\qquad

Big Bend Community College

Emporium Model
 Math 99 Course
 Workbook

A workbook to supplement
video lectures and online homework by:
Tyler Wallace
Salah Abed
Sarah Adams
Mariah Helvy
April Mayer
Michele Sherwood

This project was made possible in part by a federal STEM-HSI grant under Title III part F and by the generous support of Big Bend Community College and the Math Department.

Copyright 2019, Some Rights Reserved CC-BY-NC-SA. This work is a combination of original work and a derivative of Prealgebra Workbook, Beginning Algebra Workbook, and Intermediate Algebra Workbook by Tyler Wallace, which all hold a CC-BY License. Cover art by Sarah Adams with CC-BY-NC-SA license.

Emporium Model Math Courses Workbook by Wallace, Abed, Adams, Helvy, Mayer, Sherwood is licensed under a Creative Commons Attribution-NonCommercialShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/)

You are free:

- To share: To copy, distribute and transmit the work
- To Remix: To adapt the work

Under the following conditions:

- Attribution: You must attribute the work in the manner specified by the authors or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial: You may not use this work for commercial purposes.
- Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

With the understanding that:

- Waiver: Any of the above conditions can be waived if you get permission from the copyright holder
- Public Domain: Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.
- Other rights: In no way are any of the following rights affected by the license:
- Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;
- The author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights

Table of Contents

Emporium Model Math 99 Course Workbook 1
Unit 13: 8
13.1 Inequalities 9
13.1a Graphing 9
13.1b Interval Notation 10
13.1c Solving 11
13.1d Multiply or Divide by a Negative 12
13.1e Tripartite 13
13.2 Compound Inequalities 14
13.2a OR (two directions) 14
13.2b OR (one direction) 15
13.2c AND (between) 16
13.2d AND (one direction) 17
13.2e Special Cases 18
13.3 Absolute Value Equations 19
13.3a Two Solutions 19
13.3b Isolate the Absolute Value 20
13.3c Dual Absolute Values 21
13.4 Absolute Value Inequalities 22
13.4a GreatOR Than 22
13.4b Less Than 23
13.4c Isolate Absolute Value 24
Unit 14:. 25
14.1 Systems 26
14.1a Introduction to Substitution 26
14.1b Substitute an Expression 27
14.1c Solve for a Variable. 29
14.1d Substitution Special Cases 31
14.1e Addition/Elimination 33
14.1f Addition/Elimination and Multiplying an Equation 34
14.1g Addition/Elimination and Multiplying Both Equations 36
14.1h Addition/Elimination Special Cases 38
14.2 Systems with Three Variables 40
14.2a Simple 40
14.2b Multiply to Eliminate 42
14.3 Applications of Systems 44
14.3a Value Comparison 44
14.3b Value with Total 46
14.3c Interest Comparison 48
14.3d Interest with Total Principle. 50
14.4 Applications of Systems 52
14.4a Mixture with Starting Amount 52
14.4b Mixture with Final Amount 54
14.4c Mixture with Final Amount 56
Unit 15: 58
15.1 Simplify Radicals 59
15.1a Variables 59
15.1b Several Variables 60
15.1c Using Prime Factorization 61
15.1d Binomials 62
15.2 Add, Subtract and Multiply Radicals 63
15.2a Add Like Radicals 63
15.2b Add with Simplifying 64
15.2c Multiply Monomial Radical Expressions. 65
15.2d Multiply Monomial by Binomial Radical Expressions 66
15.2e Multiply Binomial Radical Expressions 67
15.2f Square Binomial Radical Expression 68
15.2 g . Multiply Conjugates 69
15.3 Rationalize Denominator 70
15.3a Simplifying with Radicals 70
15.3b Quotient Rule 71
15.3c Rationalize Monomial Roots in the Denominator 72
15.3d Rationalize Binomial Denominators 73
15.4 Rational Exponents 74
15.4a Convert 74
15.4b Evaluate 75
15.4c Simplify 76
15.5 Radicals of Mixed Index 77
15.5a Reduce Index 77
15.5b Multiply Mixed Index 78
15.5c Divide Mixed Index 79
15.6 Complex Numbers 80
15.6a Square Roots of Negatives 80
15.6b Simplify Square Roots of Negatives 81
15.6c Add and Subtract 82
15.6d Powers of \boldsymbol{i} 83
15.6e Multiply 84
15.6f Rationalize Monomial Denominators 85
15.6g Rationalize Binomial Denominators 86
15.7 Complete the Square 87
15.7a Find c 87
15.7b Rational Solutions 88
15.7c Irrational and Complex Solutions 90
15.8 Quadratic Formula 92
15.8a Finding the Formula 92
15.8b Using the Formula 93
15.8c Make Equation Equal Zero 94
15.8d Missing Terms 95
Unit 16: 96
16.1 Multiply and Divide Rational Expressions 97
16.1a Review Multiply and Divide Fractions 97
16.1b Multiply or Divide Rational Expressions 98
16.1c Multiply and Divide Rational Expressions 99
16.2 Add and Subtract Rational Expressions 100
16.2a Review LCD/LCM of Numbers with Prime Factorization. 100
16.2b LCD/LCM of Monomials 101
16.2c LCD/LCM of Polynomials 102
16.2d Review Adding and Subtracting Fractions 103
16.2e Add and Subtract with Common Denominator 104
16.2f Add and Subtract with Different Denominators 105
16.3 Compound Fractions 106
16.3a Numbers 106
16.3b Monomials 107
16.3c Binomials 108
16.3d Negative Exponents 109
16.4 Rational Equations 110
16.4a Clear Denominator 110
16.4b Factoring Denominator 111
16.4c Extraneous Solutions 112
16.5 Equations with Radicals 113
16.5a Odd Roots 113
16.5b Even Roots 114
16.5c Isolate Radical 115
16.6 Equations with Exponents 117
16.6a Odd Exponents 117
16.6b Even Exponents 118
16.6c Isolate Exponent. 119
16.6d Rational Exponents 120
16.7 Rectangle Problems 121
16.7a Area Problems 121
16.7b Perimeter Problems 122
16.7c Bigger 123
16.7d Frames 124
16.7e Percent of a Field 125
16.8 Work Problems 126
16.8a One Unknown Time 126
16.8b Two Unknown Times 127
16.9 Distance and Revenue Problems 128
16.9a Simultaneous Products 128
16.9b Revenue 129
16.9c Distance 131
16.9d Streams and Wind 133
Unit 17: 135
17.1 Evaluate Functions 136
17.1a Functions 136
17.1b Function Notation 137
17.1c Evaluate Function at an Expression. 138
17.1d Domain 139
17.2 Operations on Functions 140
17.2a Add Functions 140
17.2b Subtract Functions 141
17.2c Multiply Functions 142
17.2d Divide Functions. 143
17.2e Composition of Functions 144
17.2f Compose a Function with Itself 146
17.2 g Composition of Several Functions 147
17.3 Inverse Functions - 149
17.3a Show Functions are Inverses 149
17.3b Finding an Inverse Function 151
17.3c Inverse of Rational Functions 153
17.4 Graphs of Quadratic Functions 155
17.4a Key Points 155
Unit 18: 157

Unit 13:
 Compound Inequalities

To work through the unit, you should:

1. Watch a video, as you watch, fill out the workbook (top and example sections).
2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
3. Repeat \#1 and \#2 with each page until you reach the .
4. Complete the homework assignment on your own paper.
5. Repeat \#1 thru \#4 until you reach the end of the unit.
6. Complete the review/practice test on your own paper.
7. Take the unit exam.

