos(6𝑡)) 

 

Distribute 

1

2
cos(2𝑡) −

1

2
cos(6𝑡) 

 

Final answer 

The Sum-to-Product Identities 

sin(𝑢) + sin(𝑣) = 2 sin (
𝑢 + 𝑣

2
) cos (

𝑢 − 𝑣

2
) 

sin(𝑢) − sin(𝑣) = 2 sin (
𝑢 − 𝑣

2
) cos (

𝑢 + 𝑣

2
) 

cos(𝑢) + cos(𝑣) = 2 cos (
𝑢 + 𝑣

2
) cos (

𝑢 − 𝑣

2
) 

cos(𝑢) − cos(𝑣) = −2 sin (
𝑢 + 𝑣

2
) sin (

𝑢 − 𝑣

2
) 

We will again prove one of these and leave the rest as an exercise.   

Proof of the sum-to-product identity for sine functions 

We begin with the product-to-sum identity 

sin(𝛼) cos(𝛽) =
1

2
(sin(𝛼 + 𝑏) + sin(𝛼 − 𝛽)) 

We define two new variables: 

𝑢 = 𝛼 + 𝛽 

𝑣 = 𝛼 − 𝛽 

 

Adding these equations yields 𝑢 + 𝑣 = 2𝛼, giving 𝛼 =
𝑢+𝑣

2
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Subtracting the equations yields 𝑢 − 𝑣 = 2𝛽, or 𝛽 =
𝑢−𝑣

2
 

Substituting these expressions into the product-to-sum identity above, 

sin (
𝑢 + 𝑣

2
) cos (

𝑢 − 𝑣

2
) =

1

2
(sin(𝑢) + sin(𝑣)) 

 

Multiply by 2 

2 sin (
𝑢 + 𝑣

2
) cos (

𝑢 − 𝑣

2
) = sin(𝑢) + sin(𝑣) 

 

Establishing the identity 

Example 8: Evaluate cos(15°) − cos (75°). 

cos(15°) − cos(75°) 
 

Sum-to-product identity 

−2 sin (
15° + 75°

2
) sin (

15° − 75°

2
) 

 

Simplify 

−2 sin(45°) sin(−30°) 
 

Evaluate 

−2 (
√2

2
) (−

1

2
) 

 

Simplify 

√2

2
 

 

Final answer 

Example 9: Prove the identity 
cos(4𝑡)−cos(2𝑡)

sin(4𝑡)+sin(2𝑡)
= −tan (𝑡) 

Since the left side seems more complicated, we can start there and simplify. 

cos(4𝑡) − cos(2𝑡)

sin(4𝑡) + sin(2𝑡)
 

 

Sum-to-product identity 

−2 sin (
4𝑡 + 2𝑡

2 ) sin (
4𝑡 − 2𝑡

2 )

2 sin (
4𝑡 + 2𝑡

2 ) cos (
4𝑡 − 2𝑡

2 )
 

 

Simplify 

−
2 sin(3𝑡) sin(𝑡)

2 sin(3𝑡) cos(𝑡)
 

 

Reduce 

−
sin(𝑡)

cos(𝑡)
 

 

Rewrite as tangent 

− tan(𝑡) 
 

Final answer 
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Example 10: Solve sin(𝜋𝑡) + sin(3𝜋𝑡) = cos (𝜋𝑡) for all solutions with 0 ≤ 𝑡 < 2. 

In an equation like this, it is not immediately obvious how to proceed.  One option would be to 

combine the two sine functions on the left side of the equation.  Another would be to move the 

cosine to the left side of the equation, and combine it with one of the sines.  For no particularly 

good reason, we’ll begin by combining the sines on the left side of the equation and see how 

things work out. 

sin(𝜋𝑡) + sin(3𝜋𝑡) = cos(𝜋𝑡) 
 

Apply sum to product identity 

2 sin (
𝜋𝑡 + 3𝜋𝑡

2
) cos (

𝜋𝑡 − 3𝜋𝑡

2
) = cos(𝜋𝑡) 

 

Simplify 

2 sin(2𝜋𝑡) cos(−𝜋𝑡) = cos(𝜋𝑡) 
 

Negative angle identity 

2 sin(2𝜋𝑡) cos(𝜋𝑡) = cos(𝜋𝑡) 
 

Subtract cos (𝜋𝑡) 

2 sin(2𝜋𝑡) cos(𝜋𝑡) − cos(𝜋𝑡) = 0 
 

Factor GCF 

cos(𝜋𝑡) [2 sin(2𝜋𝑡) − 1] = 0 
 

Set each factor equal to zero 

cos(𝜋𝑡) = 0     or     2 sin(2𝜋𝑡) − 1 = 0 
 

Solve 

cos(𝜋𝑡) = 0     or     sin(2𝜋𝑡) =
1

2
 

 

Solve cosine first, with 𝑢 = 𝜋𝑡 

cos(𝑢) = 0 

𝑢 =
𝜋

2
,
3𝜋

2
 

𝜋𝑡 =
𝜋

2
,
3𝜋

2
 

𝑡 =
1

2
,
3

2
 

 

Period of 𝑃 =
2𝜋

𝜋
= 2 this represents one cycle 

under 0 ≤ 𝑡 < 2 

 

 

Solve sine next, with 𝑢 = 2𝜋𝑡 

sin(𝑢) =
1

2
 

𝑢 =
𝜋

6
,
11𝜋

6
,
13𝜋

6
,
17𝜋

6
 

2𝜋𝑡 =
𝜋

6
,
5𝜋

6
,
13𝜋

6
,
17𝜋

6
 

𝑡 =
1

12
,

5

12
,
13

12
,
17

12
 

 

Period of 𝑃 =
2𝜋

2𝜋
= 1. This represents two cycles 

under 0 ≤ 𝑡 < 2 

 

 

 

List all solutions 

𝑡 =
1

12
,

5

12
,
1

2
,
13

12
,
3

2
,
17

12
 

 

Final answer 
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Altogether, we found six solutions on 

20  t , which we can confirm by 

looking at the graph. 

12

17
,

2

3
,

12

13
,

2

1
,

12

5
,

12

1
t  
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6.4 Addition and Subtraction Identities Practices  
 

Find an exact value for each of the following 

1. sin(75°) 
 

2. sin(195°) 3 cos(165°) 4. cos(345°) 

5. 
cos (

7𝜋

12
) 

 

6. cos (
𝜋

12
) 

7. 
sin (

5𝜋

12
) 

8. 
sin (

11𝜋

12
) 

Rewrite in terms of sin (𝑥) and cos (𝑥) 

9. 
sin (𝑥 +

11𝜋

6
) 

 

10. 
sin (𝑥 −

3𝜋

4
) 

11. 
cos (𝑥 −

5𝜋

6
) 

12. 
cos (𝑥 +

2𝜋

3
) 

Simplify each expression 

13. csc (
𝜋

2
− 𝑡) 

 

14. sec (
𝜋

2
− 𝑤) 

15. cot (
𝜋

2
− 𝑥) 

16. tan (
𝜋

2
− 𝑥) 

Rewrite the product as a sum 

17. 16 sin(16𝑥) sin(11𝑥) 
 

18. 20 cos(36𝑡) cos(6𝑡) 

19. 2 sin(5𝑥) cos(3𝑥) 
 

20. 10 cos(5𝑥) sin (10𝑥) 

Rewrite the sum as a product 

21. cos(6𝑡) + cos(4𝑡) 
 

22. cos(5𝑢) + cos(3𝑢) 

23. sin(3𝑥) + sin(7𝑥) 
 

24. sin(ℎ) − sin (3ℎ) 

25. Given sin(𝑎) =
2

3
 and cos(𝑏) = −

1

4
 with 𝑎 and 𝑏 both in the interval [

𝜋

2
, 𝜋) find:  

a. sin(𝑎 + 𝑏) 
 

b.  cos (𝑎 − 𝑏) 

26. Given sin(𝑎) =
4

5
 and cos(𝑏) = 1/3 with 𝑎 and 𝑏 both in the interval [0,

𝜋

2
) find:  

a. sin(𝑎 − 𝑏) 
 

b.  cos (𝑎 + 𝑏) 

Solve each equation for all solutions 

27. sin(3𝑥) cos(6𝑥) − cos(3𝑥) sin(6𝑥) = −0.9 
 

28. sin(6𝑥) cos(11𝑥) − cos(6𝑥) sin(11𝑥) = −0.1 
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29. cos(2𝑥) cos(𝑥) + sin(2𝑥) sin(𝑥) = 1 
 

30. 
cos(5𝑥) cos(3𝑥) − sin(5𝑥) sin(3𝑥) =

√3

2
 

 

31. cos(5𝑥) = − cos(2𝑥) 
 

32. sin(5𝑥) = sin(3𝑥) 
 

33. cos(6𝜃) − cos(2𝜃) = sin(4𝜃) 
 

34. cos(8𝜃) − cos(2𝜃) = sin (5𝜃) 
 

Rewrite as a single function of the form 𝐴 sin (𝐵𝑥 + 𝐶) 

35. 4 sin(𝑥) − 6 cos(𝑥) 
 

36. − sin(𝑥) − 5 cos(𝑥) 

37. 5 sin(3𝑥) + 2 cos(3𝑥) 
 

38. −3 sin(5𝑥) + 4cos (5𝑥) 

Solve for the first two positive solutions 

39. −5 sin(𝑥) + 3 cos(𝑥) = 1 
 

40. 3 sin(𝑥) + cos(𝑥) = 2 

41. 3 sin(2𝑥) − 5 cos(2𝑥) = 3 
 

42. −3 sin(4𝑥) − 2 cos(4𝑥) = 1 

Simplify 

43. sin(7𝑡) + sin(5𝑡)

cos(7𝑡) + cos(5𝑡)
 

 

44. sin(9𝑡) − sin(3𝑡)

cos(9𝑡) + cos(3𝑡)
 

Prove the identity 

45. 
tan (𝑥 +

𝜋

4
) =

tan(𝑥) + 1

1 − tan(𝑥)
 

 

46. 
tan (

𝜋

4
− 𝑡) =

1 − tan(𝑡)

1 + tan(𝑡)
 

 

47. cos(𝑎 + 𝑏) + cos(𝑎 − 𝑏) = 2 cos(𝑎) cos (𝑏) 
 

48. cos(𝑎 + 𝑏)

cos(𝑎 − 𝑏)
=

1 − tan(𝑎) tan(𝑏)

1 + tan(𝑎) tan(𝑏)
 

 

49. tan(𝑎 + 𝑏)

tan(𝑎 − 𝑏)
=

sin(𝑎) cos(𝑎) + sin(𝑏) cos(𝑏)

sin(𝑎) cos(𝑎) − sin(𝑏) cos(𝑏)
 

 



364 
 

50. 2 sin(𝑎 + 𝑏) sin(𝑎 − 𝑏) = cos(2𝑏) − cos(2𝑎) 
 

51. sin(𝑥) + sin(𝑦)

cos(𝑥) + cos(𝑦)
= tan (

1

2
(𝑥 + 𝑦)) 

 

52. cos(𝑎 + 𝑏)

cos(𝑎) cos(𝑏)
= 1 − tan(𝑎) tan(𝑏) 

 

53. cos(𝑥 + 𝑦) cos(𝑥 − 𝑦) = cos2 𝑥 − sin2 𝑦 
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6.5 Double Angle Identities 
 

Two special cases of the sum of angles identities arise often enough that we choose to state these 

identities separately. 

The double angle identities 

sin(2𝛼) = 2sin (𝛼)cos (𝛼) 

𝑐𝑜𝑠(2𝛼) = cos2(𝛼) − sin2(𝛼) 

                 = 1 − 2 sin2(𝛼) 

                 = 2 cos2(𝛼) − 1 

These identities follow from the sum of angles identities. 

Proof of the sine double angle identity  

sin(2𝛼) 
 

Rewrite 

sin(𝛼 + 𝛼) 
 

Sum of angles identity 

sin(𝛼) cos(𝛼) + cos(𝛼) sin(𝛼) 
 

2 sin(𝛼) cos (𝛼) 

 

 

Establishing the identity 

 

Similarly we can show cos(2𝛼) = cos2(𝛼) − sin2(𝛼) by using the sum of angles identity for 

cosine. 

For the cosine double angle identity, there are three forms of the identity stated because the basic 

form, cos(2𝛼) = cos2(𝛼) − sin2(𝛼), can be rewritten using the Pythagorean Identity.   

Rearranging the Pythagorean Identity results in the equality cos2(𝛼) = 1 − sin2(𝛼), and by 

substituting this into the basic double angle identity, we obtain the second form of the double 

angle identity. 

cos(2𝛼) = cos2(𝛼) − sin2(𝛼) 
 

Substitute the Pythagorean identity 

cos(2𝛼) = 1 − sin2(𝛼) − sin2(𝛼) 
 

Simplify 

cos(2𝛼) = 1 − 2 sin2(𝛼) 
 

Establishing the identity 
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Example 1: If sin(𝜃) =
3

5
 and 𝜃 is in the second quadrant, find sin (2𝜃) and cos (2𝜃). 

To evaluate cos (2𝜃), since we know the value for sin (𝜃), we can use the version of the double 

angle that only involves sine. In the second quadrant this value should be positive.  

cos(2𝜃) = 1 − 2 sin2(𝜃) 
 

Substitute value for sin(𝜃) 

1 − 2 (
3

5
)

2

 

 

Evaluate exponent 

1 − 2 (
9

25
) 

 

Multiply 

1 −
18

25
 

 

Simplify 

7

25
 

 

Final answer 

Since the double angle for sine involves both sine and cosine, we’ll need to first find cos (𝜃), 

which we can do using the Pythagorean Identity. 

sin2(𝜃) + cos2(𝜃) = 1 
 

Substitute value for sin(𝜃) 

(
3

5
)

2

+ cos2(𝜃) = 1 

 

Evaluate exponent 

9

25
+ cos2(𝜃) = 1 

 

Subtract 
9

25
 

cos2(𝜃) =
16

25
 

 

Square root 

cos(𝜃) = ±
4

5
 

 

In the second quadrant, cosine is negative 

cos(𝜃) = −
4

5
 

 

Evaluate sin(2𝜃) 

sin(2𝜃) = 2 sin(𝜃) cos(𝜃) 
 

Substitute values 

2 (
3

5
) (−

4

5
) = −

24

25
 

 

Final answer 
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Example 2: Simplify the expression 2 cos2(12°) − 1 

2 cos2(12°) − 1 
 

Same form as double angle for cosine 

cos(2 ∙ 12°) = cos(24°) 
 

Final answer 

Example 3: Simplify the expression 8 sin(3𝑥) cos (3𝑥) 

8 sin(3𝑥) cos(3𝑥) 
 

Similar to double angle for sine, need factor of 2 

4 ∙ 2 sin(3𝑥) cos(3𝑥) 
 

Use double angle identity 

4 sin(2 ∙ 3𝑥) = 4 sin(6𝑥) 
 

Final answer 

We can use the double angle identities to simplify expressions and prove identities. 

Example 4: Simplify 
cos(2𝑡)

cos(𝑡)−sin(𝑡)
. 

With three choices for how to rewrite the double angle, we need to consider which will be the 

most useful.  To simplify this expression, it would be great if the denominator would divide out 

with something in the numerator, which would require a factor of cos(𝑡) − sin (𝑡) in the 

numerator, which is most likely to occur if we rewrite the numerator with a mix of sine and 

cosine. 

cos(2𝑡)

cos(𝑡) − sin(𝑡)
 

 

Apply double angle identity 

cos2(𝑡) − sin2(𝑡)

cos(𝑡) − sin(𝑡)
 

 

Factor the numerator 

(cos(𝑡) − sin(𝑡))(cos(𝑡) + sin(𝑡))

cos(𝑡) − sin(𝑡)
 

 

Divide out common factor 

cos(𝑡) + sin(𝑡) 
 

Final answer 
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Example 5: Prove 
sec2(𝛼)

2−sec2(𝛼)
= sec(2𝛼). 

