Big Bend Community College

Emporium Model Math 99 Course Workbook

A workbook to supplement video lectures and online homework by:

Tyler Wallace Salah Abed Sarah Adams Mariah Helvy April Mayer Michele Sherwood This project was made possible in part by a federal STEM-HSI grant under Title III part F and by the generous support of Big Bend Community College and the Math Department.

Copyright 2019, Some Rights Reserved CC-BY-NC-SA. This work is a combination of original work and a derivative of Prealgebra Workbook, Beginning Algebra Workbook, and Intermediate Algebra Workbook by Tyler Wallace, which all hold a CC-BY License. Cover art by Sarah Adams with CC-BY-NC-SA license.

Emporium Model Math Courses Workbook by Wallace, Abed, Adams, Helvy, Mayer, Sherwood is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/)

You are free:

- To share: To copy, distribute and transmit the work
- To Remix: To adapt the work

Under the following conditions:

- Attribution: You must attribute the work in the manner specified by the authors or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial: You may not use this work for commercial purposes.
- Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

With the understanding that:

- Waiver: Any of the above conditions can be waived if you get permission from the copyright holder
- Public Domain: Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.
- Other rights: In no way are any of the following rights affected by the license:
 - Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;
 - The author's moral rights;
 - Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights

Table of Contents

Emporium Model Math 99 Course Workbook	
Unit 13:	8
13.1 Inequalities	9
13.1a Graphing	9
13.1b Interval Notation	
13.1c Solving	
13.1d Multiply or Divide by a Negative	
13.1e Tripartite	13
13.2 Compound Inequalities	14
13.2a OR (two directions)	14
13.2b OR (one direction)	
13.2c AND (between)	
13.2d AND (one direction)	
13.2e Special Cases	
13.3 Absolute Value Equations	
13.3a Two Solutions	
13.3b Isolate the Absolute Value	
13.3c Dual Absolute Values	21
13.4 Absolute Value Inequalities	22
13.4a GreatOR Than	
13.4b Less Than	23
13.4c Isolate Absolute Value	24
Unit 14:	25
14.1 Systems	
14.1a Introduction to Substitution	
14.1b Substitute an Expression	27
14.1c Solve for a Variable	
14.1d Substitution Special Cases	
14.1e Addition/Elimination	
14.1f Addition/Elimination and Multiplying an Equation	
14.1g Addition/Elimination and Multiplying Both Equations	
14.1h Addition/Elimination Special Cases	
14.2 Systems with Three Variables	40
14.2a Simple	40
14.2b Multiply to Eliminate	42

14.3 Applications of Systems	
14.3a Value Comparison	
14.3b Value with Total	
14.3c Interest Comparison	
14.3d Interest with Total Principle	
14.4 Applications of Systems	
14.4a Mixture with Starting Amount	
14.4b Mixture with Final Amount	54
14.4c Mixture with Final Amount	
Unit 15:	
15.1 Simplify Radicals	
15.1a Variables	
15.1b Several Variables	60
15.1c Using Prime Factorization	61
15.1d Binomials	62
15.2 Add, Subtract and Multiply Radicals	63
15.2a Add Like Radicals	63
15.2b Add with Simplifying	64
15.2c Multiply Monomial Radical Expressions	65
15.2d Multiply Monomial by Binomial Radical Expressions	
15.2e Multiply Binomial Radical Expressions	67
15.2f Square Binomial Radical Expression	
15.2g. Multiply Conjugates	
15.3 Rationalize Denominator	
15.3a Simplifying with Radicals	70
15.3b Quotient Rule	71
15.3c Rationalize Monomial Roots in the Denominator	72
15.3d Rationalize Binomial Denominators	73
15.4 Rational Exponents	74
15.4a Convert	74
15.4b Evaluate	75
15.4c Simplify	
15.5 Radicals of Mixed Index	77
15.5a Reduce Index	77
15.5b Multiply Mixed Index	
15.5c Divide Mixed Index	

15.6 Complex Numbers	
15.6a Square Roots of Negatives	80
15.6b Simplify Square Roots of Negatives	81
15.6c Add and Subtract	82
15.6d Powers of <i>i</i>	83
15.6e Multiply	
15.6f Rationalize Monomial Denominators	
15.6g Rationalize Binomial Denominators	
15.7 Complete the Square	
15.7a Find c	
15.7b Rational Solutions	
15.7c Irrational and Complex Solutions	
15.8 Quadratic Formula	92
15.8a Finding the Formula	92
15.8b Using the Formula	93
15.8c Make Equation Equal Zero	94
15.8d Missing Terms	95
Unit 16:	96
16.1 Multiply and Divide Rational Expressions	97
16.1a Review Multiply and Divide Fractions	97
16.1b Multiply or Divide Rational Expressions	
16.1c Multiply and Divide Rational Expressions	
16.2 Add and Subtract Rational Expressions	
16.2a Review LCD/LCM of Numbers with Prime Factorization	
16.2b LCD/LCM of Monomials	
16.2c LCD/LCM of Polynomials	
16.2d Review Adding and Subtracting Fractions	
16.2e Add and Subtract with Common Denominator	
16.2f Add and Subtract with Different Denominators	
16.3 Compound Fractions	
16.3a Numbers	
16.3b Monomials	
16.3c Binomials	
16.3d Negative Exponents	
16.4 Rational Equations	
16.4a Clear Denominator	