13.1 Inequalities

13.1a Graphing

Inequalities:

- Less than:
- Less than or equal to:
- Greater than:
- Greater than or equal to:

Graphing on number line: Use \qquad for less/greater than and use \qquad when its "or equal to"

Example 1:

$$
\text { Graph } x \geq-3
$$

Example 2:

Give the inequality

Q1:

Q2:

13.1b Interval Notation

Interval notation:(,)
Use \qquad for less/greater than and use \qquad when its "or equal to" ∞ and $-\infty$ always use a \qquad

Example 1:

Example 2:
Graph the interval $(-\infty,-1)$

Q1:

Q2:

Solving inequalities is very similar to solving \qquad (with one exception...)

Three steps with inequalities: \qquad then \qquad then \qquad

Example 1:

$$
7+5 x \leq 17
$$

Example 2:

$$
3(x+8)+2>5 x-20
$$

13.1d Multiply or Divide by a Negative

What happens to $5>-2$ when we multiply both sides by -3 ?
$(-3) 5 \ldots-2(-3)$

When \qquad or \qquad by a \qquad you must

Three steps with inequalities: \qquad then \qquad then \qquad

Example 1:

$$
7-3 x \leq 16
$$

Example 2:

$$
4<-2 x+16
$$

Q1:

Q2:

Tripartite inequalities:
When solving \qquad
When graphing \qquad
Three steps with inequalities: \qquad , then \qquad then \qquad

Example 1:

$$
2 \leq 5 x+7<22
$$

Example 2:

$$
5<5-4 x \leq 13
$$

Q1:

Q2:

13.2 Compound Inequalities

13.2a OR (two directions)

First, we will \qquad each part above the number line, then we will \qquad the union (OR) Symbol for Union:

Example 1:

$$
4 x+7<-5 \text { OR }-4 x-8 \leq-20
$$

Example 2:

$$
8 x+9<4 x-19 \text { OR } 2(4 x-8)-2 \leq 12 x-50
$$

Q1:

Q2:

13.2b OR (one direction)

With an OR if both graphs go the same direction than we use the

Example 1:

$$
4 x-6>10 \text { OR } 5-2 x \leq 7
$$

Example 2:

$$
3 x+5<2 x-9 \text { OR } 7 x+3 \leq 5(x-1)
$$

13.2c AND (between)

AND:
First, we will \qquad each part above the number line, then we will use the \qquad (AND)

Example 1:

$$
6 x+5<11 \text { AND }-7 x+2 \leq 44
$$

Example 2:

$11 x-10>3 x-2$ AND $2(5 x-3)+2 \geq 18 x-52$

Q1:

Q2:

13.2d AND (one direction)

With an AND if both graphs go the same direction than we use the \qquad

Example 1:

$$
5 x-6 \geq 26 \text { AND } 3 x+1>x-9
$$

Example 2:

$$
2(4 x+4)>6 x+2 \text { AND } 7-x \leq 3+x
$$

Q1:

Q2:

OR can give us \qquad of number line or \qquad in interval notation \qquad
AND can give us \qquad of the number line or \qquad in interval notation \qquad

Example 1:

$$
2 x+1<x-3 \text { OR } 3(x+1) \geq x-15
$$

Example 2:

Q1:

Q2:
$-3(4 x-1) \leq 15$ AND $2 x-3 \leq-9$

You have completed the videos for 13.2 Compound Inequalities. On your own paper, complete the homework assignment.

13.3 Absolute Value Equations

13.3a Two Solutions
$|x|=5$ so the x could be \qquad or \qquad
What is inside the absolute value can be \qquad or \qquad
This means we have \qquad

Example 1:

$$
|2 x-5|=7
$$

Example 2:

$$
|7-5 x|=17
$$

13.3b Isolate the Absolute Value

Before we look at our two equations, we must first \qquad
Never \qquad through absolute value!

Never \qquad a term \qquad an absolute value and a term \qquad an absolute value!

Example 1:

$$
5+2|3 x-4|=11
$$

Example 2:

$$
-3-7|2-4 x|=-31
$$

Q1:

Q2:

With two absolutes, we need \qquad
The first equation is \qquad
The second equation is \qquad

Example 1:

$$
|2 x-6|=|4 x+8|
$$

Example 2:

$$
|3 x-5|=|7 x-2|
$$

Q1:
,

13.4 Absolute Value Inequalities
 13.4a GreatOR Than

$|x|>2$ means the \qquad from zero is \qquad than 2.

This is a graph of a compound \qquad inequality. It can be written as \qquad
If the absolute value is greatOR than a number, we set up an \qquad

Example 1:

$$
|2 x-1| \geq 7
$$

Example 2:

$$
|7 x+4|>32
$$

Q1:

Q2:

13.4b Less Than

$|x|<2$ means the \qquad from zero is \qquad than 2.

This is a graph of a compound \qquad inequality. It can be written as \qquad
If the absolute value is less than a number, we set up an \qquad

Example 1:

$$
|3 x+7|<6
$$

Example 2:

$$
|4 x+1| \leq 2
$$

Before setting up a compound inequality, we must first \qquad the absolute value!

Beware: with absolute value we cannot \qquad or \qquad

Example 1:

$$
2-7|3 x+4|<-19
$$

Example 2:

$$
5+2|4 x-1| \leq 17
$$

Q1:

Q2:

Unit 14: Systems of Equations

To work through the unit, you should:

1. Watch a video, as you watch, fill out the workbook (top and example sections).
2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
3. Repeat \#1 and \#2 with each page until you reach the .
4. Complete the homework assignment on your own paper.
5. Repeat \#1 thru \#4 until you reach the end of the unit.
6. Complete the review/practice test on your own paper.
7. Take the unit exam.

14.1 Systems

14.1a Introduction to Substitution

Substitution: Replace the \qquad with what it \qquad

Example 1:

$$
\begin{gathered}
x=-3 \\
2 x-3 y=12
\end{gathered}
$$

Example 2:

$$
\begin{gathered}
4 x-7 y=11 \\
y=-1
\end{gathered}
$$

Q1:

Q2:

14.1b Substitute an Expression

Just as we can replace a variable with a number, we can also replace it with an \qquad Whenever we substitute it is important to remember \qquad

Example 1:

Example 2:

$$
\begin{gathered}
2 x-6 y=-24 \\
x=5 y-22
\end{gathered}
$$

Q1:
Q2:

To use substitution, we may have to \qquad a lone variable

If there are several lone variables \qquad

Example 1:

$$
\begin{gathered}
6 x+4 y=-14 \\
x-2 y=-13
\end{gathered}
$$

Example 2:

$$
\begin{gathered}
-5 x+y=-17 \\
7 x+8 y=5
\end{gathered}
$$

Q1:
Q2:

14.1d Substitution Special Cases

If the variables subtract out to zero then it means either there is or \qquad

Example 1:

$$
\begin{gathered}
x+4 y=-7 \\
21+3 x=-12 y
\end{gathered}
$$

Example 2:

$$
\begin{gathered}
5 x+y=3 \\
8-3 y=15 x
\end{gathered}
$$

14.1e Addition/Elimination

If there is no lone variable, it may be better to use \qquad
This method works by adding the \qquad and \qquad sides of the equations together

Example 1:

Example 2:

$$
\begin{gathered}
-8 x-3 y=-12 \\
2 x+3 y=-6
\end{gathered}
$$

Q1:

Q2:

$$
-5 x+9 y=29
$$

$$
5 x-6 y=-11
$$

14.1f Addition/Elimination and Multiplying an Equation

Addition only works if one of the variables have \qquad
To get opposites we can multiply \qquad of an equation to get the value we want

Be sure when multiplying to have a \qquad in front of either the \qquad or the \qquad

Example 1:

$$
\begin{gathered}
2 x-4 y=-4 \\
4 x+5 y=-21
\end{gathered}
$$

Example 2:

$$
\begin{aligned}
& -5 x+3 y=-3 \\
& -7 x+12 y=14
\end{aligned}
$$

Q1:

14.1g Addition/Elimination and Multiplying Both Equations

Sometimes we may have to multiply \qquad by something to get opposites

The opposite we look for is the \qquad of both coefficients

Example 1:

$$
\begin{aligned}
& -6 x+4 y=26 \\
& 4 x-7 y=-13
\end{aligned}
$$

Example 2:

$$
\begin{gathered}
3 x+7 y=2 \\
10 x+5 y=-30
\end{gathered}
$$

14.1h Addition/Elimination Special Cases

If the variables subtract out to zero than it means either there is
or \qquad

Example 1:

$$
\begin{aligned}
& 2 x-4 y=16 \\
& 3 x-6 y=20
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& -10 x+4 y=-6 \\
& 25 x-10 y=15
\end{aligned}
$$

Q1:
Q2:

You have completed the videos for 14.1 Systems. On your own paper, complete the homework assignment.

14.2 Systems with Three Variables

14.2a Simple

To solve systems with three variables we must \qquad the \qquad variable \qquad
This will give us equations with variables we can then solve for!

Example 1:

$$
\begin{gathered}
3 x-3 y+5 z=16 \\
2 x-6 y-5 z=35 \\
-5 x-12 y+5 z=28
\end{gathered}
$$

Example 2:

$$
\begin{gathered}
-x+2 y+4 z=-20 \\
-2 x-2 y-3 z=5 \\
4 x-2 y-2 z=26
\end{gathered}
$$

14.2b Multiply to Eliminate

To eliminate a variable, we may have to \qquad one or more equations to get \qquad

Example 1:

$$
\begin{gathered}
-2 x-2 y+3 z=-6 \\
3 x-3 y-2 z=-17 \\
5 x-4 y+5 z=11
\end{gathered}
$$

Q1:

You have completed the videos for 14.2 Systems with Three Variables. On your own paper, complete the homework assignment.

14.3 Applications of Systems

14.3a Value Comparison

Define the \qquad
Make an equation for the \qquad
Make an equation for the \qquad

Example 1:

Brian has twice as many dimes as quarters. If the value of the coins is $\$ 4.95$, how many of each does he have?

Example 2:

A child has three more nickels than dimes in her piggybank. If she has $\$ 1.95$ in her bank, how many of each does she have?

Q1:

14.3b Value with Total

Define the \qquad
Make an equation for the \qquad
Make an equation for the \qquad

Example 1:

Scott has $\$ 2.25$ in his pocket made up of quarters and dimes. If there are 12 coins, how many of each coin does he have?

Example 2:

If 105 people attended a concert and tickets for adults cost $\$ 2.50$ while tickets for children cost
$\$ 1.75$ and total receipts for the concert were \$228, how many children and how many adults went to the concert?

Define the \qquad
Make an equation for the \qquad
Make an equation for the \qquad
Beware: When using a percent, we must \qquad

Example 1:

Sophia invested \$1900 in one account and \$1500 in another account that paid 3% higher interest rate. After one year she had earned \$113 in interest. At what rates did she invest?

Example 2:

Carlos invested \$2500 in one account and \$1000 in another which paid 4% lower interest. At the end of a year he had earned $\$ 345$ in interest. At what rates did he invest?

Define the \qquad
Make an equation for the \qquad
Make an equation for the \qquad
Beware: When using a percent, we must

Example 1:

A woman invests $\$ 4600$ in two different accounts. The first paid 13%, the second paid 12% interest. At the end of the first year she had earned \$586 in interest. How much was in each account?

Example 2:

A bank loaned out $\$ 4900$ to two different companies. The first loan had a 4% interest rate; the second had a 13% interest rate. At the end of the first year the loan had accrued $\$ 421$ in interest. How much was loaned at each rate?

Q1:
Q2:

You have completed the videos for 14.3 Application of Systems - Value problems. On your own paper, complete the homework assignment.

14.4 Applications of Systems

14.4a Mixture with Starting Amount

Define the \qquad
Make an equation for the \qquad
Make an equation for the \qquad

Example 1:

A store owner wants to mix chocolate and nuts to make a new candy. How many pounds of chocolate which costs $\$ 1.50$ per pound should be mixed with 40 pounds of nuts that cost $\$ 3.00$ per pound to make a mixture worth $\$ 2.50$ per pound?

Example 2:

You need a 55\% alcohol solution. On hand, you have 600 mL of 10% alcohol mixture. You also have a 95% alcohol mixture. How much of the 95% mixture should you add to obtain your desired solution?

Define the \qquad
Make an equation for the \qquad
Make an equation for the \qquad

Example 1:

A chemist needs to create 100 mL of a 38% acid solution. On hand she has a 20% acid solution and a 50% acid solution. How many mL of each should she use?

Example 2:

A coffee distributor needs to mix a coffee blend that normally sells for $\$ 8.90$ per pound with another coffee blend that normally sells for \$11.16 per pound, how many pounds of each kind of coffee should they mix if the distributer needs 50 pounds of the new mix to sell for $\$ 9.85$?

Pure water is \qquad alcohol

Pure alcohol or acid is \qquad alcohol or acid

Example 1:

You need a 55\% alcohol solution. On hand, you have a 385 mL of a 70% alcohol mixture. How much pure water will you need to add to obtain the desired solution?

Example 2:

You need a 30\% alcohol solution. You have on hand 210 mL of a 10% alcohol solution. How much pure alcohol do you need to add to obtain the desired solution?

You have completed the videos for 14.4 Applications of Systems - Mixture problems. On your own paper, complete the homework assignment.

Congratulations! You made it through the material for Unit 14: Systems of Equations. It is time to prepare for your exam. On a separate sheet of paper, complete the practice test. Once you have completed the practice test, ask your instructor to take the test. Good luck!

Unit 15: Radicals

To work through the unit, you should:

1. Watch a video, as you watch, fill out the workbook (top and example sections).
2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
3. Repeat \#1 and \#2 with each page until you reach the .
4. Complete the homework assignment on your own paper.
5. Repeat \#1 thru \#4 until you reach the end of the unit.
6. Complete the review/practice test on your own paper.
7. Take the unit exam.

15.1 Simplify Radicals

15.1a Variables

Radical: $\sqrt[n]{a}=b$ where \qquad . The n is called the \qquad .