Since the left side seems a bit more complicated than the right side, we begin there. 

sec2(𝛼)

2 − sec2(𝛼)
 

 

Rewrite as cosines 

1
cos2(𝛼)

2 −
1

cos2(𝛼)

 

 

Multiply top and bottom by cos2(𝛼) 

1
cos2(𝛼)

∙ cos2(𝛼)

(2 −
1

cos2(𝛼)
) ∙ cos2(𝛼)

 

 

Distribute and simplify 

1

2 cos2(𝛼) − 1
 

 

Rewrite denominator as double angle 

1

cos(2𝛼)
 

 

Rewrite as secant 

sec(2𝛼) 
 

Final answer 

As with other identities, we can also use the double angle identities for solving equations. 
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Example 6: Solve cos(2𝑡) = cos (𝑡) for all solutions with 0 ≤ 𝑡 < 2𝜋. 

In general when solving trig equations, it makes things more complicated when we have a mix of 

sines and cosines and when we have a mix of functions with different periods.  In this case, we 

can use a double angle identity to rewrite the cos (2𝑡).  When choosing which form of the double 

angle identity to use, we notice that we have a cosine on the right side of the equation.  We try to 

limit our equation to one trig function, which we can do by choosing the version of the double 

angle formula for cosine that only involves cosine. 

cos(2𝑡) = cos(𝑡) 
 

Apply the double angle identity 

2 cos2(𝑡) − 1 = cos(𝑡) 
 

Subtract cos(𝑡) 

2 cos2(𝑡) − cos(𝑡) − 1 = 0 
 

Factor 

(2 cos(𝑡) + 1)(cos(𝑡) − 1) = 0 
 

Set each factor equal to zero 

2 cos(𝑡) + 1 = 0     or     cos(𝑡) − 1 = 0 
 

Solve each 

cos(𝑡) = −
1

2
     or     cos(𝑡) = 1 

 

Evaluate 

𝑡 =
2𝜋

3
,
4𝜋

3
, 0 

 

Final answer 

Looking at a graph of cos (2𝑡) and cos (𝑡) shown together, we can verify that these three 

solutions on [0,2𝜋) seem reasonable. 
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Example 7: A cannonball is fired with velocity of 100 meters per second.  If it is launched at an 

angle of 𝜃, the vertical component of the velocity will be 100sin (𝜃) and the horizontal 

component will be 100cos (𝜃).  Ignoring wind resistance, the height of the cannonball will 

follow the equation ℎ(𝑡) = −4.9𝑡2 + 100sin (𝜃)𝑡 and horizontal position will follow the 

equation 𝑥(𝑡) = 100cos (𝜃)𝑡.   If you want to hit a target 900 meters away, at what angle should 

you aim the cannon? 

To hit the target 900 meters away, we want 𝑥(𝑡) = 900 at the time when the cannonball hits the 

ground, when ℎ(𝑡) = 0.  To solve this problem, we will first solve for the time, 𝑡, when the 

cannonball hits the ground.  Our answer will depend upon the angle 𝜃.  

−4.9𝑡2 + 100 sin(𝜃) 𝑡 = 0 
 

Factor 

𝑡(−4.9𝑡 + 100 sin(𝜃)) = 0 
 

Set each factor equal to zero 

𝑡 = 0     or     − 4.9𝑡 + 100 sin(𝜃) = 0 
 

Solve 

𝑡 = 0     or     𝑡 =
100 sin(𝜃)

4.9
 

 

 

This shows that the height is 0 twice, once at 𝑡 = 0 when the cannonball is fired, and again when 

the cannonball hits the ground after flying through the air.  This second value of 𝑡 gives the time 

when the ball hits the ground in terms of the angle 𝜃.  We want the horizontal distance 𝑥(𝑡) to be 

900 when the ball hits the ground, in other words when 𝑡 =
100 sin(𝜃)

4.9
.  

100 cos(𝜃) 𝑡 = 900 Substitute 𝑡 =
100 sin(𝜃)

4.9
 

 

100 cos(𝜃) ∙
100 sin(𝜃)

4.9
= 900 

 

Simplify 

1002

4.9
sin(𝜃) cos(𝜃) = 900 

 

Solve for sine and cosine product 

sin(𝜃) cos(𝜃) =
900(4.9)

1002
 

 

 

The left side of this equation almost looks like the result of the double angle identity for sine: 

sin(2𝜃) = 2sin (𝜃)cos (𝜃). By dividing both sides of the double angle identity by 2, we get 
1

2
sin(2𝛼) = sin (𝛼)cos (𝛼). Applying this to the equation above, 
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1

2
sin(2𝜃) =

900(4.9)

1002
 

 

Multiply by 2 

sin(2𝜃) =
2(900)(4.9)

1002
 

 

Inverse sine 

2𝜃 = sin−1 (
2(900)(4.9)

1002
) = 1.080 

 

Divide by 2 

𝜃 = 0.54 radians or 30.94° 
 

Final answer 

Power Reduction and Half Angle Identities 

Another use of the cosine double angle identities is to use them in reverse to rewrite a squared 

sine or cosine in terms of the double angle.  Starting with one form of the cosine double angle 

identity: 

cos(2𝛼) = 2 cos2(𝛼) − 1 
 

Add 1 

cos(2𝛼) + 1 = 2 cos2(𝛼) 
 

Divide by 2 

cos(2𝛼) + 1

2
= cos2(𝛼) 

 

This is called a power reduction identity 

Similarly we can use another form of the cosine double angle identity to prove the identity 

sin2(𝛼) =
1−cos(2𝛼)

2
. 
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Example 8: Rewrite cos4(𝑥) without any powers. 

cos4(𝑥) 
 

Rewrite as a squared cosine squared 

(cos2(𝑥))2 
 

Apply power reduction identity 

(
cos(2𝑥) + 1

2
)

2

 

 

Square numerator and denominator 

cos2(2𝑥) + 2 cos(2𝑥) + 1

4
 

 

Split apart the fraction 

cos2(2𝑥)

4
+

cos(2𝑥)

2
+

1

4
 

 

Apply power reduction identity 

cos(4𝑥) + 1
2
4

+
cos(2𝑥)

2
+

1

4
 

 

Simplify 

cos(4𝑥) + 1

8
+

cos(2𝑥)

2
+

1

4
 

 

Split apart the fraction 

cos(4𝑥)

8
+

1

8
+

cos(2𝑥)

2
+

1

4
 

 

Combine like terms 

cos(4𝑥)

8
+

cos(2𝑥)

2
+

3

8
 

 

Final answer 

The cosine double angle identities can also be used in reverse for evaluating angles that are half 

of a common angle.  Building from our formula cos2(𝛼) =
cos(2𝛼)+1

2
, if we let 𝜃 = 2𝛼, then 

𝛼 =
𝜃

2
 this identity becomes cos2 (

𝜃

2
) =

cos(𝜃)+1

2
.  Taking the square root, we obtain 

cos (
𝜃

2
) = ±√

cos(𝜃) + 1

2
 

where the sign is determined by the quadrant.  This is called a half-angle identity. 
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Similarly we can prove the identity: 

sin (
𝜃

2
) = ±√

1 − cos(𝜃)

2
 

.Example 9: Find an exact value for cos (15°).   

Since 15 degrees is half of 30 degrees, we can use our result from above: 

cos(15°) = cos (
30°

2
) = ±√

cos(30°) + 1

2
 

We can evaluate the cosine.  Since 15 degrees is in the first quadrant, we need the positive result. 

√
cos(30°) + 1

2
=

√
√3
2 + 1

2
= √√3

4
+

1

2
 

 

Below is a summary of the identities from this section 

Half-Angle Identities 

cos (
𝜃

2
) = ±√

cos(𝜃) + 1

2
 sin (

𝜃

2
) = ±√

1 − cos(𝜃)

2
 

 

Power Reduction Identities 

cos2(𝛼) =
cos(2𝛼) + 1

2
 sin2(𝛼) =

1 − cos(2𝛼)

2
 

 

Since these identities are easy to derive from the double-angle identities, the power reduction and 

half-angle identities are not ones you should need to memorize separately. 
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6.5 Double Angle Identities Practice 
 

1.   If sin(𝑥) =
1

8
 and 𝑥 is in quadrant I, then find the exact values for (without solving for 𝑥) 

a. sin (2𝑥)  b. cos (2𝑥)  c. tan (2𝑥) 

2.   If cos(𝑥) =
2

3
 and 𝑥 is in quadrant I, then find the exact values for (without solving for 𝑥) 

a. sin (2𝑥)  b. cos (2𝑥)  c. tan (2𝑥) 

Simplify each expression 

3. cos2(28°) − sin2(28°) 
 

4. 2 cos2(37°) − 1 

5. 1 − 2 sin2(17°) 
 

6. cos2(37°) − sin2(37°) 

7. cos2(9𝑥) − sin2(9𝑥) 
 

8. cos2(6𝑥) − sin2(6𝑥) 

9. 4 sin(8𝑥) cos(8𝑥) 
 

10. 6 sin(5𝑥) cos (5𝑥) 

Solve for all solutions on the interval [0,2𝜋) 

11. 6 sin(2𝑡) + 9 sin(𝑡) = 0 
 

12. 2 sin(2𝑡) + 3 cos(𝑡) = 0 

13. 9 cos(2𝜃) = 9 cos2(𝜃) − 4 
 

14. 8 cos(2𝛼) = 8 cos2(𝛼) − 1 

15. sin(2𝑡) = cos(𝑡) 
 

16. cos(2𝑡) = sin(𝑡) 

17. cos(6𝑥) − cos(3𝑥) = 0 
 

18. sin(4𝑥) − sin(2𝑥) = 0 

Use a double angle, half angle, or power reduction formula to rewrite without exponents 

19. cos2(5𝑥) 
 

20. cos2(6𝑥) 

21. sin4(8𝑥) 
 

22. sin4(3𝑥) 

23. cos2(𝑥) sin4(𝑥) 
 

24. cos4(𝑥) sin2(𝑥) 

25.    If csc(𝑥) = 7 and 90° < 𝑥 < 180°, then find the exact values for (without solving for 𝑥) 

  a. sin (
𝑥

2
)  b. cos (

𝑥

2
)   c. tan (

𝑥

2
) 

26.    If sec (𝑥) = 4 and 90° < 𝑥 < 180°, then find the exact values for (without solving for 𝑥) 

  a. sin (
𝑥

2
)  b. cos (

𝑥

2
)   c. tan (

𝑥

2
) 
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6.6 Review Trig Identities and Trig Equations 
 

This section will review the use of the identities we have seen in the past two chapters.  

Refer back to 6.1 and 6.3 for examples of solving trig equations. 

The Unit Circle: 
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Cofunction Identities 

cos(𝜃) = sin (
𝜋

2
− 𝜃) 

sin(𝜃) = cos (
𝜋

2
− 𝜃) 

Pythagorean Identities 

sin2(𝜃) + cos2(𝜃) = 1 

1 + cot2(𝜃) = csc2(𝜃) 

tan2(𝜃) + 1 = sec2(𝜃) 

Reciprocal Identities 

sec(𝜃) =
1

cos(𝜃)
 

csc(𝜃) =
1

sin(𝜃)
 

cot(𝜃) =
1

tan(𝜃)
 

Tangent/Cotangent Identities 

tan(𝜃) =
sin(𝜃)

cos(𝜃)
 

 

cot(𝜃) =
cos(𝜃)

sin(𝜃)
 

 
Even/Odd or Negative Angle Identities 

sin(−𝜃) = −sin (𝜃) 

 

cos(−𝜃) = cos (𝜃) 

 

tan(−𝜃) = −tan (𝜃) 

 

csc(−𝜃) = −csc (𝜃) 

 

sec(−𝜃) = sec (𝜃) 

 

cot(−𝜃) = −cot (𝜃) 

 
Sum and Difference Identities 

cos(𝛼 − 𝛽) = cos(𝛼) cos(𝛽) + sin (𝛼)sin (𝛽) 

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin (𝛼)sin (𝛽) 

sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + cos (𝛼)sin (𝛽) 

sin(𝛼 − 𝛽) = sin(𝛼) cos(𝛽) − cos (𝛼)sin (𝛽) 

Product-to-Sum Identities 

sin(𝛼) cos(𝛽) =
1

2
(sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽)) 

sin(𝛼) sin(𝛽) =
1

2
(cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽)) 

cos(𝛼) cos(𝛽) =
1

2
(sin(𝛼 + 𝛽) − sin(𝛼 − 𝛽)) 

Sum-to-Product Identities 

sin(𝑢) + sin(𝑣) = 2 sin (
𝑢 + 𝑣

2
) cos (

𝑢 − 𝑣

2
) 

sin(𝑢) − sin(𝑣) = 2 sin (
𝑢 − 𝑣

2
) cos (

𝑢 + 𝑣

2
) 

cos(𝑢) + cos(𝑣) = 2 cos (
𝑢 + 𝑣

2
) cos (

𝑢 − 𝑣

2
) 

cos(𝑢) − cos(𝑣) = −2 sin (
𝑢 + 𝑣

2
) sin (

𝑢 − 𝑣

2
) 

Double Angle Identities 

sin(2𝛼) = 2sin (𝛼)cos (𝛼) 

𝑐𝑜𝑠(2𝛼) = cos2(𝛼) − sin2(𝛼) 

         = 1 − 2 sin2(𝛼) = 2 cos2(𝛼) − 1 

tan(2𝛼) =
2 tan(𝛼)

1 − tan2(𝛼)
 

Half-Angle Identities 

cos (
𝜃

2
) = ±√

cos(𝜃) + 1

2
 

sin (
𝜃

2
) = ±√

1 − cos(𝜃)

2
 

Power Reduction Identities 

cos2(𝛼) =
cos(2𝛼) + 1

2
 

sin2(𝛼) =
1 − cos(2𝛼)

2
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6.6 Review Trig Identities and Trig Equations Practice 
 

Solve each of the following equations for 0 ≤ 𝜃 < 2𝜋 

1. 2 cos2(𝜃) + cos(𝜃) = 0 
 

2. sin2(𝜃) − 1 = 0 

3. 2 sin2(𝜃) − sin(𝜃) − 1 = 0 
 

4. 2 cos2(𝜃) + cos(𝜃) − 1 = 0 

5. (tan(𝜃) − 1)(sec(𝜃) − 1) = 0 6. 
(cos(𝜃) + 1) (csc(𝜃) −

1

2
) = 0 

 

7. sin2(𝜃) − cos2(𝜃) = 1 + cos(𝜃) 
 

8. cos2(𝜃) − sin2(𝜃) + sin(𝜃) = 0 

9. sin2(𝜃) = 6(cos(𝜃) + 1) 
 

10. 2 sin2(𝜃) = 3(1 − cos(𝜃)) 

11. cos(2𝜃) + 6 sin2(𝜃) = 4 
 

12. cos(2𝜃) = 2 − 2 sin2(𝜃) 

13. cos(𝜃) = sin(𝜃) 
 

14. cos(𝜃) + sin(𝜃) = 1 

15. tan(𝜃) = 2 sin(𝜃) 
 

16. sin(2𝜃) = cos(𝜃) 

17. sin(𝜃) = csc(𝜃) 
 

18. tan(𝜃) = cot(𝜃) 

19. cos(2𝜃) = cos(𝜃) 
 

20. sin(2𝜃) sin(𝜃) = cos(𝜃) 

21. sin(2𝜃) + sin(4𝜃) = 0 
 

22. cos(2𝜃) + cos(4𝜃) = 0 

23. cos(4𝜃) − cos(6𝜃) = 0 
 

24. sin(4𝜃) − sin(6𝜃) = 0 

25. 1 + sin(𝜃) = 2 cos2(𝜃) 
 

26. sin2(𝜃) − 2 cos(𝜃) + 2 = 0 

27. 2 sin2(𝜃) − 5 sin(𝜃) + 3 = 0 
 

28. 2 cos2(𝜃) − 7 cos(𝜃) − 4 = 0 

29. 3(1 − cos(𝜃)) = sin2(𝜃) 
 

30. 4(1 + sin(𝜃)) = cos2(𝜃) 

31. 
tan2(𝜃) =

3

2
sec(𝜃) 

 

32. csc2(𝜃) = cot(𝜃) + 1 

33. 3 − sin(𝜃) = cos(2𝜃) 
 

34. cos(2𝜃) + 5 cos(𝜃) + 3 = 0 

35. sec2(𝜃) + tan(𝜃) = 0 
 

36. sec(𝜃) = tan(𝜃) + cot(𝜃) 