16.4c Extraneous Solutions 111 16.5 Equations with Radicals 112 16.5 Equations with Radicals 113 16.5 be Ven Roots 114 16.5 be Ven Roots 114 16.5 c Isolate Radical 111 16.6 Equations with Exponents 117 16.6 a Odd Exponents 117 16.6 be Ven Exponents 117 16.6 c Isolate Exponents 116 16.7 Rectangle Problems 122 16.7 Rectangle Problems 122 16.7 A frames 122 16.7 Perimeter Problems 122 16.7 A frames 122 16.7 Percent of a Field 122 16.7 Percent of a Field 122 16.8 Work Problems 122 16.8 Dre Unknown Time 122 16.8 Dre Unknown Time 122 16.9 Distance and Revenue Problems 122 16.9 Distance and Revenue Problems 122 16.9 Distance 133 17.1 Evaluate Functions 134 17.1 Evaluate Functions 134 17.1 Evaluate Functions 135 17.1 Evaluate Functions	16.4b Factoring Denominator	
16 5a Odd Roots 111 16 5b Even Roots 114 16 5c Isolate Radical 112 16 5c Isolate Radical 111 16 5c Isolate Radical 111 16 5c Isolate Radical 111 16 5c Isolate Exponents 111 16 6c Isolate Exponents 112 16 6c Rational Exponents 112 16 7c Rectangle Problems 122 16 7c Rectangle Problems 121 16 7c Rectangle Problems 122 16 7c Bigger 122 16 7c Fargers 122 16 7c Fargers 122 16 7c Fargers 122 16 7c Fargers 122 16 7c Percent of a Field 122 16 8 Work Problems 122 16 8 One Unknown Time 122 16 8 One Unknown Time 122 16 9 Distance and Revenue Problems 122 16 9 Distance and Revenue Problems 122 16 9 Distance 133 17 16 9D Gitrance 133 17 16 9D Gitrance 134 17 16 Parcetons 133 17 16 Yealuste Functio	16.4c Extraneous Solutions	
16.5 b Even Roots 114 16.5 c Isolate Radical 115 16.6 Equations with Exponents 117 16.6 a Odd Exponents 117 16.6 a Odd Exponents 117 16.6 b Even Exponents 117 16.6 c Isolate Exponents 112 16.6 c Isolate Exponents 112 16.6 d Rational Exponents 120 16.7 Rectangle Problems 122 16.7 Rectangle Problems 122 16.7 D Perimeter Problems 122 16.7 C Bigger 122 16.7 d Frames 122 16.7 d Frames 122 16.7 d Frames 122 16.7 d Frames 122 16.8 Work Problems 122 16.8 Uno Unknown Time 126 16.8 D two Unknown Times 127 16.9 Distance and Revenue Problems 122 16.9 D Beavenue 122 16.9 D Beavenue 122 16.9 D Beavenue 122 16.9 D Beavenue 122 16.9 D Strace 133 16.9 D Strace 133 17.1 Evaluate Functions <	16.5 Equations with Radicals	
16.5 cl solate Radical. 115 16.6 Equations with Exponents. 117 16.6a Odd Exponents. 117 16.6b Even Exponents. 118 16.6c Isolate Exponents. 112 16.6d Rational Exponents. 112 16.7 Rectangle Problems 122 16.7 a Area Problems 122 16.7 b Perimeter Problems 122 16.7 C Bigger. 122 16.7 d Frames. 122 16.7 d Percent of a Field 125 16.8u One Unknown Time 126 16.8a One Unknown Time 126 16.9a Distance and Revenue Problems 122 16.9d Streams and Wind. 133 17.1 Evaluate Functions 136 17.1 Evaluate Functions 136 17.1 Evaluate Functions 136 17.1 Evaluate Function at an Expression 133 17.2 Operations on Functions 133 17.2 Operations on Functions 140 17.2 Distarce Functions 142 17.2 Operations on Functions 144 17.2 Operations on Functions 144 17.2 Operations on Functions 144	16.5a Odd Roots	
16.6 Equations with Exponents. 117 16.6a Odd Exponents. 117 16.6b Even Exponents. 118 16.6c Isolate Exponent. 119 16.6d Rational Exponents. 120 16.7 Rectangle Problems 121 16.7 Berimeter Problems 122 16.7 b Perimeter Problems 122 16.7 d Frames. 122 16.7 d Frames. 122 16.7 d Frames. 122 16.8 Work Problems 122 16.8 Drou Unknown Time 126 16.9 Distance and Revenue Problems 122 16.9 Distance. 123 16.9 Streams and Wind 133 17.1 Evaluate Functions 136 17.1 Evaluate Functions 136 17.1 Evaluate Functions 136 17.2 Operations on Functions 133 17.2 Operations on Functions 140 17.2 Operations on Functions 144 17.2 Multiply Functions 144	16.5b Even Roots	
16.6a Odd Exponents 117 16.6b Even Exponents 118 16.6c Isolate Exponent 119 16.6d Rational Exponents 120 16.7 Rectangle Problems 121 16.7 Rectangle Problems 121 16.7 A Area Problems 122 16.7 b Perimeter Problems 122 16.7 b Regress 122 16.7 c Bigger 122 16.7 d Frames 122 16.7 d Frames 122 16.8 Work Problems 122 16.8 D two Unknown Time 126 16.9 Distance and Revenue Problems 122 16.9 Distance and Revenue Problems 122 16.9 Distance and Revenue Problems 126 16.9 Distance and Revenue Problems 126 16.9 Distance 126 16.9 Simultaneous Products 126 16.9 Streams and Wind 133 17.1 Evaluate Functions 136 17.1 b Function Notation 137 17.2 Operations on Functions 138 17.2 Operations on Functions 144 17.2 Dobutate Functions 144 17.2 Dybutater Func	16.5c Isolate Radical	
16.6b Even Exponents 118 16.6c Isolate Exponent 119 16.6d Rational Exponents 120 16.7 Rectangle Problems 121 16.7 a Area Problems 121 16.7 a Area Problems 122 16.7 berimeter Problems 122 16.7 c Bigger 122 16.7 d Frames 122 16.7 d Frames 122 16.7 d Frames 122 16.7 d Frames 122 16.8 Work Problems 122 16.8 a One Unknown Time 126 16.9 Distance and Revenue Problems 122 16.9 Distance and Revenue Problems 126 16.9 Distance and Wind 133 16.9 d Streams and Wind 133 17.1 Evaluate Functions 134 17.1 b Function Notation 133 17.1 a Functions 134 17.2 Operations on Functions 134 17.2 Operations on Functions 144 17.2 bubtract Functions 144 17.2 bubtract Functions 144	16.6 Equations with Exponents	
16.6c Isolate Exponent. 111 16.6d Rational Exponents 122 16.7 Rectangle Problems 121 16.7 A Area Problems 122 16.7 berimeter Problems 122 16.7 c Bigger 122 16.7 d Frames 122 16.8 Work Problems 122 16.80 Dre Unknown Time 126 16.80 Dre Unknown Times 122 16.90 Distance and Revenue Problems 122 16.91 Distance and Revenue Problems 122 16.92 Distance 131 16.93 Simultaneous Products 122 16.94 Streams and Wind 133 17.15 Functions 136 17.16 Functions 136 17.17 Functions 136 17.10 Domain 135 17.20 Operations on Functions 142 17.20 Operations on Functions 144 17.20 Subtract Functions 144 17.20 Subtract Functions 144	16.6a Odd Exponents	
16.6d Rational Exponents 122 16.7 Rectangle Problems 121 16.7 A Area Problems 122 16.7 b Perimeter Problems 122 16.7 C Bigger 123 16.7 d Frames 122 16.8 Work Problems 122 16.80 Dru Unknown Time 126 16.80 Dru Unknown Times 122 16.90 Distance and Revenue Problems 122 16.91 Distance and Revenue Problems 122 16.92 Distance 131 16.93 Simultaneous Products 122 16.94 Streams and Wind 133 17.15 Functions 136 17.16 Functions 136 17.17 Evaluate Functions 136 17.10 Domain 135 17.20 Operations on Functions 142 17.20 Operations on Functions 144 17.20 Subtract Functions 144 17.20 Subtract Functions 144	16.6b Even Exponents	
16.7 Rectangle Problems 121 16.7 A Area Problems 121 16.7 b Perimeter Problems 122 16.7 c Bigger 123 16.7 d Frames 122 16.7 d Percent of a Field 122 16.8 Work Problems 126 16.8 One Unknown Time 126 16.9 Distance and Revenue Problems 122 16.9 D Sistance and Revenue Problems 122 16.9 D Sistance 131 16.9 G Streams and Wind 133 17.1 Evaluate Functions 136 17.1 b Function Notation 137 17.1 c Evaluate Functions 136 17.1 J Domain 133 17.2 Operations on Functions 140 17.2 Subtract Functions 144 17.2 Multiply Functions 144	16.6c Isolate Exponent	
16.7a Area Problems 121 16.7b Perimeter Problems 122 16.7c Bigger 122 16.7d Frames 122 16.7d Frames 122 16.7d Percent of a Field 122 16.7e Percent of a Field 122 16.8 Work Problems 126 16.8 Work Problems 126 16.8 Nore Unknown Time 126 16.9 Distance and Revenue Problems 122 16.9 Distance and Revenue Problems 125 16.9 Distance 131 16.9 Streams and Wind 133 Unit 17: 135 17.1 Evaluate Functions 136 17.1 b Function Notation 137 17.1 c Evaluate Functions 138 17.1 d Domain 135 17.2 Operations on Functions 140 17.2 b Subtract Functions 141 17.2 b Mutriply Functions 141	16.6d Rational Exponents	