Square Root: $\sqrt{a}=b$ where \qquad . The index on a square root is always \qquad
Radicals divide the \qquad by the \qquad
The whole number is how many "things" \qquad and the remainder is how many "things" \qquad

Example 1:

$$
\sqrt{a^{3}}
$$

Example 2:

Q1:

Q2:
$\sqrt[4]{b^{19}}$

15.1b Several Variables

Work with \qquad variable at a time

Example 1:

$$
\sqrt{a^{5} b^{8} c^{15}}
$$

Example 2:

Q1:

Q2:

$$
\sqrt[4]{a^{13} b^{23} c^{10} d^{3} e^{36}}
$$

15.1c Using Prime Factorization

Prime Factorization:
To find a prime factorization we \qquad by \qquad
A few prime numbers:
Roots of numbers are difficult, find the \qquad so that we can divide the \qquad by the \qquad

Example 1:

$$
\sqrt[3]{750}
$$

Example 2:

Q1:

Q2:

$$
9 \sqrt{250 x^{4} y z^{5}}
$$

We can only pull \qquad (separated by \qquad) out of a radical If we have \qquad (separated by \qquad or \qquad) we must \qquad first!

Example 1:

$$
\sqrt{100 x^{2}-16 x^{4}}
$$

Example 2:

$$
\sqrt[3]{216 x^{6}-27 x^{9}}
$$

Q1:

Q2:

15.2 Add, Subtract and Multiply Radicals

15.2a Add Like Radicals

Simplify: $2 x-5 y+4 x+2 y$
Simplify: $2 \sqrt{3}-5 \sqrt{7}+4 \sqrt{3}+2 \sqrt{7}$
When adding and subtracting radicals we can

Example 1:

$$
-4 \sqrt{6}+2 \sqrt{11}+\sqrt{11}-5 \sqrt{6}
$$

Example 2:

Q1:

Q2:

$$
\sqrt[3]{5}+3 \sqrt{5}-8 \sqrt[3]{5}+2 \sqrt{5}
$$

> 15.2b Add with Simplifying

Before adding radicals together \qquad

Example 1:

$$
5 \sqrt{50 x}+5 \sqrt{27}-3 \sqrt{2 x}-2 \sqrt{108}
$$

Example 2:

$\sqrt[3]{81 x^{3} y}-3 y \sqrt[3]{32 x^{2}}+x \sqrt[3]{24 y}-\sqrt[3]{500 x^{2} y^{3}}$

Q1:

Q2:
az

15.2c Multiply Monomial Radical Expressions

Product Rule: $a \sqrt[n]{b} \llbracket \sqrt[n]{d}=$
Always be sure your final answer is \qquad

Example 1:

$$
4 \sqrt{6} \square 2 \sqrt{15}
$$

Example 2:

$-3 \sqrt[4]{8} \square \sqrt[4]{10}$

Recall: $a(b+c)=$
Always be sure your final answer is

Example 1:

$$
5 \sqrt{10}(2 \sqrt{6}-3 \sqrt{15})
$$

Example 2:

Q1:

Q2:

$$
7 \sqrt{3}(\sqrt{6}+9)
$$

15.2e Multiply Binomial Radical Expressions

Recall: $(a+b)(c+d)=$
Always be sure your final answer is

Example 1:

$$
(3 \sqrt{7}-2 \sqrt{5})(\sqrt{7}+6 \sqrt{5})
$$

Example 2:

$$
(2 \sqrt[3]{9}+5)(4 \sqrt[3]{3}-1)
$$

15.2f Square Binomial Radical Expression

Recall: $(a+b)^{2}=$
Always be sure your final answer is \qquad

Example 1:

$$
(\sqrt{6}-\sqrt{2})^{2}
$$

Example 2:

Q1:

Q2:

$$
(2+3 \sqrt{7})^{2}
$$

15.2 g . Multiply Conjugates

Recall: $(a+b)(a-b)=$
Always be sure your final answer is \qquad

Example 1:

$$
(4+2 \sqrt{7})(4-2 \sqrt{7})
$$

Example 2:

$$
(2 \sqrt{3}-\sqrt{6})(2 \sqrt{3}+\sqrt{6})
$$

Q1:

Q2:

15.3 Rationalize Denominator

15.3a Simplifying with Radicals

Expression with radicals: Always \qquad the \qquad first

Before \qquad with fractions, be sure to \qquad first

Example 1:

Example 2:

$$
\frac{15+\sqrt{175}}{10}
$$

Q1:

Q2:

$$
\frac{8-\sqrt{48}}{6}
$$

15.3b Quotient Rule

Quotient Rule: $\sqrt{\frac{a}{b}}=$
It may be helpful to reduce the \qquad first and the \qquad second

Example 1:

$$
\frac{\sqrt{48}}{\sqrt{150}}
$$

Example 2:

$$
\sqrt{\frac{225 x^{7}}{20 x^{3}}}
$$

15.3c Rationalize Monomial Roots in the Denominator

Rationalize Denominators: Never leave a \qquad in the \qquad
To clear radicals: \qquad by extra needed factors in denominator (same in numerator!)

It may be helpful to \qquad first

Hint: \qquad numbers!

Example 1:

$$
\frac{5}{\sqrt[7]{b^{2}}}
$$

Example 2:

Q1:

Q2:

$$
\sqrt[3]{\frac{7}{9 a^{2} b}}
$$

What does not work: $\frac{1}{2+\sqrt{3}}=$
Recall: $(2+\sqrt{3})(\quad)=$
Multiply by the \qquad

Example 1:

$$
\frac{6}{5-\sqrt{3}}
$$

Q1:

Q2:

$$
\frac{3-5 \sqrt{2}}{4+2 \sqrt{2}}
$$

15.4 Rational Exponents

15.4a Convert

If we divide the exponent by the index, then $\sqrt[n]{a^{m}}=$
The index is the \qquad

Example 1:

Write as an exponent: $\sqrt[7]{m^{5}}$

Example 2:

$$
\text { Write as a radical: }(a b)^{2 / 3}
$$

Example 3:

Write as a radical: $x^{-4 / 5}$

Example 4:

Write as an exponent: $\frac{1}{(\sqrt[3]{5 x})^{2}}$

Q1:

Q2:

Q3:

Q4:

15.4b Evaluate

To evaluate a rational exponent \qquad to a \qquad

Example 1:

$$
\text { Evaluate: } 32^{2 / 5}
$$

Example 2:

Evaluate: $27^{-4 / 3}$

15.4c Simplify

Recall Exponent Properties
$a^{m} a^{n}=$
$\left(\frac{a}{b}\right)^{m}=$
$\frac{a^{m}}{a^{n}}=$
$\left(a^{m}\right)^{n}=$
$(a b)^{m}=$
$a^{0}=$
$\left(\frac{a}{b}\right)^{-m}=$

$$
a^{-m}=
$$

$$
\frac{1}{a^{-m}}=
$$

To Simplify:

Example 1:

$$
\frac{x^{4 / 3} y^{2 / 7} x^{5 / 4} y^{3 / 7}}{x^{1 / 2} y^{6 / 7}}
$$

Example 2:

$$
\left(\frac{256 x^{3 / 2} y^{-1 / 3}}{x^{1 / 4} y^{3 / 2} x^{-5 / 2}}\right)^{-1 / 8}
$$