37. sin(𝜃) − √3 cos(𝜃) = 1 
 

38. √3 sin(𝜃) + cos(𝜃) = 1 

39. tan(2𝜃) + 2 sin(𝜃) = 0 

 

40. tan(2𝜃) + 2 cos(𝜃) = 0 

41. sin(𝜃) + cos(𝜃) = √2 42. sin(𝜃) + cos(𝜃) = −√2 
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Prove the following identities 

43. csc(𝜃) − cos(𝜃) cot(𝜃) = sin(𝜃) 44. sec(𝜃) − sin(𝜃) tan(𝜃) = cos(𝜃) 
 

45. 1 + cos(𝜃)

sin(𝜃)
+

sin(𝜃)

cos(𝜃)
=

cos(𝜃) + 1

sin(𝜃) cos(𝜃)
 

46. 1

sin(𝜃) cos(𝜃)
−

cos(𝜃)

sin(𝜃)

=
sin(𝜃) cos(𝜃)

1 − sin2(𝜃)
 

 

47. 1 − sin(𝜃)

cos(𝜃)
=

cos(𝜃)

1 + sin(𝜃)
 

48. 1 − cos(𝜃)

sin(𝜃)
=

sin(𝜃)

1 + cos(𝜃)
 

 

49. 1 + tan(𝜃)

1 + cot(𝜃)
=

sec(𝜃)

csc(𝜃)
 

50. cot(𝜃) − 1

1 − tan(𝜃)
=

csc(𝜃)

sec(𝜃)
 

 

51. sin(𝜃) + cos(𝜃)

sec(𝜃) + csc(𝜃)
=

sin(𝜃)

sec(𝜃)
 

52. sin(𝜃) + cos(𝜃)

sec(𝜃) + csc(𝜃)
=

cos(𝜃)

csc(𝜃)
 

 

53. 1 + tan(𝜃)

1 − tan(𝜃)
+

1 + cot(𝜃)

1 − cot(𝜃)
= 0 

54. cos2(𝜃) + cot(𝜃)

cos2(𝜃) − cot(𝜃)
=

cos2(𝜃) tan(𝜃) + 1

cos2(𝜃) tan(𝜃) − 1
 

 

55. 1 + cos(2𝜃)

sin(2𝜃)
= cot(𝜃) 

56. 2 tan(𝜃)

1 + tan2(𝜃)
= sin(2𝜃) 

 

57. sec2(𝜃)

2 − sec2(𝜃)
= sec(2𝜃) 

58. cot2(𝜃) − 1

2 cot(𝜃)
= cot(2𝜃) 

 

59. sin(𝛼 + 𝛽)

cos(𝛼) cos(𝛽)
= tan(𝛼) + tan(𝛽) 

60. cos(𝛼 + 𝛽)

cos(𝛼) sin(𝛽)
= cot(𝛽) − tan(𝛼) 

 

61. tan(𝜃) + sin(𝜃)

2 tan(𝜃)
= cos2 (

𝜃

2
) 

62. tan(𝜃) − sin(𝜃)

2 tan(𝜃)
= sin2 (

𝜃

2
) 

 

63. cos4(𝜃) − sin4(𝜃) = cos(2𝜃) 64. cos4(𝜃) − sin4(𝜃)

1 − tan4(𝜃)
= cos4(𝜃) 

 

65. tan(3𝜃) − tan(𝜃)

1 + tan(3𝜃) tan(𝜃)
=

2 tan(𝜃)

1 − tan2(𝜃)
 

66. 
(

1 + tan(𝜃)

1 − tan(𝜃)
)

2

=
1 + sin(2𝜃)

1 − sin(2𝜃)
 

 

67. cos3(𝜃) − sin3(𝜃)

cos(𝜃) − sin(𝜃)
=

2 + sin(2𝜃)

2
 

68. sin3(𝜃) + cos3(𝜃)

sin(𝜃) + cos(𝜃)
=

2 − sin(2𝜃)

2
 

 

69. 
sec(2𝜃) + tan(2𝜃) + 1 =

2

1 − tan(𝜃)
 

70. 
cos(2𝜃) (1 + tan2(𝜃)) = 2 −

1

cos2(𝜃)
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71. 1 + tan (𝜋 + 2𝜃) cot (
𝜋

2
− 𝜃)

= sec (2𝜃) 

72. 
(tan(𝜃) + sec(𝜃))2 =

1 + sin(𝜃)

1 − sin(𝜃)
 

 

73. tan (
𝜋

6
− 𝜃) tan (

𝜋

6
+ 𝜃)

=
2 cos(2𝜃) − 1

2 cos(2𝜃) + 1
 

 

74. 
tan (

1

2
𝜃) + cot (

1

2
𝜃) = 2 csc(𝜃) 

75. 1 − cos(2𝜃) sec2(𝜃) = tan2(𝜃) 76. sin(3𝜃)

sin(𝜃)
−

cos(3𝜃)

cos(𝜃)
= 2 

 

77. √1 + sin(2𝜃) − cos(𝜃)

√1 + sin(2𝜃) − sin(𝜃)
= tan(𝜃) 

 

78. 1

cot(𝜃)
+

1

tan(𝜃)
=

2

sin(2𝜃)
 

79. tan2(𝜃) (1 + cos(2𝜃)) + 2 cos2(𝜃)
= 2 

80. 
cos6(𝜃) + sin6(𝜃) = 1 −

3

4
sin2(2𝜃) 

 

81. tan2(𝜃) (1 + cos(2𝜃)) + 2 cos2(𝜃)
= 2 

82. sin(𝜃) + sin(3𝜃)

2 sin(2𝜃)
= cos(𝜃) 

 

83. cos(𝜃) + cos(3𝜃)

2 cos(2𝜃)
= cos(𝜃) 

84. sin(4𝜃) + sin(2𝜃)

cos(4𝜃) + cos(2𝜃)
= tan(3𝜃) 

 

85. cos(𝜃) − cos(3𝜃)

sin(3𝜃) − sin(𝜃)
= tan(2𝜃) 

86. cos(𝜃) − cos(3𝜃)

sin(𝜃) + sin(3𝜃)
= − tan(𝜃) 

 

87. cos(𝜃) − cos(5𝜃)

sin(𝜃) + sin(5𝜃)
= tan(2𝜃) 

88. sin(4𝜃) + sin(8𝜃)

cos(4𝜃) + cos(8𝜃)
= tan(6𝜃) 

 

89. sin(4𝜃) − sin(8𝜃)

cos(4𝜃) − cos(8𝜃)
= − cot(6𝜃) 

90. sin(4𝜃) + sin(8𝜃)

sin(4𝜃) − sin(8𝜃)
= −

tan(6𝜃)

tan(2𝜃)
 

 

91. cos(4𝜃) − cos(8𝜃)

cos(4𝜃) + cos(8𝜃)
= tan(2𝜃) tan (6𝜃) 

92. sin(𝛼) + sin(𝛽)

cos(𝛼) + cos(𝛽)
= tan (

𝛼 + 𝛽

2
) 

 
93. sin(𝛼) − sin(𝛽)

cos(𝛼) − cos(𝛽)
= − cot (

𝛼 + 𝛽

2
) 

 

94. 1 − cos(5𝜃) cos(3𝜃) − sin(5𝜃) sin(3𝜃) = 2 sin2(𝜃) 
 

95. 2 sin(𝜃) cos3(𝜃) + 2 sin3(𝜃) cos(𝜃) = sin(2𝜃) 
 

96. sin(𝛼 + 𝛽) sin(𝛼 − 𝛽) = sin2(𝛼) − sin2(𝛽) 
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97. cos(𝛼 + 𝛽) cos(𝛼 − 𝛽) = cos2(𝛼) − sin2(𝛽) 
 

98. cos(𝛼 + 𝛽) + cos(𝛼 − 𝛽) = 2cos (𝛼)cos (𝛽) 
 

99. sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽) = 2sin (𝛼)cos (𝛽) 

 

100. log (cos(2𝜃)) − log(1 − sin(2𝜃)) = log(1 + tan(𝜃)) − log (1 − tan(𝜃)) 

 

101. cos (
𝜋

6
+ 𝜃) − cos (

𝜋

6
− 𝜃) = cos (

𝜋

2
+ 𝜃) 

 

102. log(1 + sin(2𝜃) − cos(2𝜃)) − log(sin(𝜃) + cos(𝜃)) = log(2) − log(csc(𝜃)) 
 

103. cos(𝜃) (2 sec(𝜃) + tan(𝜃))(sec(𝜃) − 2 tan(𝜃)) = 2 cos(𝜃) − 3 tan(𝜃) 
 

104. log(cos(2𝜃)) − log(1 − sin(2𝜃)) = log(cot(𝜃) + 1) − log(cot(𝜃) − 1) 
 

105. log(1 + tan(𝜃)) − log(1 − tan(𝜃)) = log(sec(2𝜃) + tan(2𝜃)) 
 

106. log(1 − cos(𝜃)) − log(sin(𝜃)) = log(sin(𝜃)) − 𝑙𝑜𝑔(1 + 𝑐𝑜𝑠(𝜃)) 

 

107. sin(𝜃) (sin(𝜃) + sin(3𝜃)) = cos (𝜃)(cos(𝜃) − cos(3𝜃)) 
 

108. sin(𝜃) (sin(3𝜃) + sin(5𝜃)) = cos(𝜃) (cos(3𝜃) − cos(5𝜃)) 
 

109. sin(𝛼) + sin(𝛽)

sin(𝛼) − sin(𝛽)
= tan (

𝛼 + 𝛽

2
) cot (

𝛼 − 𝛽

2
) 

 

110. cos(𝛼) + cos(𝛽)

cos(𝛼) − cos(𝛽)
= − cot (

𝛼 + 𝛽

2
) cot (

𝛼 − 𝛽

2
) 

 

111. 1 + cos(2𝜃) + cos(4𝜃) + cos(6𝜃) = 4 cos(𝜃) cos(2𝜃) cos (3𝜃) 

 

112. 1 − cos(2𝜃) + cos(4𝜃) − cos(6𝜃) = 4 sin(𝜃) cos(2𝜃) sin (3𝜃) 
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Polar Coordinates 
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7.1 Polar Coordinates 
 

The coordinate system we are most familiar with is called the 

Cartesian coordinate system, a rectangular plane divided into four 

quadrants by the horizontal and vertical axes. 

In earlier chapters, we often found the Cartesian coordinates of a 

point on a circle at a given angle from the positive horizontal axis. 

Sometimes that angle, along with the point’s distance from the 

origin provides a more useful way of describing the point’s 

location than the conventional Cartesian coordinates. 

Polar Coordinates 

Polar coordinates of a point consist of an ordered pair (𝑟, 𝜃), where 𝑟 

is the distance from the point to the origin, and 𝜃 is the angle measured 

in standard position. 

Notice that if we were to “grid” the plane from polar coordinates it 

would look like the graph to the right, with circles at incremental radii, 

and rays drawn at incremental angles. 

Example 1: Graph the points whose polar coordinates are (2,
𝜋

3
) , (4, −

𝜋

4
), and (−5,

2𝜋

3
)  

The first point is 2 units from the pole (0 radians) with a terminal side at 𝜃 =
𝜋

3
. 

(Counterclockwise) 

 

 

(2,
𝜋

3
) 
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The second point is 4 units from the pole with a terminal side at 𝜃 = −
𝜋

4
. (Clockwise) 

 

The third point has a negative radius, we will first consider an angle of 𝜃 =
2𝜋

3
 then have the 

radius of 5 be a reflection of this angle as shown below. 

 

Another method to find the above point with a negative radius is to add 𝜋 to the angle.  

𝜃 + 𝜋 =
2𝜋

3
+ 𝜋 =

2𝜋

3
+

3𝜋

3
=

5𝜋

3
 

Then use this new angle with the positive radius. This leads to an important point about polar 

coordinates: The polar coordinates of a point are not unique. For example, as we see below, 

(4,
𝜋

4
) , (4,

9𝜋

4
) , (4, −

7𝜋

4
) , (−4,

5𝜋

4
), and (−4, −

3𝜋

4
) all represent the same point 𝑝. 

 

(4, −
𝜋

4
) 

(−5,
2𝜋

3
) 
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Converting Points 

To convert between polar coordinates and Cartesian coordinates, we recall relationships we 

developed back in chapter 5.  

Converting Between Polar and Cartesian Coordinates 

To convert between polar (𝑟, 𝜃) and Cartesian (𝑥, 𝑦) coordintes, we use the relationships: 

cos(𝜃) =
𝑥

𝑟
 

 

sin(𝜃) =
𝑦

𝑟
 

 

tan(𝜃) =
𝑦

𝑥
 

 

𝑥 = 𝑟 cos (𝜃) 
 
 

𝑦 = 𝑟 sin (𝜃) 
 

 

𝑥2 + 𝑦2 = 𝑟2 

 

 

From these relationships and our knowledge of the unit circle, if 𝑟 = 1 and 𝜃 =
𝜋

3
, the polar 

coordinates would be (𝑟, 𝜃) = (1,
𝜋

3
), and the corresponding Cartesian coordinates (𝑥, 𝑦) =

(
1

2
,

√3

2
).  

 Remembering your unit circle values will come in very handy as you convert between Cartesian 

and polar coordinates.  

 

 

 

 

 

 

 

𝑃(4,
𝜋

4
) 

𝜋

4
 

𝑃(4,
9𝜋

4
) 

9𝜋

4
 

𝑃(4,
−7𝜋

4
) 

−7𝜋

4
 

𝑃(−4,
5𝜋

4
) 

5𝜋

4
 

𝑃(−4,
−3𝜋

4
) 

−3𝜋

4
 

(x, y) 

r 

θ 

y 

x 
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Example 2: Convert (3,
7𝜋

6
) from polar coordinates to rectangular coordinates. 

(3,
7𝜋

6
) 

 

Use formulas for 𝑥 and 𝑦 

𝑥 = 𝑟 cos (𝜃) = 3 cos (
7𝜋

6
) 

𝑦 = 𝑟 sin(𝜃) = 3 sin (
7𝜋

6
) 

 

Evaluate each 

𝑥 = −
3√3

2
 

𝑦 = −
3

2
 

 

Give answer as rectangular ordered pair 

(−
3√3

2
, −

3

2
) 

 

Final answer 

Example 3: Find the polar coordinates of the point with Cartesian coordinates (−1, √3) 

(−1, √3) 

 

Find 𝑟 with Pythagorean theorem 

𝑟2 = (−1)2 + (√3)
2
 

 

Square 

𝑟2 = 1 + 3 
 

Add 

𝑟2 = 4 
 

Square root 

𝑟 = 2 
 

Use cosine (or sine) to find 𝜃 

cos(𝜃) =
𝑥

𝑟
= −

1

2
 

 

Inverse cosine 

𝜃 =
2𝜋

3
,
4𝜋

3
 

 

The point (−1, √3) is in the second quadrant 

𝜃 =
2𝜋

3
 

 

Give answer as polar ordered pair 

(2,
2𝜋

3
) 

 

Final answer 
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Polar Equations 

Just as a Cartesian equation like 𝑦 = 𝑥2 describes a relationship between 𝑥 and 𝑦 values on a 

Cartesian grid, a polar equation can be written describing a relationship between 𝑟 and 𝜃 values 

on the polar grid.  

Example 4: Sketch the graph of the polar equation 𝑟 = 𝜃 

The equation 𝑟 = 𝜃 describes all the points for which the radius 𝑟 is equal to the angle. To 

visualize this relationship, we can create a table of values: 

 

𝜃 
 

0 
𝜋

4
 

𝜋

2
 

3𝜋

4
 𝜋 

5𝜋

4
 

3𝜋

2
 

7𝜋

4
 2𝜋 

 

𝑟 
 

0 
𝜋

4
 

𝜋

2
 

3𝜋

4
 𝜋 

5𝜋

4
 

3𝜋

2
 

7𝜋

4
 2𝜋 

 

We can plot these points on the plane, and then sketch a curve 

that fits the points. The resulting graph is a spiral.  