16.7b Perimeter Problems 122 16.7c Bigger 123 16.7d Frames 124 16.7d Frames 124 16.7e Percent of a Field 125 16.8 Work Problems 126 16.8 Dre Unknown Time 126 16.8 Dre Unknown Time 126 16.9 Distance and Revenue Problems 127 16.9 Distance and Revenue Problems 128 16.9 Distance and Revenue Problems 126 16.9 Distance and Revenue 125 16.9 Distance 128 16.9 Distance 128 16.9 Distance 128 16.9 Distance 128 16.9 Distance 129 16.9 Distance 131 16.9 Distance 133 16.9 Distance 133 17.1 Evaluate Functions 136 17.1 Evaluate Functions 136 17.1 Evaluate Functions 137 17.1 Domain 138 17.10 Domain 136 17.2 Operations on Functions 140 17.2 Subtract Functions 141 17.2 Subtract Functions	16.7 Rectangle Problems	
16.7c Bigger. 123 16.7d Frames. 124 16.7e Percent of a Field 125 16.8 Work Problems 126 16.8 Work Problems 126 16.8 One Unknown Time 126 16.8 Divo Unknown Times. 127 16.9 Distance and Revenue Problems 128 16.9 Distance and Revenue Problems 128 16.9 Distance and Revenue Problems 128 16.9 Distance 129 16.9 Distance 131 16.9 Distance 133 16.9 Distance 133 16.9 Streams and Wind 133 17.1 Evaluate Functions 136 17.1 Evaluate Functions 136 17.1 Evaluate Function Notation 137 17.1 Domain 138 17.2 Operations on Functions 140 17.2 Dubtract Functions 141 17.2 Subtract Functions 141 17.2 Multiply Functions 141	16.7a Area Problems	
16.7d Frames. 124 16.7e Percent of a Field 125 16.8 Work Problems 126 16.8 One Unknown Time 126 16.8 Drwo Unknown Times. 127 16.9 Distance and Revenue Problems 122 16.9 Distance and Revenue Problems 122 16.9 Distance and Revenue Problems 122 16.9 Distance and Revenue Products 122 16.9 Distance and Revenue 122 16.9 distreams and Wind 133 16.9 distreams and Wind 133 17.1 Evaluate Functions 136 17.1 Evaluate Functions 136 17.1 Evaluate Functions 136 17.10 Function Notation 137 17.1 C Evaluate Function at an Expression 138 17.1 d Domain 135 17.2 Operations on Functions 140 17.2 b Subtract Functions 140 17.2 b Subtract Functions 141 17.2 c Multiply Functions 142	16.7b Perimeter Problems	
16.7e Percent of a Field 125 16.8 Work Problems 126 16.8 Work Problems 126 16.8 One Unknown Time 126 16.8 D Two Unknown Times 127 16.9 Distance and Revenue Problems 128 16.9 Distance and Revenue Problems 128 16.9 Distance and Revenue Problems 128 16.9 Distance and Revenue 129 16.9 Distance 133 16.9 distreams and Wind 133 Unit 17: 135 17.1 Evaluate Functions 136 17.1a Functions 136 17.1b Function Notation 137 17.1c Evaluate Function at an Expression 138 17.1d Domain 139 17.2 Operations on Functions 140 17.2 Distance Functions 140 17.2 bubtract Functions 141 17.2 c Multiply Functions 141	16.7c Bigger	
16.8 Work Problems 126 16.8 One Unknown Time 126 16.8 Two Unknown Times 127 16.9 Distance and Revenue Problems 128 16.9 Distance and Revenue Problems 128 16.9 Distance and Revenue 128 16.9 Distance 128 16.9 Distance 129 16.9 Distance 129 16.9 Distance 129 16.9 Distance 131 16.9 Distance 132 17.1 Evaluate Functions 136 17.1 Evaluate Function Notation 137 17.1 Evaluate Function at an Expression 138 17.1 Domain 135 17.2 Operations on Functions 140 17.2 Distorat Functions 140 17.2 b Subtract Functions 141	16.7d Frames	
16.8a One Unknown Time12616.8b Two Unknown Times12716.9 Distance and Revenue Problems12816.9a Simultaneous Products12216.9b Revenue12216.9c Distance13116.9d Streams and Wind133Unit 17:13517.1 Evaluate Functions13617.1a Functions13617.1b Function Notation13717.1c Evaluate Function at an Expression13817.2 Operations on Functions14017.2b Subtract Functions14017.2b Subtract Functions14117.2c Multiply Functions142	16.7e Percent of a Field	
16.8b Two Unknown Times.12716.9 Distance and Revenue Problems12816.9a Simultaneous Products12816.9b Revenue12916.9c Distance13116.9d Streams and Wind133Unit 17:13517.1 Evaluate Functions13617.1a Functions13617.1b Function Notation13717.1c Evaluate Function at an Expression13817.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	16.8 Work Problems	
16.9 Distance and Revenue Problems12816.9a Simultaneous Products12816.9b Revenue12916.9c Distance13116.9d Streams and Wind133Unit 17:13517.1 Evaluate Functions13617.1a Functions13617.1b Function Notation13717.1c Evaluate Function at an Expression13817.2 Operations on Functions14017.2b Subtract Functions14117.2b Subtract Functions14117.2c Multiply Functions142	16.8a One Unknown Time	
16.9a Simultaneous Products 128 16.9b Revenue 129 16.9c Distance 131 16.9d Streams and Wind 133 Unit 17: 135 17.1 Evaluate Functions 136 17.1a Functions 136 17.1b Function Notation 137 17.1c Evaluate Function at an Expression 138 17.1d Domain 138 17.2 Operations on Functions 140 17.2b Subtract Functions 141 17.2c Multiply Functions 142	16.8b Two Unknown Times	
16.9b Revenue12916.9c Distance13116.9d Streams and Wind133Unit 17:13517.1 Evaluate Functions13617.1a Functions13617.1b Function Notation13717.1c Evaluate Function at an Expression13817.1d Domain13917.2 Operations on Functions14017.2a Add Functions14117.2b Subtract Functions14117.2c Multiply Functions142	16.9 Distance and Revenue Problems	
16.9c Distance13116.9d Streams and Wind133Unit 17:13517.1 Evaluate Functions13617.1a Functions13617.1b Function Notation13717.1c Evaluate Function at an Expression13817.1d Domain13517.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	16.9a Simultaneous Products	
16.9d Streams and Wind. 133 Unit 17: 135 17.1 Evaluate Functions 136 17.1a Functions 136 17.1b Function Notation 137 17.1c Evaluate Function at an Expression 138 17.1d Domain 139 17.2 Operations on Functions 140 17.2a Add Functions 140 17.2b Subtract Functions 141 17.2c Multiply Functions 142	16.9b Revenue	
Unit 17:13517.1 Evaluate Functions13617.1a Functions13617.1b Function Notation13717.1c Evaluate Function at an Expression13817.1d Domain13917.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	16.9c Distance	
17.1 Evaluate Functions13617.1a Functions13617.1b Function Notation13717.1c Evaluate Function at an Expression13817.1d Domain13917.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	16.9d Streams and Wind	
17.1a Functions13617.1b Function Notation13717.1c Evaluate Function at an Expression13817.1d Domain13917.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	Unit 17:	
17.1b Function Notation13717.1c Evaluate Function at an Expression13817.1d Domain13917.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	17.1 Evaluate Functions	
17.1c Evaluate Function at an Expression13817.1d Domain13917.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	17.1a Functions	
17.1d Domain13917.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	17.1b Function Notation	
17.2 Operations on Functions14017.2a Add Functions14017.2b Subtract Functions14117.2c Multiply Functions142	17.1c Evaluate Function at an Expression	
17.2a Add Functions	17.1d Domain	
17.2b Subtract Functions	17.2 Operations on Functions	
17.2c Multiply Functions	17.2a Add Functions	
	17.2b Subtract Functions	141
	17.2c Multiply Functions	
17.2d Divide Functions	17.2d Divide Functions	