Q1:
Q2: homework assignment

15.5 Radicals of Mixed Index
 15.5a Reduce Index

Using rational exponents: $\sqrt[8]{x^{6} y^{2}}=$

To reduce the index \qquad the \qquad and the \qquad by the \qquad Without using rational exponents: $\sqrt[8]{x^{6} y^{2}}=$

Hint: \qquad any numbers

Example 1:

$$
\sqrt[15]{x^{3} y^{9} z^{6}}
$$

Example 2:

Q1:

Q2:

$$
\sqrt[25]{32 a^{10} b^{5} c^{20}}
$$

15.5b Multiply Mixed Index

Using rational exponents: $\sqrt[3]{a^{2} b} \sqsubset \sqrt[4]{a b^{2}}=$

Get a \qquad by \qquad the \qquad and \qquad
Without using rational exponents: $\sqrt[3]{a^{2} b} \square \sqrt[4]{a b^{2}}=$
Hint: \qquad any numbers

Always be sure your final answer is \qquad

Example 1:

$$
\sqrt[4]{m^{3} n^{2} p} \sqrt[6]{m n^{2} p^{3}}
$$

Example 2:

Q1:

Q2:

$$
\sqrt[3]{4 x^{2} y} \square \sqrt[5]{8 x^{4} y^{2}}
$$

Division with mixed index - get a \qquad
Hint: \qquad any numbers

May have to \qquad the denominator (cannot be under a \qquad and under a \qquad _)

Example 1:

$$
\frac{\sqrt{a b^{3}}}{\sqrt[3]{a b^{2}}}
$$

Example 2:

Q1:

Q2:

$$
\frac{\sqrt[4]{2 x^{3} y^{2}}}{\sqrt[6]{32 y^{4}}}
$$ homework assignment.

15.6 Complex Numbers
 15.6a Square Roots of Negatives

Define: $\sqrt{-1}=\quad$ and therefore $i^{2}=$ Now we can calculate $\sqrt{-25}=$

Expressions with radicals: Always \qquad the \qquad first

Example 1:

$$
\sqrt{-45}
$$

Example 2:

Q2:

$$
\sqrt{-6} \square \sqrt{-10}
$$

Before \qquad with fractions, be sure to \qquad first

Example 1:

$$
\frac{15+\sqrt{-300}}{5}
$$

Example 2:

$$
\frac{20+\sqrt{-80}}{8}
$$

i works just like \qquad
This means we can \qquad

Example 1:

$$
(5-3 i)+(6+i)
$$

Example 2:

$$
(-5-2 i)-(3-6 i)
$$

Q1:

Q2:
$i^{0}=$
$i^{1}=$
$i^{2}=$
$i^{3}=$
\qquad the exponent by \qquad and use the \qquad

Example 1:

i^{223}

Q1:

Q2:
i^{96}

15.6e Multiply

i works just like \qquad
Remember $i^{2}=$

Example 1:

$$
(-3 i)(6 i)
$$

Example 2:

$$
2 i(5-2 i)
$$

Example 3:

$$
(4-3 i)(2-5 i)
$$

Example 4:

$$
(3+2 i)^{2}
$$

Q1:

Q2:

Q3:

Q4:

If $i=$ then we can rationalize it by just multiplying by \qquad

Example 1:

$$
\frac{5+3 i}{4 i}
$$

Example 2:

$$
\frac{2-i}{-3 i}
$$

Q1:

Q2:
Q2:

Similar to other radicals we can rationalize a binomial by multiplying by the \qquad $(a+b i)(a-b i)=$

Example 1:

$$
\frac{4 i}{2-5 i}
$$

Example 2:

$$
\frac{4-2 i}{3+5 i}
$$

Q1:

Q2:

15.7 Complete the Square

15.7a Find c
$a^{2}+2 a b+b^{2}$ is easily factored to \qquad
To make $x^{2}+b x+c$ a perfect square, $c=$

Example 1:

Find c and factor the perfect square:

$$
x^{2}+10 x+c
$$

Example 2:

Find c and factor the perfect square

$$
x^{2}-7 x+c
$$

Example 3:

Find c and factor the perfect square:

$$
x^{2}-\frac{3}{7} x+c
$$

Example 4:

Find c and factor the perfect square:

$$
x^{2}+\frac{6}{5} x+c
$$

Q4:
Q1:

Q2:

Q3:

15.7b Rational Solutions

If $x^{2}=9$ then there are \qquad solutions for x, \qquad and \qquad . We can write this as \qquad
To complete the square on $a x^{2}+b x+c=0$

1. Separate \qquad and \qquad
2. Divide by \qquad (everything)
3. Find the \qquad and \qquad to \qquad

Example 1:

$$
x^{2}-x-6=0
$$

Example 2:

$$
3 x^{2}=15 x-18
$$

Q1:
15.7c Irrational and Complex Solutions

If we can't simplify the \qquad we \qquad what we can.

Example 1:

$$
5 x^{2}-3 x+2=0
$$

Example 2:

$$
8 x+32=4 x^{2}
$$

Q1:
Q2:

You have completed the videos for 15.7 Complete the Square. On your own paper, complete the homework assignment.

15.8 Quadratic Formula

15.8a Finding the Formula

Solve by Completing the Square:

$$
a x^{2}+b x+c=0
$$

(Finding the Formula is useful to know for the test!)

15.8b Using the Formula

If $a x^{2}+b x+c=0$ the $x=$

Example 1:

$$
6 x^{2}+7 x-3=0
$$

Example 2:

$$
5 x^{2}-x+2=0
$$

15.8c Make Equation Equal Zero

Before using the quadratic formula, the equation must equal \qquad and be in \qquad
That is the equation should look like:

Example 1:

$$
2 x^{2}=15-7 x
$$

Example 2:

$$
3 x^{2}+5 x+2=7
$$

If a term is missing, we use \qquad in the quadratic formula

Example 1:

$$
3 x^{2}+54=0
$$

Example 2:

$$
5 x^{2}=2 x
$$

Q1:

Q2:

Unit 16: College Algebra Topics

To work through the unit, you should:

1. Watch a video, as you watch, fill out the workbook (top and example sections).
2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
3. Repeat \#1 and \#2 with each page until you reach the .
4. Complete the homework assignment on your own paper.
5. Repeat \#1 thru \#4 until you reach the end of the unit.
6. Complete the review/practice test on your own paper.
7. Take the unit exam.