 

Notice that the resulting graph cannot be the result of a 

function of the form 𝑦 = 𝑓(𝑥), as it does not pass the vertical 

line test, even thouth it resulted from a function giving 𝑟 in 

terms of 𝜃. 

 

Although it is nice to see polar equations on polar grids, it is not uncommon for polar graphs to 

be graphed on the Cartesian coordinate system. For this example, the spiral graph above is also 

graphed on the Cartesian grid below. 
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Example 5: Graph the polar equation 𝑟 = 4 

Since every point satisfying the equation 𝑟 = 4 is 4 units from the origin, we see that the graph is 

the circle of radius 4 centered at the origin 

 

 

 

 

 

 

In general, 𝑟 = 𝑎 is a circle centered at the origin, radius 𝑎. Also, 𝜃 = 𝑐 is a line through the 

origin.  

The normal setting on graphing calculators and software graph on the Cartesian coordinate 

system with 𝑦 being a function of 𝑥, where the graphing utility asks for 𝑓(𝑥), or simply 𝑦 =. 

To graph polar equations, you may need to change the mode of your calculator to Polar. You will 

know you have been successful in changing the mode if you now have 𝑟 as a function of 𝜃, 

where the graphing utility asks for 𝑟(𝜃), or simply 𝑟 =.  

Example 6: Sketch the graph of the polar equation 𝑟 = 3sin (𝜃) 

Make a table of values: 

 

𝜃 
 

0 
𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

2𝜋

3
 

3𝜋

4
 

5𝜋

6
 𝜋 

 

𝑟 
 

0 
3

2
 

3√2

2
 

3√3

2
 3 

3√3

2
 

3√2

2
 

3

2
 0 

 

Approx 𝑟 

 

0 1.5 2.1 2.6 3 2.6 2.1 1.5 0 

 

Graph each of these points on the polar grid and connect the dots: 

(0,4) 

(−4,0) (4,0) 

(0, −4) 
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Graphing this on the Cartesian plane gives the following graph: 

 

In general 𝑟 = 𝑎 sin (𝜃) and 𝑟 = 𝑎 cos (𝜃) are circles tangent to the origin, radius 
|𝑎|

2
 , 𝑥 or 𝑦 axis is 

the axis of symmetry 

Example 7: Sketch the graph of the polar equation 𝑟 = 2 + 4cos (𝜃) (this graph is called a 

limacon) 

It may be easier to first find the pole values by solving 𝑟 = 0 

2 + 4 cos(𝜃) = 0 
 

Subtract 2 

4 cos(𝜃) = −2 
 

Divide by 4 

cos(𝜃) = −
1

2
 

 

Inverse cosine 

𝜃 = cos−1 (−
1

2
) =

2𝜋

3
,
4𝜋

3
 

 

List the points 

(0,
2𝜋

3
) , (0,

4𝜋

3
) 

 

Now make a table for other angles 



389 

 

 

𝜃 
 

0 
𝜋

2
 

2𝜋

3
 𝜋 

4𝜋

3
 

3𝜋

2
 

 

𝑟 
 

6 2 0 −2 0 2 

 

Plot all points and connect in order: 

 

Below is the same graph on rectangular coordinates: 
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Testing for Symmetry in Polar Coordinates 

The graph of a polar equation is: 

1. Symmetric with respect to the line 𝜃 =
𝜋

2
 if replacing (𝑟, 𝜃) by (𝑟, 𝜋 − 𝜃) yields an 

equivalent equation 

 

2. Symmetric with respect to the polar axis if replacing (𝑟, 𝜃) by (𝑟, −𝜃) yields an 

equivalent equation 

 

3. Symmetric with respect to the pole if replacing (𝑟, 𝜃) by (−𝑟, 𝜃) results in an equivalent 

equation 

Example 8: Graph 𝑟 = 4 − 4sin (𝜃) (this type of graph is called cardioid) 

First test for symmetry, replacing 𝜃 by 𝜋 − 𝜃:  

𝑟 = 4 − 4 sin(𝜋 − 𝜃) 
 

Since sin(𝜋 − 𝜃) = sin(𝜃) 

𝑟 = 4 − 4 sin(𝜃) Same equation!  

Symmetric with respect to 𝜃 =
𝜋

2
 line  

(𝑦 axis in rectangular)  

 

Second test for and third test for symmetry do not obtain the same equation. Hence we can draw 

no conclusion about symmetry with respect to the polar axis or the pole.  

As the graph is symmetric with respect to the line 𝜃 =
𝜋

2
 we make a table of values for 

−
𝜋

2
≤ 𝜃 ≤

𝜋

2
  

𝜃 −
𝜋

2
 −

𝜋

3
 −

𝜋

4
 −

𝜋

6
 0 𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

𝑟 8 7.5 6.8 6 4 2 1.2 0.5 0 
 

Graphing these points (and their reflections) yields the following graph: 
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In general a cardioid will have the form 𝑟 = 𝑎(1 ± cos(𝜃)) or 𝑟 = 𝑎(1 ± sin(𝜃)). 

Example 9: Graph 𝑟 = 2cos (3𝜃) (this type of graph is called a 3 leave rose) 

Checking for symmetry, because cos(−𝜃) = cos (𝜃) we have symmetry with respect to the polar 

axis. 

Next we solve for when 𝑟 = 0 

0 = 2 cos(3𝜃) 
 

Divide by 2 

0 = cos(3𝜃) 
 

Inverse cosine 

3𝜃 = cos−1(0) =
𝜋

2
,
3𝜋

2
,
5𝜋

2
 

 

Divide by 3 

𝜃 =
𝜋

6
,
𝜋

2
,
5𝜋

6
 

 

List coordinates 

(0,
𝜋

6
) , (0,

𝜋

2
) , (0,

5𝜋

6
) 

 

 

We also know that when cos(3𝜃) = 1 we end up with 𝑟 = 2. This gives 

cos(3𝜃) = 1 
 

Inverse cosine 

3𝜃 = cos−1(1) = 0, 2𝜋 
 

Divide by 3 

𝜃 = 0,
2𝜋

3
 

 

List coordinates 

(2,0), (2,
2𝜋

3
) 

 

 

Similarly we know when cos(3𝜃) = −1 we end up with 𝑟 = −2. This gives the points: 

(−2,
𝜋

3
) , (−2,

3𝜋

3
) 

Making a table for a few other values to fill in the gaps gives: 

𝜃 𝜋

12
 

𝜋

4
 

5𝜋

12
 

𝑟 √2 = 1.4 −√2 = −1.4 −√2 = −1.4 
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Graph each of the points and reflections to obtain: 

Scale: Each circle is 
1

2
 unit 

 

Below is the same graph on the Cartesian plane: 

 

In general 

 A rose with 𝑛 positive and odd is of the form 𝑟 = 𝑎 sin (𝑛𝜃) or 𝑟 = 𝑎 cos (𝑛𝜃) and has 𝑛 

petals of length 𝑎.  

𝑟 = cos (3𝜃) 

3 petals 

 

 A rose with 𝑛 positive and even is of the form 𝑟 = 𝑎 sin (𝑛𝜃) or 𝑟 = 𝑎 cos (𝑛𝜃) and has 

2𝑛 petals of length 𝑎 



393 

 

𝑟 = sin (2𝜃) 

4 petals 

 

Converting Equations 

While many polar equations cannot be expressed nicely in Cartesian form (and vice versa), it can 

be beneficial to convert between the two forms, when possible. To do this we use the same 

relationships we used to convert points between coordinate systems. 

Example 10: Convert the rectangular equation to a polar equation. 

𝑦2 − 𝑥2 = 4 
 

Substitute 𝑦 = 𝑟 sin(𝜃) and 𝑥 = 𝑟 cos(𝜃) 

(𝑟 sin(𝜃))2 − (𝑟 cos(𝜃))2 = 4 
 

Square 

𝑟2 sin2(𝜃) − 𝑟2 cos2(𝜃) = 4 
 

Solve for 𝑟2 by first factoring 

𝑟2(sin2(𝜃) − cos2(𝜃)) = 4 
 

Substitute cos(2𝜃) = cos2(𝜃) − sin2(𝜃) 

𝑟2(− cos(2𝜃)) = 4 
 

Divide by – cos(2𝜃) 

𝑟2 = −
4

cos(2𝜃)
 

 

Reciprocal of cosine is secant 

𝑟2 = −4 sec(2𝜃) 
 

Final answer 

Example 11: Convert the polar equation to a rectangular equation 

𝑟(3 cos(𝜃) − 4 sin(𝜃)) = 12 
 

Distribute 

3𝑟 cos(𝜃) − 4𝑟 sin(𝜃) = 12 
 

Substitute 𝑟 cos(𝜃) = 𝑥 and 𝑟 sin(𝜃) = 𝑦 

3𝑥 − 4𝑦 = 12 
 

Final answer 
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7.1 Polar Coordinates Practice 
 

Graph each of the following points in polar coordinates. 

1. (4, 30°) 
 

2. (5, 45°) 3. (0, 37°) 4. (0, 48°) 

5. (−6, 150°) 
 

6. (−5, 135°) 7. (−8, 210°) 8. (−5, 270°) 

9. (3, −30°) 
 

10. (6, −45°) 11. (7, −315°) 12. (5, −270°) 

13. (−3, −30°) 
 

14. (−6, −45°) 15. (−3.2, 27°) 16. (−6.8, 27°) 

17. (6,
𝜋

4
) 

 

18. (5,
𝜋

6
) 

19. 
(4,

3𝜋

2
) 

20. 
(3,

3𝜋

4
) 

21. (−6,
𝜋

4
) 

 

22. (−5,
𝜋

6
) 

23. 
(−4, −

3𝜋

2
) 

24. 
(−3, −

3𝜋

4
) 

Rewrite each of the following points given in rectangular coordinates into polar coordinates. 

25. (4, 4) 
 

26. (5, 5) 27. (0, 5) 28. (0, −3) 

29. (4, 0) 
 

30. (−5, 0) 31. (3, 3√3) 32. (−3, −3√3) 

33. (√3, 1) 

 

34. (−√3, 1) 35. (3√3, 3) 36. (4√3, −4) 

Rewrite each of the following points given in polar coordinates into rectangular coordinates. 

37. (4, 45°) 
 

38. (5, 60°) 39. (0, 23°) 40. (0, −34°) 

41. (−3, 45°) 
 

42. (−5, 30°) 43. (6, −60°) 44. (3, −120°) 

45. (10,
𝜋

6
) 

 

46. 
(12,

3𝜋

4
) 

47. 
(−5,

5𝜋

6
) 

48. 
(−6,

3𝜋

4
) 

Convert to a polar equation. 

49. 3𝑥 + 4𝑦 = 5 
 

50. 5𝑥 + 3𝑦 = 4 51. 𝑥 = 5 52. 𝑦 = 4 

53. 𝑥2 + 𝑦2 = 36 
 

54. 𝑥2 + 𝑦2 = 16 55. 𝑥2 − 4𝑦2 = 4 56. 𝑥2 − 5𝑦2 = 5 
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Convert to a rectangular equation. 

57. 𝑟 = 5 
 

58. 𝑟 = 8 59. 𝜃 =
𝜋

4
 

60. 
𝜃 =

3𝜋

4
 

61. 𝑟 sin 𝜃 = 2 
 

62. 𝑟 cos 𝜃 = 5 63. 𝑟 = 4cos 𝜃 64. 𝑟 = −3cos 𝜃 
 

65. 𝑟 − 𝑟 sin 𝜃 = 2 
 

66. 𝑟 + 𝑟 cos 𝜃 = 8 67.      𝑟 − 2 cos 𝜃 = 3 sin 𝜃 

 

68.      𝑟 +5sin 𝜃 = 7 cos 𝜃 

 

   

  



396 

 

7.2 Polar Form of Complex Numbers 
 

Imaginary Number 𝒊 

The most basic complex number is 𝑖, defined to be 𝑖 = √−1, commonly called an imaginary 

number. Any real multiple of 𝑖 is also an imaginary number.  

A complex number 𝑧 = 𝑥 + 𝑦𝑖 is uniquely determined by the pair of real numbers (𝑥, 𝑦). Thus 

we can identify the first and second elements of an ordered pair with the real and imaginary parts 

of 𝑧 respectively. For example, (3, −7) corresponds to 𝑧 = 3 − 7𝑖.  

When each point in a coordinate plane is identified with a complex number in this way, the plane 

is called the complex plane. As the figure shows, the vertical or 𝑦-axis is called the imaginary 

axis, and the horizontal or 𝑥-axis is designated the real axis.  

 

 

 

 

 

Example 1: Graph each of the following complex numbers, and then graph their sum 

5 + 4𝑖, −2𝑖 

 

The first point, 5 + 4𝑖, becomes (5, 4) 

The second point, −2𝑖 or 0 − 2𝑖, becomes (0, −2) 

The sum is 5 + 4𝑖 + (−2𝑖) = 5 + 2𝑖 which becomes (5, 2) 

 

 

 

 

 

Imaginary 

Axis 

Real Axis 

𝑧 = 𝑥 + 𝑦𝑖 
𝑥 

𝑦 
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Example 2: Graph each of the following complex numbers, and graph their sum 

−2 − 3𝑖, −3 + 2𝑖 

 

The first point, −2 − 3𝑖, becomes (−2, −3) 

The second point, −3 + 2𝑖, becomes (−3, 2) 

The sum is (−2 − 3𝑖) + (−3 + 2𝑖) = −5 − 𝑖, or (−5, −1) 

 

Polar Form of Complex Numbers 

Remember, because the complex plane is analogous to the Cartesian (rectangular) plane that we 

can think of a complex number 𝑧 = 𝑥 + 𝑦𝑖 as analogours to the Cartesian point (𝑥, 𝑦) and recall 

how we converted from (𝑥, 𝑦) to polar (𝑟, 𝜃) in the last section. 

Bringing in all of our old rules we remember the following: 

cos(𝜃) =
𝑥

𝑟
 

 

sin(𝜃) =
𝑦

𝑟
 

 

tan(𝜃) =
𝑦

𝑥
 

 

𝑥 = 𝑟 cos (𝜃) 
 
 

𝑦 = 𝑟 sin (𝜃) 

 

 

𝑥2 + 𝑦2 = 𝑟2 

 

 

With this in mind, we can write 𝑧 = 𝑥 + 𝑦𝑖 = 𝑟𝑐𝑜𝑠(𝜃) + 𝑖 𝑟 sin(𝜃) = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) 

Example 3: Find rectangular notation of 𝑧 = √8 (cos (−
𝜋

3
) + 𝑖 sin (−

𝜋

3
))  

𝑧 = √8 (cos (−
𝜋

3
) + 𝑖 sin (−

𝜋

3
)) 

 

Evaluate sine and cosine and simplify square root 

𝑧 = 2√2 (
1

2
− 𝑖

√3

2
) 

 

Distribute 

𝑧 = √2 − 𝑖√6 
 

Final answer 

 

 

x + yi 

r 

θ 

y 

x 
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Example 4: Find the polar notation of 1 + 𝑖 

1 + 𝑖 
 

Find 𝑟 

𝑟 = √(1)2 + (1)2 = √2 

 

Find 𝜃, note (1, 1) is in the first quadrant 

cos(𝜃) =
1

√2
=

√2

2
 

𝜃 = cos−1 (
√2

2
) =

𝜋

4
 

 

Write in polar notation 

√2 (cos (
𝜋

4
) + 𝑖 sin (

𝜋

4
)) 

 

Final answer 

In the 18
th

 century, Leonhard Euler demonstrated a relationship between exponential and 

trigonometric functions that allows the use of complex numbers to greatly simplify some 

trigonometric calculations.  

Polar Form of a Complex Number and Euler’s Formula 

The polar form of a complex number is 𝑧 = 𝑟𝑒𝑖𝜃 where Euler’s formula holds: 

𝑟𝑒𝑖𝜃 = 𝑟 cos(𝜃) + 𝑖𝑟 sin(𝜃) = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) 

Similar to plotting a point in the coordinate system, we need 𝑟 and 𝜃 to find the polar form of a 

complex number.  

Example 5: Find the polar notation of −4. 