17.2e Composition of Functions	
17.2f Compose a Function with Itself	146
17.2g Composition of Several Functions	147
17.3 Inverse Functions –	149
17.3a Show Functions are Inverses	149
17.3b Finding an Inverse Function	151
17.3c Inverse of Rational Functions	153
17.4 Graphs of Quadratic Functions	155
17.4a Key Points	155
Unit 18:	157

Unit 13: Compound Inequalities

To work through the unit, you should:

- 1. Watch a video, as you watch, fill out the workbook (top and example sections).
- 2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
- 3. Repeat #1 and #2 with each page until you reach the 😂.
- 4. Complete the homework assignment on your own paper.
- 5. Repeat #1 thru #4 until you reach the end of the unit.
- 6. Complete the review/practice test on your own paper.
- 7. Take the unit exam.

13.1 Inequalities13.1a Graphing

Inequalities:

- Less than:
- Less than or equal to:
- Greater than:
- Greater than or equal to:

Graphing on number line: Use _	for less/greater than and use	when its "or equal to"
--------------------------------	-------------------------------	------------------------

Example 1:	Q1:
Graph $x \ge -3$	
Example 2:	Q2:
Give the inequality	
-5 -4 -3 -2 -1 0 1 2 3 4 5	

13.1b Interval Notation

Interval notation:(,)

Use ______ for less/greater than and use ______ when its "or equal to"

 ∞ and $-\infty$ always use a _____

13.1c Solving

Solving inequalities is very similar to solving		(with one exception)	
Three steps with inequalities:	, then	, then	
Example 1:	Q1:		
$7 + 5x \le 17$			
Example 2:	Q2:		
3(x+8)+2 > 5x-20			

13.1d Multiply or Divide by a Negative

What happens to $5 > -2$ when we multiply both sides by -3 ? $(-3)5 \2(-3)$		
When or	by a	you must
Three steps with inequalities:	, then	, then
Example 1: $7 - 3x \le 16$	Q1:	
Example 2: 4 < −2 <i>x</i> + 16	Q2:	

13.1e Tripartite

Tripartite inequalities:				
When solving				
When graphing				
Three steps with inequalities:		then	, then	
Example 1:		Q1:		
$2 \le 5x + 7 <$	22	Q1.		
$2 \leq 3x + 7 \leq$	22			
		Q2:		
Example 2: $5 < 5 - 4x \le$	12	Q2.		
$3 < 3 - 4x \leq$	15			
You have completed t	he videos for 13.1 Ineo	qualities. On your	own paper, complete the	homework