16.1 Multiply and Divide Rational Expressions

16.1a Review Multiply and Divide Fractions

To multiply we \qquad common \qquad then multiply \qquad
Division is the same, with one extra step at the start: \qquad by the \qquad

Example 1:

$$
\frac{6}{35}-\frac{21}{10}
$$

Example 2:

$\frac{5}{8} \div \frac{10}{3}$

Q1:

Q2:

16.1b Multiply or Divide Rational Expressions

To multiply we \qquad common \qquad then multiply \qquad
This means we must first \qquad
Division is the same, with one extra step at the start: \qquad by the \qquad

Example 1:

$$
\frac{x^{2}+3 x+2}{4 x-12} \sqrt{x^{2}-5 x+6} \frac{x^{2}-4}{}
$$

Example 2:

$$
\frac{3 x^{2}+5 x-2}{x^{2}+3 x+2} \div \frac{6 x^{2}+x-1}{2 x^{3}-6 x^{2}-8 x}
$$

Q1:

Q2:

To divide:
To multiply we \qquad common \qquad then multiply \qquad
This means we must first \qquad

Example 1:

$$
\frac{x^{2}+3 x-10}{x^{2}+6 x+5} \div \frac{2 x^{2}-x-3}{2 x^{2}+x-6} \div \frac{8 x+20}{6 x+15}
$$

Example 2:

Q1:

Q2:

$$
\frac{x^{2}-1}{x^{2}-x-6} \square \frac{2 x^{2}-x-15}{3 x^{2}-x-4} \div \frac{2 x^{2}+3 x-5}{3 x^{2}+2 x-8}
$$

16.2 Add and Subtract Rational Expressions

16.2a Review LCD/LCM of Numbers with Prime Factorization

Prime Factorization:
To find the LCD/LCM use \qquad factors with \qquad exponents

Example 1:

Find the LCD/LCM:
20 and 36

Example 2:

Q1:

Q2:

Find the LCD/LCM:
18,54 and 81

16.2b LCD/LCM of Monomials

To find the LCD/LCM with variables use \qquad factors with \qquad exponents

Example 1:
Find the LCD/LCM:
$5 x^{3} y^{2}$ and $4 x^{2} y^{5}$

Example 2:

Find the LCD/LCM:
$7 a b^{2} c$ and $3 a^{4} b$

Q1:

Q2:

To find the LCD/LCM with polynomials use \qquad factors with \qquad exponents

This means we must first \qquad

Example 1:

Find the LCD/LCM:

$$
x^{2}+3 x-18 \text { and } x^{2}+4 x-21
$$

Example 2:

Q1:

Q2:

Find the LCD/LCM:
$x^{2}-10 x+25$ and $x^{2}-x-20$

16.2d Review Adding and Subtracting Fractions

To add or subtract we \qquad the denominators by \qquad by the missing \qquad

Example 1:

$$
\frac{5}{21}+\frac{7}{15}
$$

Example 2:

Q1:

Q2:

$$
\frac{8}{14}-\frac{3}{10}
$$

16.2e Add and Subtract with Common Denominator

Add the \qquad and keep the \qquad
When subtracting we will first \qquad the negative

Don't forget to \qquad

Example 1:

$$
\frac{x^{2}+4 x}{x^{2}-2 x-15}+\frac{x+6}{x^{2}-2 x-15}
$$

Example 2:

$$
\frac{x^{2}+2 x}{2 x^{2}-9 x-5}-\frac{6 x+5}{2 x^{2}-9 x-5}
$$

To add or subtract we \qquad the denominators by \qquad by the missing \qquad This means we must first \qquad the denominators

Example 1:

$$
\frac{2 x}{x^{2}-9}+\frac{5}{x^{2}+x-6}
$$

Example 2:

$$
\frac{2 x+7}{x^{2}-2 x-3}-\frac{3 x-2}{x^{2}+6 x+5}
$$

Q1:

Q2:
.

16.3 Compound Fractions

16.3a Numbers

Compound/Complex Fractions:
Clear \qquad by multiplying each \qquad by the \qquad of everything

Example 1:

$$
\frac{\frac{3}{4}+\frac{5}{6}}{\frac{1}{2}-\frac{4}{3}}
$$

Example 2:

Q2:

$$
\frac{\frac{1}{2}+2}{1+\frac{9}{4}}
$$

16.3b Monomials

Recall: To find the LCD with variables, use the \qquad exponents

Be sure to check for \qquad by \qquad the numerator and denominator.

Example 1:

$$
\frac{1-\frac{9}{x^{2}}}{\frac{1}{x}+\frac{3}{x^{2}}}
$$

Example 2:

$$
\frac{\frac{1}{y^{3}}-\frac{1}{x^{3}}}{\frac{1}{x^{2} y^{3}}-\frac{1}{x^{3} y^{2}}}
$$

Q1:

Q2:

Recall: To find the LCD with variables, use the \qquad exponents.

Be sure to check for \qquad by \qquad the numerator and denominator.

Example 1:

Example 2:

$$
\frac{\frac{5}{x-2}}{3+\frac{2}{x-2}}
$$

Q1:

Q2:
$\frac{\frac{x}{x-9}+\frac{5}{x+9}}{\frac{x}{x+9}-\frac{5}{x-9}}$

16.3d Negative Exponents

Recall: $5 x^{-3}=$
If there is any \qquad or \qquad we can't just \qquad terms. Instead make \qquad

Example 1:

Example 2:

$$
\frac{1+10 x^{-1}+25 x^{-2}}{1-25 x^{-2}}
$$

Q2:

$$
\frac{8 b^{-3}+27 a^{-3}}{4 a^{-1} b^{-3}-6 a^{-2} b^{-2}+9 a^{-3} b^{-1}}
$$

Q1:

2: homework assignment.

16.4 Rational Equations

16.4a Clear Denominator

Recall: $\frac{3}{4} x-\frac{1}{2}=\frac{5}{6}$

Clear fractions by multiplying each \qquad by the \qquad

Example 1:

Q1:

$$
\frac{5}{x}=\frac{3}{7 x}-4
$$

Example 2:

Q2:

$$
\frac{4}{x+5}+x=\frac{-2}{x+5}
$$

16.4b Factoring Denominator

To identify all the factors in the \qquad we may have to \qquad the \qquad

Example 1:

$$
\frac{x}{x-6}+\frac{1}{x-7}=\frac{-3 x-8}{x^{2}-13 x+42}
$$

Example 2:

Q1:

Q2:

$$
\frac{2}{x+3}-\frac{9 x}{x^{2}-9}=\frac{1}{x-3}
$$

Because we are working with fractions, the \qquad cannot be \qquad

Example 1:

Example 2:

$$
\frac{x}{x-8}-\frac{2}{x-4}=\frac{-3 x+56}{x^{2}-12 x+32}
$$

$$
\frac{x}{x-2}+\frac{2}{x-4}=\frac{4 x-12}{x^{2}-6 x+8}
$$

Q1:

Q2:

16.5 Equations with Radicals
 16.5a Odd Roots

The opposite of taking a root is to do an \qquad
$\sqrt[3]{x}=4$ then $x=$
(Note: This only works for an \qquad index)

Example 1:

$$
\sqrt[3]{2 x-5}=6
$$

Example 2:

$$
\sqrt[5]{4 x-7}=2
$$

16.5b Even Roots

The opposite of taking a root is to do an \qquad
With even roots we must \qquad the answer in the original equation! (called \qquad _)

Recall: $(a+b)^{2}=$

Example 1:

$$
x=\sqrt{5 x+24}
$$

Example 2:

$$
\sqrt{40-3 x}=2 x-5
$$

Q1:

Q2:

16.5c Isolate Radical

IMPORTANT: Before we can clear a radical it must first be \qquad

Example 1:

$$
4+2 \sqrt{2 x-1}=2 x
$$

Example 2:

$$
2 \sqrt{5 x+1}-2=2 x
$$

Q1:
Q2:

You have completed the videos for 16.5 Equations with Radicals. On your own paper, complete the homework assignment.