−4 
 

Write as a complex number 

−4 + 0𝑖 
 

Note the point (−4,0)  

𝑟 = 4 

𝜃 = 𝜋 
 

This gives 

𝑧 = 4𝑒𝑖𝜋 
 

Using Euler’s Formula 

4(𝑐𝑜𝑠 (𝜋) + 𝑖 𝑠𝑖𝑛 (𝜋) ) 
 

Final answer 
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Example 6: Find the polar notation of 1 − √3𝑖 

1 − √3𝑖 
 

Find 𝑟 

𝑟 = √(1)2 + (√3)
2

= √4 = 2 

 

Find 𝜃, note (1, −√3) is in the fourth quadrant 

cos(𝜃) =
1

2
 

𝜃 = cos−1 (
1

2
) =

5𝜋

3
 

 

Write in polar notation 

2 (cos (
5𝜋

3
) + 𝑖 sin (

5𝜋

3
)) 

 

Final answer 

The notation of 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) is often shortened to 𝑟 𝑐𝑖𝑠(𝜃). Thus the above solution 

could equivalently be written 

2 𝑐𝑖𝑠 (
5𝜋

3
) 

Multiplication and Division of Complex Numbers 

Suppose we are given two complex numbers: 𝑧1 = 𝑟1(cos(𝜃1) + 𝑖 sin(𝜃1)) and  

𝑧2 = 𝑟2(cos(𝜃2) + 𝑖 sin(𝜃2)). The product of 𝑧1 and 𝑧2 is: 

𝑧1𝑧2 = 𝑟1(cos(𝜃1) + 𝑖 sin(𝜃1))𝑟2(cos(𝜃2) + 𝑖 sin(𝜃2)) 

Reorder factors to get: 

𝑧1𝑧2 = 𝑟1𝑟2(cos(𝜃1) + 𝑖 sin(𝜃1))(cos(𝜃2) + 𝑖 sin(𝜃2)) 

FOIL the binomials to get: 

𝑧1𝑧2 = 𝑟1𝑟2(cos(𝜃1) cos(𝜃2) + 𝑖 cos(𝜃1) sin(𝜃2) + 𝑖 sin(𝜃1) cos(𝜃2) + 𝑖2 sin(𝜃1) sin(𝜃2)) 

Since 𝑖 = √−1 then 𝑖2 = −1. Grouping together real and imaginary parts gives us: 

𝑧1𝑧2 = 𝑟1𝑟2[(cos(𝜃1) cos(𝜃2) − sin(𝜃1) sin(𝜃2)) + 𝑖 (sin(𝜃1) cos(𝜃2) + cos(𝜃1) sin(𝜃2))] 

Recall sum and difference identities: cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin (𝛼)sin (𝛽) and sin(𝛼 +

𝛽) = sin(𝛼) cos(𝛽) + cos(𝛼) sin (𝛽). This gives us 

𝑧1𝑧2 = 𝑟1𝑟2[cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2)] 
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Now the division of 𝑧1 and 𝑧2 is: 

𝑧1

𝑧2
=

𝑟1(cos(𝜃1) + 𝑖 sin(𝜃1))

𝑟2(cos(𝜃2) + 𝑖 sin(𝜃2))
 

We will rationalize the denominator by multiplying both numerator and denominator by the 

conjugate: cos(𝜃2) − 𝑖 sin (𝜃2). We obtain: 

𝑧1

𝑧2
=

𝑟1(cos(𝜃1) + 𝑖 sin(𝜃1))

𝑟2(cos(𝜃2) + 𝑖 sin(𝜃2))
∙

(cos(𝜃2) − 𝑖 sin(𝜃2))

(cos(𝜃2) − 𝑖 sin(𝜃2))
 

FOIL out numerator and denominator. Notice the denominator is a sum and difference.  

𝑧1

𝑧2
=

𝑟1(cos(𝜃1) cos(𝜃2) − 𝑖 cos(𝜃1) sin(𝜃2) + 𝑖 sin(𝜃1) cos(𝜃2) − 𝑖2 sin(𝜃1) sin(𝜃2))

𝑟2(cos2(𝜃2) − 𝑖2 sin2(𝜃2))
 

Since 𝑖 = √−1 then 𝑖2 = −1. Grouping together real and imaginary parts gives us: 

𝑧1

𝑧2
=

𝑟1[(cos(𝜃1) cos(𝜃2) + sin(𝜃1) sin(𝜃2)) + 𝑖 (sin(𝜃1) cos(𝜃2) − cos(𝜃1) sin(𝜃2))]

𝑟2(sin2(𝜃2) + cos2(𝜃2))
 

In the denominator we know sin2 𝛼 + cos2 𝛼 = 1. In the numerator we can use the sum and 

difference formulas, cos(𝛼 − 𝛽) = cos(𝛼) cos(𝛽) + sin (𝛼)sin (𝛽) and 

sin(𝛼 − 𝛽) = sin(𝛼) cos(𝛽) + cos(𝛼) sin (𝛽).  

𝑧1

𝑧2
=

𝑟1

𝑟2

[cos(𝜃1 − 𝜃2) + 𝑖 sin(𝜃1 − 𝜃2)] 

Product and Quotient of Two Complex Numbers 

Let 𝑧1 = 𝑟1(cos(𝜃1) + 𝑖 sin(𝜃1)) and 𝑧2 = 𝑟2(cos(𝜃2) + 𝑖 sin(𝜃2)) be complex numbers.  

𝑧1𝑧2 = 𝑟1𝑟2[cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2)] 

𝑧1

𝑧2
=

𝑟1

𝑟2

[cos(𝜃1 − 𝜃2) + 𝑖 sin(𝜃1 − 𝜃2)] 
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Example 7: Convert to polar and then multiply 

(2 + 2𝑖)(1 − 𝑖) 
 

Convert first factor to polar, first quadrant 

𝑟 = √(2)2 + (2)2 = √8 = 2√2 

cos(𝜃) =
2

2√2
=

1

√2
=

√2

2
 

𝜃 = cos−1 (
√2

2
) =

𝜋

4
 

𝑧1 = 2√2 (cos (
𝜋

4
) + 𝑖 sin (

𝜋

4
)) 

 

 

 

 

 

 

 

Convert the second factor, fourth quadrant 

𝑟 = √(1)2 + (12) = √2 

cos(𝜃) =
1

√2
=

√2

2
 

𝜃 = cos−1 (
√2

2
) = −

𝜋

4
 

𝑧2 = √2 (cos (−
𝜋

4
) + 𝑖 sin (−

𝜋

4
)) 

 

 

 

 

 

 

 

Use product formula 

𝑧1𝑧2 = 2√2 ∙ √2 [cos (
𝜋

4
−

𝜋

4
) + 𝑖 sin (

𝜋

4
−

𝜋

4
)] 

 

Simplify 

𝑧1𝑧2 = 4(cos(0) + 𝑖 sin(0)) 
 

Or alternatively 

𝑧1𝑧2 = 4𝑐𝑖𝑠(0) 
 

Final answer 
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Example 8: Convert to polar and then divide 

2√3 − 2𝑖

−1 + 𝑖√3
 

 

Convert numerator, fourth quadrant 

𝑟 = √(2√3)
2

+ (−2)2 = √16 = 4 

cos(𝜃) =
2√3

4
=

√3

2
 

𝜃 = cos−1 (
√3

2
) = −30° 

𝑧1 = 4(cos(−30°) + 𝑖 sin(−30°)) 
 

 

 

 

 

 

 

 

Convert denominator, second quadrant 

𝑟 = √(−1)2 + (√3)
2

= √4 = 2 

cos(𝜃) = −
1

2
 

𝜃 = cos−1 (−
1

2
) = 120° 

𝑧2 = 2(cos(120°) + 𝑖 sin(120°)) 
 

 

 

 

 

 

 

Use quotient formula 

𝑧1

𝑧2
=

4

2
[cos(−30° − 120°) + 𝑖 sin(−30° − 120°)] 

 

Simplify 

𝑧1

𝑧2
= 2(cos(−150°) + 𝑖 sin(−150°)) 

 

Or alternatively 

𝑧1

𝑧2
= 2𝑐𝑖𝑠(−150°) 

Final answer 
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7.2 Polar Form of Complex Numbers 
 

Graph each of the following complex numbers and then graph their sum. 

1. 3 + 2𝑖, 2 − 5𝑖 
 

2. 4 + 3𝑖, 3 − 4𝑖 3. −5 + 3𝑖, −2 − 3𝑖 

4. −4 + 2𝑖, −3 − 4𝑖 
 

5. 2 − 3𝑖, −5 + 4𝑖 6. 3 − 2𝑖, −5 + 5𝑖 

7. −2 − 5𝑖, 5 + 3𝑖 
 

8. −3 − 4𝑖, 6 + 3𝑖   

Find rectangular notation 

9. 3(cos(30°) + 𝑖 sin(30°)) 
 

10. 6(cos(150°) + 𝑖 sin(150°)) 

11. 10𝑐𝑖𝑠(270°) 
 

12. 12𝑐𝑖𝑠(−60°) 

13. √8 (cos (
𝜋

4
) + 𝑖 sin (

𝜋

4
)) 

 

14. 5 (cos (
𝜋

3
) + 𝑖 sin (

𝜋

3
)) 

15. 
√8𝑐𝑖𝑠 (

5𝜋

4
) 

 

16. √8𝑐𝑖𝑠 (−
𝜋

4
) 

Find polar notation 

17. 1 − 𝑖 
 

18. √3 + 𝑖 19. 10√3 − 10𝑖 

20. −10√3 + 10𝑖 
 

21. −5 22. −5𝑖 

Convert to polar and then multiply or divide 

23. (1 − 𝑖)(2 + 2𝑖) 24. (1 + 𝑖√3)(1 + 𝑖) 25. (2√3 + 2𝑖)(2𝑖) 

 

26. (2√3 − 3𝑖)(2𝑖) 27. 1 − 𝑖

1 + 𝑖
 

28. 1 − 𝑖

√3 − 𝑖
 

 

29. 2√3 − 2𝑖

1 + 𝑖√3
 

30. 3 − 3𝑖√3

√3 − 𝑖
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7.3 DeMoivre’s Theorem 
 

Powers of Complex Numbers 

In this section we will study procedures for finding powers and roots of complex numbers. To 

begin consider the complex number (in polar form), 

𝑧 = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) 

If we multiply the left side of this equation by 𝑧 and the right side by 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) 

yields: 

𝑧2 = 𝑟(cos(𝜃) + 𝑖 sin(𝜃))𝑟(cos(𝜃) + 𝑖 sin(𝜃)) 

     = 𝑟2(cos2(𝜃) + 2𝑖 sin(𝜃) cos(𝜃) − sin2(𝜃)) 

     = 𝑟2(cos2(𝜃) − sin2(𝜃) + 𝑖 ∙ 2 sin(𝜃) cos(𝜃)) 

     = 𝑟2(cos(2𝜃) + 𝑖 sin(2𝜃)) 

Continuing to multiply the left side by 𝑧 and the right side by 𝑟(cos(𝜃) + 𝑖 sin (𝜃) yields the 

following pattern: 

𝑧 = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) 

𝑧2 = 𝑟2(cos(2𝜃) + 𝑖 sin(2𝜃)) 

𝑧3 = 𝑟3(cos(3𝜃) + 𝑖 sin(3𝜃)) 

𝑧4 = 𝑟4(cos(4𝜃) + 𝑖 sin(4𝜃)) 

𝑧5 = 𝑟5(cos(5𝜃) + 𝑖 sin(5𝜃)) 

This pattern leads to the following important theorem, which is named after the French 

mathematician Abraham DeMoivre: 

DeMoivre’s Theorem: 

If 𝑧 = 𝑟(cos(𝜃) + 𝑖 sin (𝜃) is a complex number and 𝑛 is a positive integer, then  

𝑧𝑛 = 𝑟𝑛(cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃)) 
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Example 1: Raise to the given power. Write the answer in polar notation 

(2𝑐𝑖𝑠 (
𝜋

6
))

8

 

 

Using DeMoivre’s theorem 

28 (𝑐𝑖𝑠 (8 ∙
𝜋

6
)) 

 

Simplify 

256𝑐𝑖𝑠 (
4𝜋

3
) 

 

Final answer 

Example 2: Raise to the given power. Write the answer in polar notation 

(−2 + 2𝑖)4 
 

Convert to polar notation 

𝑟 = √(−2)2 + (2)2 = √8 = 2√2 

tan(𝜃) =
2

−2
= −1 

𝜃 = tan−1(−1) =
3𝜋

4
 

 

Give polar equation 

[2√2 (cos (
3𝜋

4
) + 𝑖 sin (

3𝜋

4
))]

4

 

 

Using DeMoivre’s Theorem 

(2√2)
4

(cos (4 ∙
3𝜋

4
) + 𝑖 sin (4 ∙

3𝜋

4
)) 

 

Simplify 

64(cos(3𝜋) + 𝑖 sin(3𝜋)) 
 

Final answer 

Example 3: Raise to the given power. Write the answer in rectangular notation 

(𝑐𝑖𝑠112.5°)24 
 

Using DeMoivre’s Theorem 

𝑐𝑖𝑠(24 ∙ 112.5°) 
 

Simplify 

𝑐𝑖𝑠(2700°) 
 

Expand 

cos(2700°) + 𝑖 sin(2700°) 
 

Find conterminal angles 

cos(180°) + 𝑖 sin(180°) 
 

Evaluate 

−1 + 0𝑖 
 

Simplify 

−1 
 

Final answer 
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Example 4: Raise to the given power. Write the answer in rectangular notation 

(
√2

2
−

𝑖√6

2
)

9

 

 

Convert to polar notation 

𝑟 = √(
√2

2
)

2

+ (−
√6

2
)

2

= √2 

tan(𝜃) =
−

√6
2

√2
2

= −√3 

𝜃 = tan−1(−√3) = 300° 
 

Give polar equation 

[√2(cos(300°) + 𝑖 sin(300°))]9 
 

Using DeMoivre’s Theorem 

(√2)
9
(cos(9 ∙ 300) + 𝑖 sin(9 ∙ 300)) 

 

Simplify 

16√2(cos(2700°) + 𝑖 sin(2700)) 
 

Find conterminal angles 

16√2(cos(180°) + 𝑖 sin(180°)) 
 

Evaluate 

16√2(−1 + 0𝑖) 
 

Simplify 

−16√2 
 

Final answer 

Roots of Complex Numbers 

Recall that a consequence of the Fundamental Theorem of Algebra is that a polynomial equation 

of degree 𝑛 has 𝑛 solutions in the complex number system. Hence, an equation like 𝑧6 = 1 has 

six solutions, and in this particular case we can find the six solutions by factoring and using the 

quadratic formula: 

𝑧6 = 1 
 

Subtract 1 

𝑧6 − 1 = 0 
 

Factor, difference of squares 

(𝑧3 − 1)(𝑧3 + 1) = 0 
 

Factor sum and difference of cubes 

(𝑧 − 1)(𝑧2 + 𝑧 + 1)(𝑧 + 1)(𝑧2 − 𝑧 + 1) = 0 
 

Set factors equal to zero or use quadratic formula 

𝑧 = ±1,
−1 ± 𝑖√3

2
,
1 ± 𝑖√3

2
 

 

Final answer 
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Each of these numbers is a sixth root of 1. In general, we define the 𝑛𝑡ℎ root of a complex 

number as follows: 

Definition of 𝒏𝒕𝒉 root of a complex number 

The complex number 𝑤 = 𝑥 + 𝑖𝑦 is an 𝑛𝑡ℎ root of the complex number 𝑧 if  

𝑧 = 𝑤𝑛 = (𝑥 + 𝑖𝑦)𝑛 

To find a formula for an 𝑛𝑡ℎ root of a complex number, we let 𝑤 be an 𝑛𝑡ℎ root of 𝑧, where 

𝑤 = 𝑠(cos(𝛼) + 𝑖 sin(𝛼)) and 𝑧 = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)). By DeMoivre’s Theorem and the fact 

that 𝑤𝑛 = 𝑧, we have 

𝑠𝑛(cos(𝑛𝛼) + 𝑖 sin(𝑛𝛼)) = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) 

Now, taking the absolute value of both sides of the equation, so 𝑠𝑛 = 𝑟, which means  

cos(𝑛𝛼) + 𝑖 sin(𝑛𝛼) = cos(𝜃) + 𝑖 sin (𝜃) 

Since both sine and cosine have a period of 2𝜋, these last two equations have solutions if and 

only if the angles differ by a multiple of 2𝜋. Consequently, there must exist an integer 𝑘 such 

that 𝑛𝛼 = 𝜃 + 2𝜋 or 𝛼 =
𝜃+2𝜋

𝑛
.  