13.2 Compound Inequalities 13.2a OR (two directions)

Q1:

First, we will ______ each part above the number line, then we will ______ the union (OR)

Symbol for Union:

Example 1:

4x + 7 < -5 OR $-4x - 8 \le -20$

Example 2:

8x+9 < 4x-19 OR $2(4x-8)-2 \le 12x-50$

Q2:

13.2b OR (one direction)

With an OR if both graphs go the same direction than we use the ______

 Example 1:
 $4x-6>10 \text{ OR } 5-2x \le 7$
 $4x-6>10 \text{ OR } 5-2x \le 7$
 $5x+5<2x-9 \text{ OR } 7x+3 \le 5(x-1)$

13.2c AND (between)

AND:

First, we will _______ each part above the number line, then we will use the ______ (AND)

Example 1: Q1: 6x+5<11 AND $-7x+2\leq44$ Q1: Example 2: Q2: 11x-10>3x-2 AND $2(5x-3)+2\geq18x-52$ Q2:

13.2d AND (one direction)

With an AND if both graphs go the same direction than we use the _____

 Example 1:
 Q1:

 $5x-6 \ge 26$ AND 3x+1 > x-9 q1:

 $5x-6 \ge 26$ AND 3x+1 > x-9 q2:

 Example 2:
 2(4x+4) > 6x+2 AND $7-x \le 3+x$

 2(4x+4) > 6x+2 AND $7-x \le 3+x$ q2:

13.2e Special Cases

OR can give us	of number line or	, in interval notation	
AND can give us	_ of the number line or	, in interval nota	tion
Example 1:		Q1:	
2x+1 < x-3 OR 3	$(x+1) \ge x-15$		
Example 2:		Q2:	
$-3(4x-1) \le 15$ AN	D $2x-3 \leq -9$		
A You have completed	the videos for 13.2 Comp	ound Inequalities. On your own paper, co	mplete the

STOP

homework assignment.

18

13.3 Absolute Value Equations

13.3a Two Solutions

|x| = 5 so the x could be _____ or ____ What is inside the absolute value can be ______ or _____ This means we have _____ Example 1: Q1: |2x-5| = 7Example 2: Q2: |7-5x|=17

13.3b Isolate the Absolute Value

Before we look at our two equations, we must first _____

Never ______ through absolute value!

Never ______a term ______an absolute value and a term ______an absolute value!

Example 1:

$$5+2|3x-4|=11$$

Example 2:

$$-3-7|2-4x|=-31$$

Q1:

Q2:

13.3c Dual Absolute Values

Q1:

With two absolutes, we need _____

The first equation is _____

The second equation is _____

Example 1:

$$|2x-6| = |4x+8|$$

Example 2:

Q2:

You have completed the videos for 13.3 Absolute Value Equations. On your own paper, complete the homework assignment.

13.4 Absolute Value Inequalities 13.4a GreatOR Than

x > 2 means the from zet	ro is than 2.
-5 -4 -3 -2 -1 0 1 2 3 4	
This is a graph of a compound	inequality. It can be written as
If the absolute value is greatOR than a number	er, we set up an

13.4b Less Than

 |x| < 2 means the ______ from zero is ______ than 2.

 \leftarrow +</t

Example 2:

 $|4x+1| \leq 2$

Q2:

13.4c Isolate Absolute Value

Before setting up a compound inequality, we must first ______ the absolute value! Beware: with absolute value we cannot ______ or ______ Example 1: Q1: 2-7|3x+4| < -19Q2: Example 2: $5+2|4x-1| \le 17$ You have completed the videos for 13.4 Absolute Value Inequalities. On your own paper, complete the homework assignment.

Congratulations! You made it through the material for Unit 13: Compound Inequalities. It is time to prepare for your exam. On a separate sheet of paper, complete the practice test. Once you have completed the practice test, ask your instructor to take the test. Good luck!

Unit 14: Systems of Equations

To work through the unit, you should:

- 1. Watch a video, as you watch, fill out the workbook (top and example sections).
- 2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
- 3. Repeat #1 and #2 with each page until you reach the 😂.
- 4. Complete the homework assignment on your own paper.
- 5. Repeat #1 thru #4 until you reach the end of the unit.
- 6. Complete the review/practice test on your own paper.
- 7. Take the unit exam.

14.1 Systems 14.1a Introduction to Substitution

Substitution: Replace the	with what it	
Example 1:	Q1:	
x = -3		
2x - 3y = 12		
Example 2:	Q2:	
4x - 7y = 11		
<i>y</i> = -1		

Just as we can replace a variable with a number, we can also replace it with an ______

Whenever we substitute it is important to remember ______

Example 1:

-x - 5y = -11

y = 5x - 3

Example 2:

2x - 6y = -24

$$x = 5y - 22$$

Q1:

14.1c Solve for a Variable

To use substitution, we may have to ______a lone variable

If there are several lone variables _____

Example 1:

6x + 4y = -14

x - 2y = -13

Example 2:

$$-5x + y = -17$$

$$7x + 8y = 5$$

Q1:

If the variables subtract out to zero then it means either there is ______ or _____

Example 1:

x + 4y = -721 + 3x = -12y

Example 2:

$$5x + y = 3$$
$$8 - 3y = 15x$$

Q1:

14.1e Addition/Elimination

If there is no lone variable, it may be better to use _____ This method works by adding the ______ and _____ sides of the equations together Example 1: Q1: -8x - 3y = -122x + 3y = -6Q2: Example 2: -5x + 9y = 295x - 6y = -11

14.1f Addition/Elimination and Multiplying an Equation

Addition only works if one of the variables have _	
To get opposites we can multiply	of an equation to get the value we want
Be sure when multiplying to have a	in front of either the or the

Example 1:

2x - 4y = -44x + 5y = -21

Example 2:

-5x + 3y = -3-7x + 12y = 14

Q1:

14.1g Addition/Elimination and Multiplying Both Equations

Sometimes we may have to multiply ______ by something to get opposites

The opposite we look for is the _____ of both coefficients

Example 1:

-6x + 4y = 264x - 7y = -13

Example 2:

3x + 7y = 2

$$10x + 5y = -30$$

If the variables subtract out to zero than it means either there is ______ or _____

Example 1:

2x - 4y = 163x - 6y = 20

Example 2:

$$-10x + 4y = -6$$

$$25x - 10y = 15$$

You have completed the videos for 14.1 Systems. On your own paper, complete the homework assignment.