16.6 Equations with Exponents

16.6a Odd Exponents

The opposite of taking an exponent is to do a \qquad If $x^{3}=8$, then $x=$
(Note: This only works for an \qquad exponent)

Example 1:

$$
(3 x+5)^{5}=32
$$

Example 2:

$$
(2 x-1)^{3}=64
$$

16.6b Even Exponents

Consider: $(5)^{2}=\quad$ and $(-5)^{2}=$
When we clear an even exponent, we have \qquad

Example 1:

$$
(5 x-1)^{2}=49
$$

Example 2:

Q1:

Q2:

$$
(3 x+2)^{4}=81
$$

16.6c Isolate Exponent

IMPORTANT: Before we can clear an exponent, it must first be \qquad

Example 1:

$$
4-2(2 x+1)^{2}=-46
$$

Example 2:

$$
5(3 x-2)^{2}+6=46
$$

Q1:

Q2:

To multiply to one: $\frac{a}{b}(\square)=1$
We clear a rational exponent by using a \qquad
Recall $a^{m / n}=$
Recall: Check if original rational exponent has \qquad
Recall: Two solutions if original rational exponent has \qquad

Example 1:

$$
(3 x-6)^{3 / 2}=64
$$

Example 2:

$$
(5 x+1)^{4 / 5}=16
$$

Q1:

Q2:

16.7 Rectangle Problems

16.7a Area Problems

Area of a rectangle:
To help visualize the rectangle,
There are three ways to solve any quadratic equation
1.
2.
3.

Example 1:

The length of a rectangle is 2 ft longer than the width. The area of the rectangle is $48 \mathrm{ft}^{2}$. What are the dimensions of the rectangle?

Example 2:

The area of a rectangle is $72 \mathrm{~cm}^{2}$. If the width is 6 cm less than the length, what are the dimensions of the rectangle?

Q1:

Q2:

16.7b Perimeter Problems

Perimeter of a rectangle:
Tip: Solve the \qquad equation for a variable and \qquad in the \qquad equation.

Example 1:

The area of a rectangle is $54 \mathrm{~m}^{2}$. If the perimeter is 30 meters, what are the dimensions of the rectangle?

Example 2:

The perimeter of a rectangle is 22 inches. If the area of the same rectangle is $24 \mathrm{in}^{2}$, what are the dimensions?

Q1:

Q2:

16.7c Bigger

We may have to draw \qquad rectangles

Multiply/Add to the \qquad to make it equal the \qquad rectangle

Example 1:

Each side of a square is decreased 6 inches. When this happens, the area of the larger square is 16 times the area of the smaller square. How many inches is the side of the original square?

Example 2:

The length of a rectangle is 9 feet longer than it is wide. If each side is increased 9 feet, then the area is multiplied by 3 . What are the dimensions of the original rectangle?

Q1:

Q2:

16.7d Frames

To help visualize the frame \qquad
Remember the frame is on the \qquad and \qquad also the \qquad and \qquad

Example 1:

A frame measures 13 inches by 10 inches and is of uniform width. If the area of the picture inside is 54 square inches, what is the width of the frame?

Example 2:

An 8-inch by 12 -inch drawing has a frame of uniform width around it. The area of the frame is equal to the area of the picture. What is the width of the frame?

Q1:

Q2:

16.7e Percent of a Field

Clearly identify the area of the \qquad and \qquad rectangles!

Be careful with \qquad , is it talking about the \qquad , \qquad , or \qquad ?

Example 1:

A man mows his 40 ft by 50 ft rectangular lawn in a spiral pattern starting from the outside edge. By noon he is 90% done. How wide of a strip has he cut around the outside edge?

Example 2:

A woman has a 50 ft by 25 ft rectangular field that she wants to increase by 68% by cultivating a strip of uniform width around the current field. How wide of a strip should she cultivate?

Q1:

Q2:

16.8 Work Problems

16.8a One Unknown Time

Adam does a job in 4 hours. Each hour he does \qquad of the job.

Betty does a job in 12 hours. Each hour she does \qquad of the job.

Together, each hour they do \qquad of the job

This means together it would take them \qquad hours to do the entire job.

Work equation:

Example 1:

Catherine can paint a house in 15 hours. Dan can paint it in 30 hours. How long will it take them working together?

Example 2:

Even can clean a room in 3 hours. If his sister Faith helps, it takes them $2 \frac{2}{5}$ hours. How long will it take Faith working alone?

Q1:

Q2:

Be sure to clearly identify who is the \qquad

Example 1:

Tony does a job in 16 hours less time than Marissa, and they can do it together in 15 hours. How long will it take each to do the job alone?

Example 2:

Alex can complete his project in 21 hours less than Hillary. If they work together it can get done in 10 hours. How long does it take each working alone?

Q1:

Q2: homework assignment.

16.9 Distance and Revenue Problems
 16.9a Simultaneous Products

Simultaneous product: \qquad equations with \qquad variables that are \qquad To solve: \qquad both by the same \qquad Then \qquad

Example 1:

$$
\begin{gathered}
x y=72 \\
(x-5)(y+2)=56
\end{gathered}
$$

Q1:

16.9b Revenue

Revenue Equation:
Beware: Profit =
To solve: Divide by what we \qquad

Example 1:

A group of college students bought a couch for $\$ 80$. However, five of them failed to pay their share so the others had to each pay $\$ 8$ more. How many students were in the original group?

Example 2:

A merchant bought several pieces of silk for $\$ 70$. He sold all but two of them at a profit of $\$ 4$ per piece. His total profit was $\$ 18$. How many pieces did he originally purchase?

Q1:
Q2:

Distance Equation:
To solve: Divide by what we

Example 1:

A man rode his bike to a park 60 miles away. On the return trip he went 2 mph slower which made the trip take 1 hour longer. How fast did he ride to the park?

Example 2:

After driving through a construction zone for 45 miles, a woman realized that if she had just driven 6 mph faster, she would have arrived 2 hours sooner. How fast did she drive?

Downwind/stream:
Upwind/stream:

Example 1:

Zoe rows a boat downstream for 80 miles. The return trip upstream took 12 hours longer. If the current flows at 3 mph , how fast does Zoe row in still water?

Example 2:

Darius flies a plane against a headwind for 5084 miles. The return trip with the wind took 20 hours less time. If the wind speed is 10 mph , how fast does Darius fly the plane when there is no wind?

You have completed the videos for 16.9 Distance and Revenue Problems. On your own paper, complete the homework assignment.

Congratulations! You made it through the material for Unit 16: College Algebra Topics. It is time to prepare for your exam. On a separate sheet of paper, complete the practice test. Once you have completed the practice test, ask your instructor to take the test. Good luck!

Unit 17: Functions

To work through the unit, you should:

1. Watch a video, as you watch, fill out the workbook (top and example sections).
2. Complete Q 1 and Q 2 in WAMAP, put your work in the right column of the page.
3. Repeat \#1 and \#2 with each page until you reach the .
4. Complete the homework assignment on your own paper.
5. Repeat \#1 thru \#4 until you reach the end of the unit.
6. Complete the review/practice test on your own paper.
7. Take the unit exam.

17.1 Evaluate Functions

17.1a Functions

Function:
If it is a function, we often write \qquad which is read \qquad
A graph is a function if it passes the \qquad , or each \qquad has at most one \qquad

Example 1:

Is the graph a function?