By substituting this value for 𝛼 into the trigonometric form of 𝑤, we get the result stated in the 

following theorem. 

𝒏𝒕𝒉 Roots of a Complex Number 

For a positive integer 𝑛, the complex number 𝑧 = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)) has exactly 𝑛 distinct 

𝑛𝑡ℎ roots given by  

𝑤𝑘 = √𝑟
𝑛

[cos (
𝜃 + 2𝜋𝑘

𝑛
) + 𝑖 sin (

𝜃 + 2𝜋𝑘

𝑛
)] 

or 

𝑤𝑘 = √𝑟
𝑛

[cos (
𝜃 + 360°𝑘

𝑛
) + 𝑖 sin (

𝜃 + 360°𝑘

𝑛
)] 

Where 𝑘 = 0,1,2, … , 𝑛 − 1 
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Example 5: Solve the equation for 𝑧 

𝑧3 = 𝑖 
 

Convert to polar notation 

𝑟 = √(0)2 + (1)2 = 1 

tan(𝜃) =
1

0
= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

𝜃 =
𝜋

2
 

 

Give polar equation 

𝑧3 = cos (
𝜋

2
) + 𝑖 sin (

𝜋

2
) 

 

Using the root formula 

𝑤𝑘 = √1
3

[cos (

𝜋
2 + 2𝑘𝜋

3
) + 𝑖 sin (

𝜋
2 + 2𝑘𝜋

3
)] 

𝑘 = 0,1,2 
 

 

𝑤0 = cos (
𝜋

6
) + 𝑖 sin (

𝜋

6
) =

√3

2
+

1

2
𝑖 

 

Evaluate each value of 𝑘, start with 𝑘 = 0 

𝑤1 = cos (
𝜋

6
+

2𝜋

3
) + 𝑖 sin (

𝜋

6
+

2𝜋

3
) 

𝑤1 = cos (
5𝜋

6
) + 𝑖 sin (

5𝜋

6
) = −

√3

2
+

1

2
𝑖 

 

Next evaluate 𝑘 = 1 

𝑤2 = cos (
𝜋

6
+

4𝜋

3
) + 𝑖 sin (

𝜋

6
+

4𝜋

3
) 

𝑤2 = cos (
3𝜋

2
) + 𝑖 sin (

3𝜋

2
) = 0 − 𝑖 = −𝑖 

 

Finally evaluate 𝑘 = 2 

√3

2
+

1

2
𝑖, −

√3

2
+

1

2
𝑖, −𝑖 

 

List three solutions 
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Example 6: Solve the equation for 𝑧 

𝑧2 = 1 + √3𝑖 
 

Polar notation 

𝑟 = √(1)2 + (√3)
2

= √4 = 2 

tan(𝜃) =
√3

1
= √3 

𝜃 = tan−1(√3) = 60° 
 

Give polar equation 

𝑧2 = 2(cos(60°) + 𝑖 sin(60°)) 
 

Using root formula 

𝑤𝑘 = √2 [cos (
60° + 360𝑘

2
) + 𝑖 sin (

60° + 360𝑘

2
)] 

 

Simplify 

𝑤𝑘 = √2[cos(30° + 180𝑘) + 𝑖 sin(30° + 180𝑘)] 
𝑘 = 0,1 

 

 

𝑤0 = √2[cos(30°) + 𝑖 sin(30°)] = √2 [
√3

2
+

1

2
𝑖] =

√6

2
+

√2

2
𝑖 

 

Evaluate 𝑘 = 0 

𝑤1 = √2[cos(210°) + 𝑖 sin(210°)] = √2 [−
√3

2
−

1

2
𝑖] = −

√6

2
−

√2

2
𝑖 

 

Evaluate 𝑘 = 1 

√6

2
+

√2

2
𝑖, −

√6

2
−

√2

2
𝑖 

 

List answers  
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Example 7: Find and graph the six roots of −1 

−1 
 

Covert to polar equation 

−1 = 1(cos(180°) + 𝑖 sin(180°)) 
 

Use root formula 

𝑤𝑘 = 1𝑘 [cos (
180° + 360𝑘

6
) + 𝑖 sin (

180° + 360

6
)] 

 

Simplify 

𝑤𝑘 = cos(30° + 60𝑘) + 𝑖 sin(30° + 60𝑘) 

𝑘 = 0, 1, 2, 3, 4, 5 
 

 

𝑤0 = cos(30°) + 𝑖 sin(30°) =
√3

2
+

1

2
𝑖 

 

Evaluate 𝑘 = 0 

𝑤1 = cos(90°) + 𝑖 sin(90°) = 0 + 𝑖 
 

Evaluate 𝑘 = 1 

𝑤2 = cos(150°) + 𝑖 sin(150°) = −
√3

2
+

1

2
𝑖 

 

Evaluate 𝑘 = 2 

𝑤3 = cos(210°) + 𝑖 sin(210°) = −
√3

2
−

1

2
𝑖 

 

Evaluate 𝑘 = 3 

𝑤4 = cos(270°) + 𝑖 sin(270°) = 0 − 𝑖 
 

Evaluate 𝑘 = 4 

𝑤5 = cos(330°) + 𝑖 sin(330°) =
√3

2
−

1

2
𝑖 

 

Evaluate 𝑘 = 5 

√3

2
+

1

2
𝑖, −

√3

2
+

1

2
𝑖,

√3

2
−

1

2
𝑖, −

√3

2
−

1

2
𝑖, 𝑖, −𝑖 

 

List solutions 

 

 

 

 

 

 

 

 

𝑤0 

𝑤1 

𝑤2 

𝑤3 

𝑤4 

𝑤5 
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Example 8: Find the solutions of the equation 𝑧4 + 81 = 0 

𝑧4 + 81 = 0 
 

Subtract 81 

𝑧4 = −81 
 

Convert to Polar 

𝑧4 = 81[cos(180°) + 𝑖 sin(180°)] 
 

Use root formula 

𝑤𝑘 = √81
4

[cos (
180° + 360𝑘

4
) + 𝑖 sin (

180° + 360𝑘

4
) 

 

Simplify 

𝑤𝑘 = 3(cos(45° + 90𝑘) + 𝑖 sin(45° + 90𝑘)) 

𝑘 = 0, 1, 2, 3 
 

 

𝑤0 = 3(cos(45°) + 𝑖 sin(45°)) = 3 (
√2

2
+

√2

2
𝑖) =

3√2

2
+

3√2

2
𝑖 

 

Evaluate 𝑘 = 0 

𝑤1 = 3(cos(135°) + 𝑖 sin(135°)) = 3 (−
√2

2
+

√2

2
𝑖) = −

3√2

2
+

3√2

2
𝑖 

 

Evaluate 𝑘 = 1 

𝑤2 = 3(cos(225°) + 𝑖 sin(225°)) = 3 (−
√2

2
−

√2

2
𝑖) = −

3√2

2
−

3√2

2
𝑖 

 

Evaluate 𝑘 = 2 

𝑤3 = 3(cos(315°) + 𝑖 sin(315°)) = 3 (
√2

2
−

√2

2
𝑖) =

3√2

2
−

3√2

2
𝑖 

 

Evaluate 𝑘 = 3 

3√2

2
+

3√2

2
𝑖, −

3√2

2
+

3√2

2
𝑖, −

3√2

2
−

3√2

2
𝑖,

3√2

2
−

3√2

2
𝑖 

 

List solutions 
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7.3 DeMoivre’s Theorem Practice 
 

Raise each number to the given power. Write the answer in polar notation. 

1. 
(2𝑐𝑖𝑠 (

𝜋

3
))

3

 

 

2. 
(3𝑐𝑖𝑠 (

𝜋

2
))

4

 
3. 

(2𝑐𝑖𝑠 (
𝜋

6
))

6

 

4. 
(2𝑐𝑖𝑠 (

𝜋

5
))

5

 

 

5. (1 + 𝑖)6 6. (1 − 𝑖)6 

Raise each number to the given power. Write the answer in rectangular notation. 

7. (2𝑐𝑖𝑠(240°))
4
 8. (2𝑐𝑖𝑠(120°))

4
 

 

9. (1 + 𝑖√3)
4
 

10. (−√3 + 𝑖)
6
 11. 

(
1

√2
+

𝑖

√2
)

10

 

 

12. 
(

1

√2
−

𝑖

√2
)

12

 

13. 

(
√3

2
+

𝑖

2
)

12

 

 

14. 

(
√3

2
−

𝑖

2
)

14

 

  

Solve the following equations for 𝑧 

15. 𝑧2 = 𝑖 
 

16. 𝑧2 = −𝑖 17. 𝑧2 = 2√2 − 2𝑖√2 

18. 𝑧2 = 2√2 + 2𝑖√2 
 

19. 𝑧2 = −1 + 𝑖√3 20. 𝑧2 = −√3 − 𝑖 

21. 𝑧3 = 𝑖 
 

22. 𝑧3 = 68.4321   

23. Find and graph the fourth roots of 16 

 

24. Find and graph the fourth roots of 𝑖 
 

25. Find and graph the fifth roots of −1 

 

26. Find and graph the sixth roots of 1 

 

27. Find the fourth roots of −8 + 8𝑖√3 

 

28. Find the cube roots of −64𝑖 
 

29. Find the cube roots of 2√3 − 2𝑖 
 

30. Find the cube roots of 1 − 𝑖√3 
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Find all complex solutions of the following equations 

31. 𝑧3 = 1 
 

32. 𝑧5 − 1 = 0 33. 𝑧5 + 1 = 0 

34. 𝑧4 + 𝑖 = 0 35. 𝑧5 + √3 + 𝑖 = 0 36. 𝑧6 + 1 = 0 
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Chapter 8 

Sequences and Series 
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8.1 Sequences 
 

Sequences 

Sequence: Infinitely-long ordered list of numbers. Equivalently, a function whose domain is the 

natural numbers (1, 2, 3…) 

We usually try to write sequences as a general 𝑛-th term, which we call 𝑎𝑛.  

Example 1: Write the first five terms of the sequence 𝑎𝑛 = 3 + 5𝑛, assuming the sequence 

begins with 𝑎1. 

𝑎𝑛 = 3 + 5𝑛 
 

Replace 𝑛 with 1, 2, 3, 4, 5 

𝑎1 = 3 + 5(1) = 8 

𝑎2 = 3 + 5(2) = 13 

𝑎3 = 3 + 5(3) = 18 

𝑎4 = 3 + 5(4) = 23 

𝑎5 = 3 + 5(5) = 28 
 

 

 

 

 

List first five terms 

8, 13, 18, 23, 28 
 

Final answer 

Factorials and Sequences 

Sometimes a sequence will use what is called a factorial. This is defined below. 

Factorial: 𝑛! Refers to a natural number 𝑛 multiplied by every number below it. 

𝑛! = 𝑛 ∙ (𝑛 − 1) ∙ (𝑛 − 2) … 3 ∙ 2 ∙ 1 

Also, 0! = 1 

Example 2: Simplify the expression 
9!

6!
  

9!

6!
 

 

Write out expression longhand 

9 ∙ 8 ∙ 7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1

6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1
 

 

Divide out common factor (1-6) 

9 ∙ 8 ∙ 7 
 

Multiply 

504 
 

Final answer 
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Example 3: Simplify the expression 
(𝑛+3)!

(𝑛+1)!
  

(𝑛 + 3)!

(𝑛 + 1)!
 

 

Expand each, multiplying by one less each time 

(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑛 … 3 ∙ 2 ∙ 1

(𝑛 + 1)𝑛(𝑛 − 1)(𝑛 − 2) … 3 ∙ 2 ∙ 1
 

 

Divide out common factors 

(𝑛 + 3)(𝑛 + 2) 
 

FOIL 

𝑛2 + 5𝑛 + 6 
 

Final answer 

Now we will consider a sequence which uses a factorial in its definition. 

Example 4: Write the first five terms of the sequence 𝑎𝑛 = (−1)𝑛 (3+𝑛)

𝑛!
 

𝑎𝑛 = (−1)𝑛
(3 + 𝑛)

𝑛!
 

 

Replace 𝑛 with 1, 2, 3, 4, 5 

𝑎1 = (−1)1
3 + 1

1!
= −

4

1
= −4 

𝑎2 = (−1)2
3 + 2

2!
=

5

2
 

𝑎3 = (−1)3
3 + 3

3!
= −

6

6
= −1 

𝑎4 = (−1)4
3 + 4

4!
=

7

24
 

𝑎5 = (−1)5
3 + 5

5!
= −

8

120
= −

1

15
 

 

 

 

 

 

 

 

 

 

List first five terms 

−4,
5

2
, −1,

7

24
, −

1

15
 

Final answer 

Recursive Sequences 

Recursive Sequence: Sequence in which we define each successive term using previous terms 
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Example 5: Write the first five terms of the recursive sequence 𝑎𝑘 = 1.5𝑎𝑘−1 where 𝑎1 = 4 

𝑎1 = 4 
 

Using our definition for 𝑎𝑘 where 𝑎𝑘−1 is 4 

𝑎2 = 1.5(4) = 6 
 

Use the definition again where 𝑎𝑘−1 is 6 

𝑎3 = 1.5(6) = 9 
 

Continue to find 𝑎4 and 𝑎5 

𝑎4 = 1.5(9) = 13.5 

𝑎5 = 1.5(13.5) = 20.25 
 

List first five terms 

4, 6, 9, 13.5, 20.25 
 

Final answer 

Example 6: Write the first five terms of the recursive sequence 𝑎𝑘 = 𝑎𝑘−1 + 𝑎𝑘−2 where 𝑎0 = 0 

and 𝑎1 = 1 

𝑎0 = 0, 𝑎1 = 1 
 

To find 𝑎2 we add 𝑎1 + 𝑎0 

𝑎2 = 1 + 0 = 1 
 

To find 𝑎3 we add 𝑎2 + 𝑎1 

𝑎3 = 1 + 1 = 2 
 

Continue to find 𝑎4 and 𝑎5 

𝑎4 = 2 + 1 = 3 

𝑎5 = 3 + 2 = 5 
 

List first five terms 

0, 1, 1, 2, 3, 5 
 

Final answer 

We may be asked to find the 𝑛-th term of a sequence. Here we will need to look for patterns such 

as a difference between terms, a quotient between terms, factorials, or exponents. 

Example 7: Find the 𝑛-th term of the sequence: 2, 9, 16, 23, 30 … 

2, 9, 16, 23, 30 
 

Notice terms increase by a constant 7. Consider 7𝑛 

7𝑛 
 

If we replace 𝑛 = 1 we get 

7(1) = 7 
 

Our first term is 2, we must subtract 5 

𝑎𝑛 = 7𝑛 − 5 
 

Check with the second point 

𝑎2 = 7(2) − 5 = 9 
 

It works! 

𝑎𝑛 = 7𝑛 − 5 
 

Final answer 
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Example 8: Find the 𝑛-th term of the sequence 
1

3
,

4

9
,

9

27
,

16

81
,

25

243
…  

We will consider the numerators and denominators separately to identify a pattern. 

Numerators: 1, 4, 9, 16, 25 … 

 

Notice this is the list of squares 

Numerators: 𝑛2 

 

A quick check verifies this works for all numerators 

Denominators: 3, 9, 27, 81, 243 … 

 

Notice we are multiplying by 3. Try 3𝑛 

Denominators: 3𝑛 

 

A quick check verifies this works for all denominators 

𝑎𝑛 =
𝑛2

3𝑛
 

 

Final answer 
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8.1 Sequences Practice 
 

Write the first five terms of the sequences, assuming it starts at 𝑛 = 1 

1. 𝑎𝑛 = 2𝑛 + 1 
 

2. 𝑎𝑛 = 4𝑛 − 3 3. 𝑎𝑛 = 2𝑛 

4. 
𝑎𝑛 = (

1

2
)

𝑛

 

 

5. 𝑎𝑛 = (−2)𝑛 6. 
𝑎𝑛 = (−

1

2
)

𝑛

 

7. 
𝑎𝑛 =

1 + (−1)𝑛

𝑛
 

 

8. 𝑎𝑛 =
𝑛

𝑛 + 1
 

9. 
𝑎𝑛 = 3 −

1

2𝑛
 

10. 
𝑎𝑛 =

3𝑛

4𝑛
 

 

11. 
𝑎𝑛 =

1

𝑛3/2
 

12. 
𝑎𝑛 =

3𝑛2 − 𝑛 + 4

2𝑛2 + 1
 

13. 
𝑎𝑛 =

3𝑛

𝑛!
 