14.2 Systems with Three Variables 14.2a Simple

To solve systems with three variables we must		the	variable
This will give us	equations with	variables we ca	n then solve for!
Example 1:		Example 2:	
3x-	3y + 5z = 16		-x + 2y + 4z = -20
2x-	6y - 5z = 35		-2x - 2y - 3z = 5
-5x-	12y + 5z = 28		4x - 2y - 2z = 26

14.2b Multiply to Eliminate

To eliminate a variable, we may have to _	one or more equations to get
---	------------------------------

Example 1:

$$-2x - 2y + 3z = -6$$
$$3x - 3y - 2z = -17$$
$$5x - 4y + 5z = 11$$

You have completed the videos for 14.2 Systems with Three Variables. On your own paper, complete the homework assignment.

14.3 Applications of Systems

14.3a Value Comparison

Define the _____

Make an equation for the _____

Make an equation for the _____

Example 1:

Brian has twice as many dimes as quarters. If the value of the coins is \$4.95, how many of each does he have?

Example 2:

A child has three more nickels than dimes in her piggybank. If she has \$1.95 in her bank, how many of each does she have?

14.3b Value with Total

Define the _____

Make an equation for the _____

Make an equation for the _____

Example 1:

Scott has \$2.25 in his pocket made up of quarters and dimes. If there are 12 coins, how many of each coin does he have?

Example 2:

If 105 people attended a concert and tickets for adults cost \$2.50 while tickets for children cost \$1.75 and total receipts for the concert were \$228, how many children and how many adults went to the concert?

14.3c Interest Comparison

Define the _____

Make an equation for the _____

Make an equation for the _____

Beware: When using a percent, we must _____

Example 1:

Sophia invested \$1900 in one account and \$1500 in another account that paid 3% higher interest rate. After one year she had earned \$113 in interest. At what rates did she invest?

Example 2:

Carlos invested \$2500 in one account and \$1000 in another which paid 4% lower interest. At the end of a year he had earned \$345 in interest. At what rates did he invest?

14.3d Interest with Total Principle

Define the _____

Make an equation for the _____

Make an equation for the _____

Beware: When using a percent, we must _____

Example 1:

A woman invests \$4600 in two different accounts. The first paid 13%, the second paid 12% interest. At the end of the first year she had earned \$586 in interest. How much was in each account?

Example 2:

A bank loaned out \$4900 to two different companies. The first loan had a 4% interest rate; the second had a 13% interest rate. At the end of the first year the loan had accrued \$421 in interest. How much was loaned at each rate?

STOP

You have completed the videos for 14.3 Application of Systems - Value problems. On your own paper, complete the homework assignment.

14.4 Applications of Systems14.4a Mixture with Starting Amount

Define the _____

Make an equation for the _____

Make an equation for the _____

Example 1:

A store owner wants to mix chocolate and nuts to make a new candy. How many pounds of chocolate which costs \$1.50 per pound should be mixed with 40 pounds of nuts that cost \$3.00 per pound to make a mixture worth \$2.50 per pound?

Example 2:

You need a 55% alcohol solution. On hand, you have 600 mL of 10% alcohol mixture. You also have a 95% alcohol mixture. How much of the 95% mixture should you add to obtain your desired solution?

14.4b Mixture with Final Amount

Define the _____

Make an equation for the _____

Make an equation for the _____

Example 1:

A chemist needs to create 100 mL of a 38% acid solution. On hand she has a 20% acid solution and a 50% acid solution. How many mL of each should she use?

Example 2:

A coffee distributor needs to mix a coffee blend that normally sells for \$8.90 per pound with another coffee blend that normally sells for \$11.16 per pound, how many pounds of each kind of coffee should they mix if the distributer needs 50 pounds of the new mix to sell for \$9.85?

14.4c Mixture with Final Amount

Pure water is ______ alcohol

Pure alcohol or acid is _____alcohol or acid

Example 1:

You need a 55% alcohol solution. On hand, you have a 385 mL of a 70% alcohol mixture. How much pure water will you need to add to obtain the desired solution?

Example 2:

You need a 30% alcohol solution. You have on hand 210 mL of a 10% alcohol solution. How much pure alcohol do you need to add to obtain the desired solution?

You have completed the videos for 14.4 Applications of Systems – Mixture problems. On your own paper, complete the homework assignment.

Congratulations! You made it through the material for Unit 14: Systems of Equations. It is time to prepare for your exam. On a separate sheet of paper, complete the practice test. Once you have completed the practice test, ask your instructor to take the test. Good luck!

Unit 15: Radicals

To work through the unit, you should:

- 1. Watch a video, as you watch, fill out the workbook (top and example sections).
- 2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
- 3. Repeat #1 and #2 with each page until you reach the 😂.
- 4. Complete the homework assignment on your own paper.
- 5. Repeat #1 thru #4 until you reach the end of the unit.
- 6. Complete the review/practice test on your own paper.
- 7. Take the unit exam.

15.1 Simplify Radicals 15.1a Variables

Radical: $\sqrt[n]{a} = b$ where T	The <i>n</i> is called the		
Square Root: $\sqrt{a} = b$ where	The index on a square root is always		
Radicals divide the by the			
The whole number is how many "things"	and the remainder is how many "things"		
Example 1:	Q1:		
$\sqrt{a^3}$			
Example 2:	Q2:		
$\sqrt[4]{b^{19}}$			

15.1b Several Variables

Work with ______ variable at a time

Example 1:	Q1:
$\sqrt{a^5b^8c^{15}}$	
Example 2:	Q2:
$\sqrt[4]{a^{13}b^{23}c^{10}d^3e^{36}}$	

15.1c Using Prime Factorization

Prime Factorization:			
To find a prime factorization we	by		
A few prime numbers:			
Roots of numbers are difficult, find the by the		_ so that we can divide the	
Example 1:	Q1:		
∛750			
Example 2: $9\sqrt{250x^4yz^5}$	Q2:		

15.1d Binomials

We can only pull	(s	separated by) out of a radical
If we have	(separated by	or) we must	first!
Example 1:		Q1:	
$\sqrt{100x^2}$ -	$-16x^{4}$		
Example 2:		Q2:	
$\sqrt[3]{216x^6}$ -	$-27x^{9}$		