Example 2:

Is the graph a function?

Q1:

Q2:

17.1b Function Notation

Function notation:
What is inside of the function \qquad the \qquad

Example 1:

$$
f(x)=-x^{2}+2 x-5
$$

Find $f(3)$

Example 2:

$$
g(x)=\sqrt{2 x+5}
$$

Find $g(20)$

17.1c Evaluate Function at an Expression

When replacing a variable, we always use \qquad
What is inside of the function \qquad the \qquad

Example 1:

$$
\begin{aligned}
& f(x)=\sqrt{2 x}+3 x \\
& \text { Find } f\left(8 x^{2}\right)
\end{aligned}
$$

Example 2:

$$
p(n)=n^{2}-2 n+5
$$

Find $p(n-3)$

Q1:

Q2:

17.1d Domain

Domain:
Fractions:
Even Radicals:

Example 1:

Find the domain:

$$
f(x)=3 \sqrt[4]{2 x-6}+4
$$

Example 2:

Find the domain:

$$
g(x)=3|2 x+7|^{2}-4
$$

Example 3:

Find the domain:
$h(x)=\frac{x-1}{x^{2}-x-2}$

Q1:

Q2:

17.2 Operations on Functions

17.2a Add Functions

Add Functions: $(f+g)(x)=$
With a number we will \qquad both, then \qquad the results

With a variable we will \qquad the two functions \qquad Use \qquad !

Example 1:

$$
\begin{gathered}
f(x)=x-4 \\
g(x)=x^{2}-6 x+8
\end{gathered}
$$

Find $(f+g)(-2)$

Example 2:

$$
\begin{gathered}
f(x)=x^{2}-5 x \\
g(x)=x-5
\end{gathered}
$$

Find $(f+g)(x)$

Q1:

Q2:

17.2b Subtract Functions

Subtract Functions: $(f-g)(x)=$
With a number we will \qquad both, then \qquad the results

With a variable we will \qquad the two functions \qquad . Use \qquad

Example 1:

$$
\begin{gathered}
f(x)=x-4 \\
g(x)=x^{2}-6 x+8
\end{gathered}
$$

Find $(f-g)(-2)$

Example 2:

Q1:

Q2:

$$
\begin{gathered}
f(x)=x^{2}-5 x \\
g(x)=x-5
\end{gathered}
$$

Find $(f-g)(x)$

17.2c Multiply Functions

Multiply Functions: $(f \square g)(x)=$
With a number we will \qquad both, then \qquad the results

With a variable we will \qquad the two functions \qquad Use \qquad !

Example 1:

$$
\begin{gathered}
f(x)=x-4 \\
g(x)=x^{2}-6 x+8
\end{gathered}
$$

Find $(f \square g)(-2)$

Example 2:

Q1:

Q2:

$$
\begin{gathered}
f(x)=x^{2}-5 x \\
g(x)=x-5
\end{gathered}
$$

Find $(f \sqcap g)(x)$

17.2d Divide Functions

Divide Functions: $\left(\frac{f}{g}\right)(x)=$
With a number we will \qquad both, then \qquad the results With a variable we will \qquad the two functions \qquad . Use \qquad Beware of \qquad of fractions, the \qquad cannot be \qquad

Example 1:

$$
\begin{gathered}
f(x)=x-4 \\
g(x)=x^{2}-6 x+8
\end{gathered}
$$

Find $\left(\frac{f}{g}\right)(-2)$

Example 2:

Q1:

Q2:

$$
\begin{gathered}
f(x)=x^{2}-5 x \\
g(x)=x-5
\end{gathered}
$$

Find $\left(\frac{f}{g}\right)(x)$

17.2e Composition of Functions

Composition of Functions:
$(f \circ g)(x)=$
With numbers, \qquad the \qquad and put \qquad in \qquad
With a variable, put the \qquad in for the \qquad in the \qquad

Example 1:

$$
\begin{gathered}
f(x)=\sqrt{x+6} \\
g(x)=x+3
\end{gathered}
$$

$(f \circ g)(7)=$
$g[f(7)]=$

Example 2:

$$
\begin{gathered}
p(x)=x^{2}+2 x \\
r(x)=x+3
\end{gathered}
$$

$(p \circ r)(x)=$

$$
r[p(n)]=
$$

17.2f Compose a Function with Itself

A function can be composed with \qquad

Example 1:

$$
f(x)=2 x-4
$$

Find $(f \circ f)(-2)$

Example 2:
Q1:

Q2:

$$
g(x)=x^{2}-3 x
$$

Find $g[g(x)]$

If we are composing several functions, start in the \qquad and work \qquad

Example 1:

$$
\begin{gathered}
f(x)=x+2 \\
g(x)=x^{2}-5 \\
h(x)=\sqrt{3 x}
\end{gathered}
$$

Find $(f \circ g \circ h)(2)$

Example 2:

$$
\begin{gathered}
f(x)=x+2 \\
g(x)=x^{2}-5 \\
h(x)=\sqrt{3 x}
\end{gathered}
$$

Find $(f \circ g \circ h)(a)$

Q1:
Q2:

You have completed the videos for 17.2 Operations on Functions. On your own paper, complete the homework assignment.

17.3 Inverse Functions
 17.3a Show Functions are Inverses

Inverse Function:
To test if functions are inverses, calculate \qquad and \qquad , the answer to both should be \qquad

Example 1:

Are they inverses?

$$
\begin{aligned}
& f(x)=3 x-8 \\
& g(x)=\frac{x}{3}+8
\end{aligned}
$$

Example 2:

Are they inverses?

$$
\begin{aligned}
& f(x)=\frac{5}{x-3}+6 \\
& g(x)=\frac{5}{x-6}+3
\end{aligned}
$$

Q1:
Q2:
17.3b Finding an Inverse Function

To find an inverse function \qquad the \qquad and \qquad , then solve for \qquad . (the \qquad is the $y!$)

Example 1:

Find the inverse:

$$
h(x)=\frac{-3}{x-1}-2
$$

Example 2:

Find the inverse:

$$
g(x)=5 \sqrt[3]{x-6}+4
$$

Q1:
Q2:

17.3c Inverse of Rational Functions

Clear fractions by \qquad
Put the terms with \qquad on one side and \qquad on the other side

Factor out the \qquad and \qquad to get it alone

Example 1:

Find the inverse:

$$
f(x)=\frac{2 x-5}{x+3}
$$

Example 2:

Find the inverse:

$$
g(x)=\frac{5 x+1}{2 x-5}
$$

Q1:
Q2:

STOP
You have completed the videos for 17.3 Inverse Functions. On your own paper, complete the homework assignment.

17.4 Graphs of Quadratic Functions
 17.4a Key Points

Quadratic Graph:
Key points:

Example 1:

Graph the function:

$$
f(x)=x^{2}-2 x-3
$$

Example 2:

Graph the function

$$
f(x)=-3 x^{2}+12 x-9
$$

You have completed the videos for 17.4 Graphs of Quadratic Functions. On your own paper, complete the homework assignment.

Congratulations! You made it through the material for Unit 17: Functions. It is time to prepare for

Unit 18:
 Proficiency Exam \#3

To work through this unit, you should:

1. Complete the review/practice tests on your own paper.
2. Take the (two part) unit exam.