 

14. 
𝑎𝑛 =

𝑛!

𝑛
 

15. 
𝑎𝑛 =

(−1)𝑛

𝑛2
 

16. 𝑎𝑛 = (−1)𝑛 (
𝑛

𝑛 + 1
) 

 

17. 𝑎𝑘+1 = 2(𝑎𝑘 − 1) where 𝑎1 = 3 

18. 𝑎𝑘 = 𝑎𝑘−1 (
𝑘+1

2
) where 𝑎1 = 4 

 

  

Write an expression for the 𝑛-th term of the sequence 

19. 1, 4, 7, 10, 13 … 
 

20. 3, 7, 11, 15, 19 … 21. 0, 3, 8, 15, 24 … 

22. 
1,

1

4
,
1

9
,

1

16
,

1

25
… 

 

23. 1

2
, −

1

4
,
1

8
, −

1

16
… 

24. 1

3
,
2

9
,

4

27
,

8

81
… 

25. 
1 +

1

1
, 1 +

1

2
, 1 +

1

3
… 

 

26. 
1 +

1

2
, 1 +

3

4
, 1 +

7

8
… 

27. 
1,

1

2
,
1

6
,

1

24
,

1

120
… 

28. 2, −4, 6, −8, 10 … 
 

29. 1, −1, 1, −1, 1 … 30. 
2,

22

2
,
23

6
,
24

24
,

25

120
… 

 

Simplify the expression 

31. 4!

6!
 

 

32. 25!

23!
 

33. (𝑛 + 2)!

𝑛!
 

34. (𝑛 + 1)!

𝑛!
 

 

35. (2𝑛 − 1)!

(2𝑛 + 1)!
 

36. (2𝑛 + 2)!

(2𝑛)!
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8.2 Series 
 

Series 

A Series is a sum of the numbers in a sequence. 

Summation Notation: Shorthand for the terms in a sequence expressed as a sum with the Greek 

letter ∑  

∑ General Term

Ending Index Value

Starting Index Value

 

To evaluate the sum we replace the variable in the general term with each index value between 

the starting and ending index value. Then sum all the terms to get a final solution. 

Example 1: Find the sum. 

∑ 2𝑖 + 3

5

𝑖=1

 

 

Evaluate each term with 𝑖 = 1, 2, 3, 4, 5 

2(1) + 3 = 5 

2(2) + 3 = 7 

2(3) + 3 = 9 

2(4) + 3 = 11 

2(5) + 3 = 13 
 

 

 

 

 

Add them up 

5 + 7 + 9 + 11 + 13 = 45 
 

Final answer 

 

 

 

 

 

 

 

 

 



421 

 

Example 2: Find the sum. 

∑
(−1)𝑘2𝑘−1

𝑘!

6

𝑘=2

 

 

Evaluate each term with 𝑘 = 2, 3, 4, 5, 6 

(−1)222−1

2!
=

(1)(21)

2
= 1 

(−1)323−1

3!
=

(−1)(22)

3 ∙ 2
= −

4

6
= −

2

3
 

(−1)424−1

4!
=

(1)(23)

4 ∙ 3 ∙ 2
=

8

24
=

1

3
 

(−1)525−1

5!
=

(−1)(24)

5 ∙ 4 ∙ 3 ∙ 2
= −

16

120
= −

2

15
 

(−1)626−1

6!
=

(1)(25)

6 ∙ 5 ∙ 4 ∙ 3 ∙ 2
=

32

720
=

2

45
 

 

 

 

 

 

 

 

 

 

 

Add 

1 + (−
2

3
) +

1

3
+ (−

2

15
) +

2

45
=

26

45
 

 

Final answer 

Example 3: Rewrite this series in summation notation: 
5

2
+

5

6
+

5

24
+

5

120
+

5

720
+

5

5040
  

As with sequences, we want to look for patterns in the numbers. The numerator clearly is always 

5. We will look at the denominator in search of a pattern  

2, 6, 24, 120, 720, 5040 
 

These values are factorial values. Test 𝑛! With 𝑛 = 2, 3, 4, 5, 6, 7 

∑
5

𝑛!

7

𝑛=2

 

 

Final answer 
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Example 4: Rewrite this series in summation notation: 
4

3
−

5

9
+

6

27
−

7

81
+

8

243
  

Notice the signs alternate. When this happens we often use (−1)𝑛 or (−1)𝑛+1 as a factor 

depending on which gives us the correct sign. Now we can look at the fractions. We begin by 

separating the numerator and denominator to make patterns easier to identify: 

4, 5, 6, 7, 8 
 

As each is increasing by 1 we try 1𝑛 or 𝑛. 

𝑛 
 

To start with the 1
st
 term at 4 we need to add 3 

𝑛 + 3 
 

Now we look at the denominators 

3, 9, 27, 81, 243 
 

These are multiples of 3 

3𝑛 
 

Put all three parts together 

∑(−1)𝑛+1
𝑛 + 3

3𝑛

5

𝑛=1

 

 

Final answer 

With any series, we have more than one possible answer. We can use any letter we like for the 

index variable. More to the point, if you chose a starting index value of 4, this would have 

worked as well: 

∑(−1)𝑗
𝑗

3𝑗−3

8

𝑗=4
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8.2 Series Practice 
 

Find the given sum. 

1. 

∑ 2𝑖 + 1

5

𝑖=1

 

 

2. 

∑ 3𝑘 − 1

6

𝑘=1

 

3. 

∑ 10

4

𝑘=1

 

4. 

∑ 6

5

𝑘=1

 

 

5. 

∑ 𝑗2

4

𝑗=0

 

6. 

∑ 3𝑖2

4

𝑖=0

 

7. 

∑
1

𝑘2 + 1

3

𝑘=0

 

 

8. 

∑
1

𝑗

5

𝑗=3

 

9. 

∑[(1 − 𝑖)2 + (𝑖 + 𝑖)3]

4

𝑖=1

 

10. 

∑(𝑘 + 1)(𝑘 − 3)

5

𝑘=2

 

 

11. 

∑ 9 + 2𝑖

4

𝑖=0

 

12. 

∑(−2)𝑗

4

𝑗=0

 

13. 

∑
(−1)𝑘

𝑘 + 1

4

𝑘=0

 

 

14. 

∑
(−1)𝑘

𝑘!

4

𝑘=0

 

  

Rewrite in summation notation 

15. 1

3(1)
+

1

3(2)
+

1

3(3)
+ ⋯ +

1

3(9)
 

 

16. 5

1 + 1
+

5

1 + 2
+

5

1 + 3
+ ⋯ +

5

1 + 15
 

17. 3 − 9 + 27 − 81 + 243 − 729 18. 
1 −

1

2
+

1

4
−

1

8
+ ⋯ −

1

128
 

 

19. 1

12
−

1

22
+

1

32
−

1

42
+ ⋯ −

1

202
 

 

20. 1

1 ∙ 3
+

1

2 ∙ 4
+

1

3 ∙ 5
+ ⋯ +

1

10 ∙ 12
 

21. 1

4
+

3

8
+

7

16
+

15

32
+

31

64
 

 

22. 1

2
+

2

4
+

6

8
+

24

16
+

120

32
+

720

64
 

23. 
[2 (

1

8
) + 3] + [2 (

2

8
) + 3] + ⋯ + [2 (

8

8
) + 3] 

 

24. 
[1 − (

1

6
)

2

] + [1 − (
2

6
)

2

] + ⋯ + [1 − (
6

6
)

2

] 
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8.3 Arithmetic Series 
 

An Arithmetic Series is a series that increases linearly. To find each successive term, we take the 

previous term and add 𝑑, the common difference 

Formulas for Arithmetic Series 

Recursive formula: 

𝑎𝑛 = 𝑎𝑛−1 + 𝑑 

Where 𝑎𝑛 is the 𝑛-th term, 𝑎𝑛−1 is the previous term and 𝑑 is the common difference 

Explicit formula: 

𝑎𝑛 = 𝑎1 + 𝑑(𝑛 − 1) 

Where 𝑎𝑛 is the 𝑛-th term, 𝑎1 is the first term, 𝑑 is the common difference, and 𝑛 is the term 

number. 

n-th partial sum: sum of the first 𝑛 numbers in a sequence 

𝑆𝑛 = ∑ 𝑎𝑖

𝑛

𝑖=1

 

Partial sums of arithmetic series: The 𝑛-th partial sum of an arithmetic series looks like… 

𝑆𝑛 =
𝑛

2
(𝑎1 + 𝑎𝑛) 

Where 𝑎𝑛 is the 𝑛-th term, 𝑎1 is the first term,𝑛 is the term number, and 𝑆𝑛 is the sum.  

Example 1: Add up every integer from 1 to 100: 1 + 2 + 3 + ⋯ + 99 + 100 

1 + 2 + 3 + ⋯ + 99 + 100 
 

Note the difference between each term is 1 

𝑑 = 1, 𝑎1 = 1, 𝑎100 = 100 
 

Plug values into formula 

𝑆100 =
100

2
(1 + 100) 

 

Evaluate 

5050 
 

Final answer 

Note: According to the eventual college professor Wolfgang Sartorius, renowned mathematician 

Carl Friedrich Gauss was given this very problem in primary school at age 9 and solved it – 

using the method above, which he derived himself – in seconds!  
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Example 2: Find 𝑑, 𝑎𝑛, and 𝑆𝑛: 2, 5, 8, 11, … (𝑛 = 50) 

2, 5, 8, 11, … 
 

Subtracting terms we find 𝑑 

𝑑 = 5 − 2 = 3 and 𝑑 = 8 − 5 = 3 

 

Using the explicit formula to find 𝑎50 

𝑎50 = 2 + 3(50 − 1) 
 

Evaluate 

𝑎50 = 149 
 

Use the partial sum formula 

𝑆50 =
50

2
(2 + 149) 

 

Evaluate 

𝑆50 = 3775 
 

Final answer 

Example 3: Find 𝑑, 𝑎𝑛 and 𝑆𝑛: 25, 21, 17, 13, … (𝑛 = 10) 

25, 21, 17, 13, … 
 

Subtracting terms we find 𝑑 

𝑑 = 21 − 25 = −4 and 𝑑 = 17 − 21 = −4 

 

Using the explicit formula to find 𝑎10 

𝑎10 = 25 − 4(10 − 1) 
 

Evaluate 

𝑎10 = −11 
 

Use the partial sum formula 

𝑆10 =
10

2
(25 − 11) 

 

Evaluate 

𝑆10 = 70 
 

Final answer 
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Example 4: Find 𝑑, 𝑎𝑛, and 𝑆𝑛: 1,
9

8
,

5

4
,

11

8
, … (𝑛 = 17) 

1,
9

8
,
5

4
,
11

8
, … 

 

Subtracting terms we find 𝑑 

𝑑 =
9

8
− 1 =

9

8
−

8

8
=

1

8
 

𝑑 =
5

4
−

9

8
=

10

8
−

9

8
=

1

8
 

 

Using the explicit formula to find 𝑎17 

𝑎17 = 1 +
1

8
(17 − 1) 

 

Evaluate 

𝑎17 = 3 
 

Use partial sum formula 

𝑆17 =
17

2
(1 + 3) 

 

Evaluate 

𝑆17 = 34 
 

Final answer 

Example 5: Given 𝑎1 = −10, 𝑑 = 3, and 𝑎𝑛 = 14, find 𝑛 and 𝑆𝑛 

We can use the explicit formula which uses given information with one unknown 

14 = −10 + 3(𝑛 − 1) 
 

Distribute 

14 = −10 + 3𝑛 − 3 
 

Combine like terms 

14 = 3𝑛 − 13 
 

Add 13 

27 = 3𝑛 
 

Divide by 3 

9 = 𝑛 
 

Use partial sum formula 

𝑆9 =
9

2
(−10 + 14) 

 

Evaluate 

𝑆9 = 18 
 

Final answer 
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Example 6: Given 𝑎9 = 31 and 𝑆9 = 135, find 𝑑 and 𝑎1 

The partial sum formula uses the given information with one unknown 

135 =
9

2
(𝑎1 + 31) 

 

Multiply both sides be 
2

9
 to clear the fraction 

30 = 𝑎1 + 31 
 

Subtract 31 

−1 = 𝑎1 
 

Use the explicit formula to solve for 𝑑 

31 = −1 + 𝑑(9 − 1) 
 

Simplify 

31 = −1 + 8𝑑 
 

Add 1 

32 = 8𝑑 
 

Divide by 8 

4 = 𝑑 
 

Final answer 
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8.3 Arithmetic Series Practice 
 

In each of the following exercises, the sequence is an arithmetic progression. In each case find 

𝑑, 𝑎𝑛 and 𝑆𝑛 

1. 2, 4, 6, 8, … (𝑛 = 50) 
 

2. 5, 10, 15, 20, … (𝑛 = 15) 

3. 1, 3, 5, 7, … (𝑛 = 10) 4. 
1, 1

1

2
, 2, 2

1

2
, … (𝑛 = 8) 

 

5. 13, 10, 7, 4, … (𝑛 = 10) 6. 3

4
,
1

2
,
1

4
, 0, … (𝑛 = 10) 

 

7. 1

6
,
1

3
,
1

2
,
2

3
, … (𝑛 = 12) 

 

8. 1, 1.1, 1.2, 1.3, … (𝑛 = 11) 

9. 0.75, 0.7, 0.65, 0.6, … (𝑛 = 20) 
 

  

For each of the following arithmetic progressions find the requested parts: 

10. Given 𝑎1 = 3, 𝑎𝑛 = 48 and 𝑑 = 5, find 𝑛 and 𝑆𝑛 

 

11. Given 𝑎12 = −59 and 𝑑 = −5, find 𝑎1 and 𝑆12 

 

12. Given 𝑆10 = −55 and 𝑎1 = 8, find 𝑑 and 𝑎10 

 

13. Given 𝑎8 = 25 and 𝑆8 = 88, find 𝑎1 and 𝑑 

 

14. Given 𝑑 = 4, 𝑎1 = −3, find 𝑎12 and 𝑆12 

 

15. Given 𝑆𝑛 = 116, 𝑑 = 3 and 𝑎1 = 4, find 𝑛 and 𝑎𝑛 

 

16. Given 𝑑 = −3, 𝑎𝑛 = 2 and 𝑆𝑛 = 155, find 𝑛 and 𝑎1 

 

17. Given 𝑎1 = 12 and 𝑎8 = −9, find 𝑑 and 𝑆8 

 

18. Given 𝑎𝑛 = 3, 𝑎1 = 31 and 𝑆𝑛 = 136, find 𝑛 and 𝑑 

 

19. Given 𝑑 = 5 and 𝑆10 = 315, find 𝑎1 and 𝑎10 

 

20. Given 𝑎1 = 2 and 𝑎7 = 6, find 𝑑 and 𝑆7 

 

21. Given 𝑎1 = 0 and 𝑆5 = 50, find 𝑑 and 𝑎5 

 

22. Given 𝑎12 = 29 and 𝑆12 = 150, find 𝑎1 and 𝑑 
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8.4 Geometric Series 
 

A Geometric Series is a series that increases exponentially. Each successive term comes from the 

previous term multiplied by 𝑟, the common multiplier 

Formulas for Geometric Series 

Recursive Formula 

𝑎𝑛 = 𝑟𝑎𝑛−1 

Where 𝑎𝑛 is the 𝑛-th term, 𝑟 is the common multiplier, and 𝑎𝑛−1 is the previous term 

Explicit Formula 

𝑎𝑛 = 𝑟𝑛−1𝑎1 

Where 𝑎𝑛 is the 𝑛-th term, 𝑟 is the common multiplier, 𝑛 is the term number, and 𝑎1 is the first 

term 

Partial Sums of Geometric Series 

𝑆𝑛 =
𝑎1(1 − 𝑟𝑛)

1 − 𝑟
 

Where 𝑆𝑛 is the partial sum, 𝑎1 is the first term, 𝑟 is the common multiplier, 𝑛 is the term 

number 

Infinite Sums of Geometric Series 

When −1 < 𝑟 < 1, it turns out we can add up every term of a geometric series, even to infinity! 