15.2 Add, Subtract and Multiply Radicals 15.2a Add Like Radicals

Simplify: 2x - 5y + 4x + 2y

Simplify: $2\sqrt{3} - 5\sqrt{7} + 4\sqrt{3} + 2\sqrt{7}$

When adding and subtracting radicals we can _____

Example 1:

 $-4\sqrt{6} + 2\sqrt{11} + \sqrt{11} - 5\sqrt{6}$

Example 2:

 $\sqrt[3]{5} + 3\sqrt{5} - 8\sqrt[3]{5} + 2\sqrt{5}$

Q1:

15.2b Add with Simplifying

Before adding radicals together _____

Example 1: Q1: $5\sqrt{50x} + 5\sqrt{27} - 3\sqrt{2x} - 2\sqrt{108}$ Q2: Example 2: $\sqrt[3]{81x^3y} - 3y\sqrt[3]{32x^2} + x\sqrt[3]{24y} - \sqrt[3]{500x^2y^3}$

15.2c Multiply Monomial Radical Expressions

Q1:

Product Rule: $a\sqrt[n]{b}\Box c\sqrt[n]{d} =$

Always be sure your final answer is _____

Example 1:

 $4\sqrt{6}$ 2 $\sqrt{15}$

Example 2:

 $-3\sqrt[4]{8}$ 7 $\sqrt[4]{10}$

Recall: a(b+c) =

Always be sure your final answer is ______

Example 1:

 $5\sqrt{10}\left(2\sqrt{6}-3\sqrt{15}\right)$

Example 2:

 $7\sqrt{3}\left(\sqrt{6}+9\right)$

Q1:

Recall: (a+b)(c+d) =

Always be sure your final answer is ______

Example 1:

 $\Big(3\sqrt{7}-2\sqrt{5}\Big)\Big(\sqrt{7}+6\sqrt{5}\Big)$

Example 2:

$$(2\sqrt[3]{9}+5)(4\sqrt[3]{3}-1)$$

Q1:

Recall:
$$(a+b)^2 =$$

Always be sure your final answer is _____

Example 1:

 $\left(\sqrt{6}-\sqrt{2}\right)^2$

Example 2:

$$\left(2+3\sqrt{7}\right)^2$$

Q1:

Q2:

Recall: (a+b)(a-b) =

Always be sure your final answer is _____

Example 1:

 $\left(4+2\sqrt{7}\right)\left(4-2\sqrt{7}\right)$

Example 2:

 $\left(2\sqrt{3}-\sqrt{6}\right)\left(2\sqrt{3}+\sqrt{6}\right)$

You have completed the videos for 15.2 Add, Subtract, and Multiply Radicals. On your own paper complete the homework assignment.

STOP

15.3 Rationalize Denominator

15.3a Simplifying with Radicals

Expression with radicals: Always _	the	first
Before	with fractions, be sure to	first
Example 1:	Q1:	
$\frac{15+\sqrt{175}}{10}$		
Example 2:	Q2:	
$\frac{8-\sqrt{48}}{6}$		

15.3c Rationalize Monomial Roots in the Denominator

Rationalize Denominators: Never l	eave a in the	
To clear radicals:	by extra needed factors in denominator (same in numerator!)	
It may be helpful to	ful to first	
Hint: num	ibers!	
Example 1: $\frac{5}{\sqrt[7]{b^2}}$	Q1:	
Example 2: $\sqrt[3]{\frac{7}{9a^2b}}$	Q2:	

15.3d Rationalize Binomial Denominators

What does not work:
$$\frac{1}{2+\sqrt{3}} =$$

Recall: $(2+\sqrt{3})()$ =

Multiply by the _____

Example 1: $\frac{6}{5-\sqrt{3}}$

Q1:

Example 2:

$$\frac{3-5\sqrt{2}}{4+2\sqrt{2}}$$

Q2:

STOP

You have completed the videos for 15.3 Rationalize Denominators. On your own paper, complete the homework assignment.

15.4 Rational Exponents 15.4a Convert

If we divide the exponent by the index, then $\sqrt[n]{a^m}$	=
The index is the	_
Example 1:	Q1:
Write as an exponent: $\sqrt[7]{m^5}$	
Example 2:	Q2:
Write as a radical: $(ab)^{2/3}$	
Example 3: Write as a radical: $x^{-4/5}$	Q3:
Example 4: Write as an exponent: $\frac{1}{\left(\sqrt[3]{5x}\right)^2}$	Q4:

15.4b Evaluate

To evaluate a rational exponent ______ to a _____ Example 1: Q1: Evaluate: $32^{2/5}$ Example 2: Q2: Evaluate: $27^{-4/3}$

Recall Exponent Properties

$$a^{m}a^{n} = \frac{a^{m}}{a^{n}} = (ab)^{m} = a^{0} = a^{0} = a^{-m} = \frac{1}{a^{-m}} = \frac{1}{a^{-m}} = a^{0} = a^{$$

To Simplify:

Example 1:

 $\frac{x^{4/3}y^{2/7}x^{5/4}y^{3/7}}{x^{1/2}y^{6/7}}$

Example 2:

 $\left(\frac{256x^{3/2}y^{-1/3}}{x^{1/4}y^{3/2}x^{-5/2}}\right)^{-1/8}$

15.5 Radicals of Mixed Index 15.5a Reduce Index

Using rational exponents: $\sqrt[8]{x^6y^2} =$		
To reduce the index the	and the	by the
Without using rational exponents: $\sqrt[8]{x^6y^2} =$		
Hint: any numbers		
Example 1: $\sqrt[15]{x^3y^9z^6}$	Q1:	
Example 2: $\sqrt[25]{32a^{10}b^5c^{20}}$	Q2:	

15.5b Multiply Mixed Index

Using rational e	exponents: $\sqrt[3]{a^2b} \mathbb{I} \sqrt[4]{ab^2} =$			
Get a	by	the	and	
Without using r	rational exponents: $\sqrt[3]{a^2b}$	$\overline{b^2} =$		
Hint:	any numbers			
Always be sure	your final answer is			
Example 1:		Q1:		
	$\sqrt[4]{m^3n^2p} \sqrt[m]{mn^2p^3}$			
Example 2:		Q2:		
	$\sqrt[3]{4x^2y}$ $\sqrt[5]{8x^4y^2}$			

15.5c Divide Mixed Index

Division with mixed index – get a _____

Hint: ______ any numbers

May have to ______ the denominator (cannot be under a ______ and under a ______)

Example 1:

 $\frac{\sqrt{ab^3}}{\sqrt[3]{ab^2}}$

Q1:

Q2:

Example 2:

You have completed the videos for 15.5 Radicals of Mixed Index. On your own paper, complete the homework assignment.