𝑆 =
𝑎1

1 − 𝑟
 

You may also see 𝑆 written as 𝑆∞. When 𝑟 < −1 or 𝑟 > 1 the infinite series cannot be 

determined.  
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Example 1: Find the tenth term of the geometric sequence: 2, 6, 18, 54 … 

2, 6, 18, 54, … 
 

First find 𝑟 by dividing terms 

𝑟 =
6

2
= 3 

𝑟 =
18

6
= 3 

 

Use the explicit formula for 𝑎10 

𝑎10 = 310−1 ∙ 2 
 

Evaluate 

𝑎10 = 39366 
 

Final answer 

Example 2: Find the ninth term of the geometric sequence: 256, −128, 64, −32, … 

256, −128, 64, −32, … 
 

First find 𝑟 by dividing terms 

𝑟 =
−128

256
= −

1

2
 

𝑟 =
64

−128
= −

1

2
 

 

Use the explicit formula for 𝑎9 

𝑎9 = (−
1

2
)

9−1

∙ 256 

 

Evaluate 

𝑎9 = 1 
 

Final answer 

Example 3: Find the sum of the first 8 terms of −1, 4, −16, 64, … 

−1, 4, −16, 64 
 

First find 𝑟 by dividing terms 

𝑟 =
4

−1
= −4 

𝑟 =
−16

4
= −4 

 

Use the partial sum formula 

𝑆8 =
−1(1 − (−4)8)

1 − (−4)
 

 

Evaluate 

𝑆8 = 13107 
 

Final answer 
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Example 4: Find the sum of the geometric sequence 5, −
5

7
,

5

49
, −

5

343
, …  

5, −
5

7
,

5

49
, −

5

343
, … 

 

First find 𝑟 by dividing terms 

𝑟 =
−

5
7

5
= (−

5

7
) (

1

5
) = −

1

7
 

𝑟 =

5
49

−
5
7

= (
5

49
) (−

7

5
) = −

1

7
 

 

Use the infinite sum formula 

𝑆 =
5

1 − (−
1
7)

 

 

Multiply each term, top and bottom, by 7 

𝑆 =
35

7 + 1
 

 

Simplify 

𝑆 =
35

8
= 4.375 

 

Final answer 

Example 5: Find the sum of this geometric sequence: 1000, 900, 810, 729, … 

1000, 900, 810, 729, … 
 

First find 𝑟 by dividing terms 

𝑟 =
900

1000
= 0.9 

𝑟 =
810

900
= 0.9 

 

Use the infinite sum formula 

𝑆 =
1000

1 − 0.9
 

 

Simplify 

𝑆 =
1000

0.1
 

 

Divide 

𝑆 = 10000 
 

Final answer 
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Example 6: Given 𝑎1 = 6 and 𝑎4 =
16

9
, find 𝑟 and 𝑆4 

𝑎1 = 6, 𝑎4 =
16

9
 

 

Use the explicit formula to find 𝑟 

16

9
= 𝑟4−1 ∙ 6 

 

Simplify 

16

9
= 6𝑟3 

 

Divide by 6 (multiply by 
1

6
) 

8

27
= 𝑟3 

 

Cube root 

2

3
= 𝑟 

 

Use partial sum formula 

𝑆4 =
6 (1 − (

2
3)

4

)

1 −
2
3

 

 

Exponent 

𝑆4 =
6 (1 −

16
81)

1 −
2
3

 

 

Distribute 

𝑆4 =
6 −

32
27

1 −
2
3

 

 

Multiply each term, top and bottom, by 27 

𝑆4 =
162 − 32

27 − 18
 

 

Simplify 

𝑆4 =
130

9
 

 

Final answer 
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Example 7: Given 𝑎1 =
1

3
 and 𝑎6 = −

81

32
  find 𝑟 and 𝑆∞. 

𝑎1 =
1

3
, 𝑎6 = −

81

32
 

 

Using the explicit formula, find 𝑟 

−
81

32
= 𝑟6−1 ∙ (

1

3
) 

 

Simplify 

−
81

32
=

1

3
𝑟5 

 

Multiply by 3 

−
243

32
= 𝑟5 

 

Fifth root 

−
3

2
= 𝑟 

 

Notice 𝑟 < −1 

For an infinite series to have a sum, it is required that −1 < 𝑟 < 1. This means the series will not 

sum to a specific value.  
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8.4 Geometric Series Practice 
 

Find the indicated term in each of the following geometric progressions 

1. The tenth term of 3, 6, 12, … 

 

2. 
The eight term of 15, 5,

5

3
, … 

 

3. The seventh term of −2, 8, −32, … 

 

4. The ninth term of 9, 6, 4, … 

 

Find the sum of each of these finite geometric progressions in exercises 5-11: 

5. The ten terms of exercise 1. 

 

6. The eight terms of exercises 2. 

 

7. The seven terms of exercise 3. 

 

8. The nine terms of exercise 4. 

 

9. Twenty terms of 1, −1, 1, … 

 

10. Nineteen terms of 1, −1, 1, … 

 

11. Twelve terms of 5, −1, 0.2, … 

 

12. Find the sum of each infinite geometric progression 

 

 a. 
1 +

1

3
+

1

9
+

1

27
+ ⋯ 

 

 b. 
−1 +

1

2
−

1

4
+

1

8
− ⋯ 

 

 c. 
18 + 12 + 8 +

16

3
+ ⋯ 

 

 d. 
5 − 1 +

1

5
−

1

25
+ ⋯ 

 

13. 
Given 𝑎1 = 36 and 𝑎5 =

4

9
 , find 𝑟 and 𝑆5 

 

14. Given 𝑎6 = −6250 and 𝑟 = −5, find 𝑎1 and 𝑆6 
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15. Given 𝑎𝑛 = 16, 𝑟 = −2 and 𝑆𝑛 = 10
5

8
, find 𝑎1 and 𝑛 

 

16. Given 𝑎1 = 2 and 𝑎6 = 486, find 𝑟 and 𝑆6 

 

17. Given 𝑟 = 2 and 𝑆8 = 127.5, find 𝑎1 and 𝑎8 

 

18. 
Given 𝑎1 = 16 and 𝑟 =

1

2
, find 𝑎6 and 𝑆∞ 

 

19. Given 𝑎1 = 10 and 𝑎4 = −2.16, find 𝑟 and 𝑆∞ 

 

20. Given 𝑎1 = 24 and 𝑆∞ = 96, find 𝑟 and 𝑎3 

 

21. If the first swing of a pendulum is 12 inches and each swing is 0.7 of the previous swing, 

how far does the pendulum travel before coming to rest? To the nearest inch, how far 

will it have traveled at the end of the fourth swing? 

 

22. One-fourth of the air in a given container is removed by each stroke of a vacuum pump. 

What fractional part of the original amount of air has been removed after four strokes of 

the pump? 
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8.5 Mathematical Induction  
 

Definitions and Properties 

Proof: A deductive argument that establishes the verity of a mathematical statement 

Proof by Induction: A kind of proof for use on statements taking place over the natural numbers. 

To wit, we use proof by induction on problems where there exists a different case for each 

natural number.  

Proof by induction has three steps: 

1. Base Case: Prove that the statement is true for the first case (usually 𝑛 = 0 or 𝑛 = 1) 

2. Assumption Step: if the 𝑛 = 𝑘 case is true 

3. Inductive Step: then prove that 𝑛 = (𝑘 + 1) is true. 

Examples: 

Example 1: Prove that 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
  

This can be also be written using summation notation as: ∑ 𝑖 =
𝑛(𝑛+1)

2

𝑛
𝑖=1  

We begin with the base case: 𝑛 = 1. Substituting 1 for i, we get 1 on the right hand side. On the 

left side substituting 1 for n, we have 

1 =
1(1 + 1)

2
=

2

2
= 1 

So1 = 1. This takes care of the base case. 

For step 2, assume ∑ 𝑖 =
𝑘(𝑘+1)

2

𝑘
𝑖=1   is true. 

Now let’s look at the 𝑛 = 𝑘 + 1 case for both sides of that statement, this is what we want to 

show: ∑ 𝑖 =
(𝑘+1)(𝑘+2)

2

𝑘+1
𝑖=1  is true. We want to show that these two statements equal each other. 

When doing this, we use the 𝑛 = 𝑘 case.  

The 1
st
 term comes from the 𝑛 = 𝑘 left hand side. The second term comes from substituting    

𝑘 + 1 in for the i in the summation expression. We want this to equal the left hand side of the 

𝑘 + 1 summation expression. 

  

𝑘(𝑘 + 1)

2
+ (𝑘 + 1) 

 

Get a common denominator. 
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𝑘(𝑘 + 1)

2
+

2(𝑘 + 1)

2
 

 

Distribute 

𝑘2 + 𝑘 + 2𝑘 + 2

2
 

 

Combine like terms 

𝑘2 + 3𝑘 + 2

2
 

 

Factor 

(𝑘 + 1)(𝑘 + 2)

2
 

 

We have now proved that the 𝑛 = 𝑘 + 1 case is true. 

Example 2: Prove that 31 + 32 + 33 + ⋯ + 3𝑛 =
3

2
(3𝑛 − 1)  

∑ 3𝑖 =
3

2
(3𝑛 − 1)

𝑛

𝑖=1

 

We begin with the base case: 𝑛 = 1. On the left-hand side, we have 31 = 3. On the right side we 

have  

3

2
(31 − 1) =

3

2
(2) = 3 

So 3 = 3. This takes care of the base case.  

For the next step, assume 𝑛 = 𝑘 is true. 

∑ 3𝑖 =
3

2
(3𝑘 − 1)

𝑘

𝑖=1

 

 

Now prove that 𝑛 = 𝑘 + 1 is true, this is what we want to show: 

∑ 3𝑖 =
3

2
(3𝑘+1 − 1)

𝑘+1

𝑖=1

 

We want to show that these two statements equal each other.  

  
3

2
(3𝑘 − 1) + 3𝑘+1 

 

Distribute 
3

2
. Rewrite 3𝑘+1 as 3𝑘(3) 

(
3

2
) 3𝑘 −

3

2
+ 3𝑘(3) 

Reorder terms 
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3𝑘 (
3

2
) + 3𝑘(3) −

3

2
 

 

Factor the 3𝑘 out of first two terms 

(
3

2
+ 3) 3𝑘 −

3

2
 

 

Simplify 

9

2
3𝑘 −

3

2
 

 

Factor out 
3

2
 

3

2
(3 ∙ 3𝑘 − 1) 

 

Simplify exponents 

3

2
(3𝑘+1 − 1) 

 

 We have now proved that the 𝑛 = 𝑘 + 1 case is true. 

Example 3: Prove that ∑ (
3

2
)

𝑖
𝑛
𝑖=1 = 3 (

3

2
)

𝑛
− 3  

We begin with the base case, 𝑛 = 1. On the left-hand side, we have  

∑ (
3

2
)

𝑖1

𝑖=1

= (
3

2
)

1

=
3

2
 

On the right hand side we have 

3 (
3

2
)

1

− 3 = 3 (
3

2
) − 3 =

9

2
−

6

2
=

3

2
 

So 
3

2
=

3

2
. This takes care of the base case.  

For the next step, assume 𝑛 = 𝑘 is true. 

 ∑ (
3

2
)

𝑖
𝑘
𝑖=1 = 3 (

3

2
)

𝑘
− 3    

Now prove that 𝑛 = 𝑘 + 1 is true, this is what we want to show: 

∑ (
3

2
)

𝑖𝑘+1

𝑖=1

= 3 (
3

2
)

𝑘+1

− 3 

We want to show that these two statements equal each other.  

  



439 

 

3 (
3

2
)

𝑘

− 3 + (
3

2
)

𝑘+1

 

 

Rewrite (
3

2
)

𝑘+1

 as (
3

2
) (

3

2
)

𝑘

 and reorder terms 

3 (
3

2
)

𝑘

+ (
3

2
) (

3

2
)

𝑘

− 3 

 

Factor out (
3

2
)

𝑘

 

(3 +
3

2
) (

3

2
)

𝑘

− 3 

 

Simplify 

(
9

2
) (

3

2
)

𝑘

− 3 

 

Factor 
9

2
= 3 ∙ (

3

2
) 

3 ∙ (
3

2
) (

3

2
)

𝑘

− 3 

 

Simplify exponents 

3 (
3

2
)

𝑘+1

− 3 

 

We have now proved that the 𝑛 = 𝑘 + 1 case 

is true. 
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8.5 Mathematical Induction Practice 
 

Use Mathematical Induction to prove the following: 

1. 
∑

1

2𝑝

𝑛

𝑝=1

=
2𝑛 − 1

2𝑛
 

 

2. 
∑

1

3𝑝

𝑛

𝑝=1

=
3𝑛 − 1

2 ∙ 3𝑛
 

 

3. 
∑ 𝑖

𝑛

𝑖=1

=
𝑛(𝑛 + 1)

2
 

 

4. 
∑ 𝑖2

𝑛

𝑖=1

=
𝑛(𝑛 + 1)(2𝑛 + 1)

6
 

 

5. 
∑ 𝑖3

𝑛

𝑖=1

=
𝑛2(𝑛 + 1)2

4
 

 

6. 1 + 5 + 9 + ⋯ + (4𝑛 − 3) = 𝑛(2𝑛 − 1) 
 

7. 
1 + 4 + 7 + ⋯ + (3𝑛 − 2) =

𝑛(3𝑛 − 1)

2
 

 

8. 
1 + 3 + 6 + ⋯ +

𝑛(𝑛 + 1)

2
=

𝑛(𝑛 + 1)(𝑛 + 2)

6
 

 

9. 1 + 3 + 5 + ⋯ + (2𝑛 − 1) = 𝑛2 
 

10. 
12 + 32 + 52 + ⋯ + (2𝑛 − 1)2 =

𝑛(2𝑛 − 1)(2𝑛 + 1)

3
 

 

11. 13 + 33 + 53 + ⋯ + (2𝑛 − 1)3 = 𝑛2(2𝑛2 − 1) 
 

12. 
2 ∙ 5 + 3 ∙ 6 + 4 ∙ 7 + ⋯ + (𝑛 + 1)(𝑛 + 4) =

𝑛(𝑛 + 4)(𝑛 + 5)

3
 

 

13. 
1 ∙ 2 ∙ 3 + 2 ∙ 3 ∙ 5 + 3 ∙ 4 ∙ 7 + ⋯ + 𝑛(𝑛 + 1)(2𝑛 + 1) =

𝑛(𝑛 + 1)2(𝑛 + 2)

2
 

 

14. 1 ∙ 3 ∙ 4 + 2 ∙ 5 ∙ 6 + 3 ∙ 7 ∙ 8 + ⋯ + 𝑛(2𝑛 + 1)(2𝑛 + 2) = 𝑛(𝑛 + 1)2(𝑛 + 2) 
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15. 1

1 ∙ 2
+

1

2 ∙ 3
+

1

3 ∙ 4
+ ⋯ +

1

𝑛(𝑛 + 1)
=

𝑛

𝑛 + 1
 

 

16. 1

1 ∙ 2 ∙ 3
+

1

2 ∙ 3 ∙ 4
+

1

3 ∙ 4 ∙ 5
+ ⋯ +

1

𝑛(𝑛 + 1)(𝑛 + 2)
=

𝑛(𝑛 + 3)

4(𝑛 + 1)(𝑛 + 2)
 

 

17. 
(1 +

1

1
) (1 +

1

2
) (1 +

1

3
) … (1 +

1

𝑛
) = 𝑛 + 1 

 

18. 
(1 −

1

22
) (1 −

1

32
) (1 −

1

42
) … (1 −

1

𝑛2
) =

𝑛 + 1

2𝑛
     for     𝑛 ≥ 2 
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