STOP

15.6 Complex Numbers 15.6a Square Roots of Negatives

Define: $\sqrt{-1} =$ and therefore $i^2 =$			
Now we can calculate $\sqrt{-25} =$			
Expressions with radicals: Always	the	first	
Example 1: $\sqrt{-45}$	Q1:		
Example 2: $\sqrt{-6}$	Q2:		

Before	with fractions, be sure to	first
Example 1: $\frac{15 + \sqrt{-300}}{5}$	Q1:	
Example 2: $\frac{20 + \sqrt{-80}}{8}$	Q2:	

15.6b Simplify Square Roots of Negatives

15.6c Add and Subtract

i works just like _____

This means we can _____

Example 1:

(5-3i)+(6+i)

Example 2:

$$(-5-2i)-(3-6i)$$

Q1:

Q2:

15.6d Powers of *i*

15.6e Multiply

<i>i</i> works just like	
Remember $i^2 =$	
Example 1:	Q1:
(-3i)(6i)	
Example 2: $2i(5-2i)$	Q2:
Example 3: $(4-3i)(2-5i)$	Q3:
Example 4: $(3+2i)^2$	Q4:

15.6f Rationalize Monomial Denominators

 If i = then we can rationalize it by just multiplying by _____

 Example 1:
 Q1:

 $\frac{5+3i}{4i}$ Image: Comparison of the second seco

Example 2:

 $\frac{2-i}{-3i}$

Q2:

15.6g Rationalize Binomial Denominators

Q1:

Q2:

Similar to other radicals we can rationalize a binomial by multiplying by the _____

(a+bi)(a-bi) =

Example 1:

 $\frac{4i}{2-5i}$

Example 2:

$$\frac{4-2i}{3+5i}$$

STOP

You have completed the videos for 15.6 Complex Numbers. On your own paper, complete the homework assignment.

15.7 Complete the Square 15.7a Find c

 $a^2 + 2ab + b^2$ is easily factored to _____

To make $x^2 + bx + c$ a perfect square, c =

Example 1:

Find c and factor the perfect square: $x^2 + 10x + c$

Example 2:

Find c and factor the perfect square

 $x^2 - 7x + c$

Example 3:

Find *c* and factor the perfect square:

$$x^2 - \frac{3}{7}x + c$$

Example 4:

Find c and factor the perfect square:

$$x^2 + \frac{6}{5}x + c$$

Q1:

Q2:

Q3:

Q4:

15.7b Rational Solutions

If $x^2 = 9$ then there are _____ solutions for x, _____ and _____. We can write this as ______

To complete the square on $ax^2 + bx + c = 0$

- 1. Separate ______ and _____
- 2. Divide by _____ (everything)
- 3. Find the ______ and _____ to _____

Example 1:

 $x^2 - x - 6 = 0$

Example 2:

 $3x^2 = 15x - 18$

Q1:

15.7c Irrational and Complex Solutions

If we can't simplify the	we	what we can.
Example 1:	Exa	mple 2:
$5x^2 - 3x + 2 = 0$		$8x + 32 = 4x^2$

You have completed the videos for 15.7 Complete the Square. On your own paper, complete the homework assignment.

15.8 Quadratic Formula 15.8a Finding the Formula

Solve by Completing the Square:

 $ax^2 + bx + c = 0$

(Finding the Formula is useful to know for the test!)

Q1:

Q2:

If $ax^2 + bx + c = 0$ the x =

Example 1:

 $6x^2 + 7x - 3 = 0$

Example 2:

 $5x^2 - x + 2 = 0$

93

15.8c Make Equation Equal Zero

Before using the quadratic formula, the equation must equal ______ and be in ______ That is the equation should look like:

Example 1: Q1: $2x^2 = 15 - 7x$ Q2: Example 2: $3x^2 + 5x + 2 = 7$

15.8d Missing Terms

If a term is missing, we use _____ in the quadratic formula

You have completed the videos for 15.8 Quadratic Formula. On your own paper, complete the homework assignment.

STOP

Congratulations! You made it through the material for Unit 15: Radicals. It is time to prepare for your exam. On a separate sheet of paper, complete the practice test. Once you have completed the practice test, ask your instructor to take the test. Good luck!

Unit 16: College Algebra Topics

To work through the unit, you should:

- 1. Watch a video, as you watch, fill out the workbook (top and example sections).
- 2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
- 3. Repeat #1 and #2 with each page until you reach the 😂.
- 4. Complete the homework assignment on your own paper.
- 5. Repeat #1 thru #4 until you reach the end of the unit.
- 6. Complete the review/practice test on your own paper.
- 7. Take the unit exam.

16.1 Multiply and Divide Rational Expressions 16.1a Review Multiply and Divide Fractions

To multiply we	common	then	multiply
Division is the same, with one	e extra step at the start:	by th	ne
Example 1:		Q1:	
$\frac{6 21}{35 10}$			
Example 2: $\frac{5}{8} \div \frac{10}{3}$		Q2:	
83			

16.1b Multiply or Divide Rational Expressions

To multiply we	common	then multiply	
This means we must first			
Division is the same, with one extra s	tep at the start:	by the	
Example 1:	0	(1 :	

$$\frac{x^2 + 3x + 2}{4x - 12} \frac{x^2 - 5x + 6}{x^2 - 4}$$

Example 2:

$$\frac{3x^2 + 5x - 2}{x^2 + 3x + 2} \div \frac{6x^2 + x - 1}{2x^3 - 6x^2 - 8x}$$

Q2:

16.1c Multiply and Divide Rational Expressions

To divide:	
To multiply we common	then multiply
This means we must first	
Example 1: $x^{2} + 3x - 10 - 2x^{2} - x - 3 = 8x + 20$	Q1:
$\frac{x^2 + 3x - 10}{x^2 + 6x + 5} \frac{2x^2 - x - 3}{2x^2 + x - 6} \div \frac{8x + 20}{6x + 15}$	
Example 2: $\frac{x^2 - 1}{x^2 - x - 6} \frac{2x^2 - x - 15}{3x^2 - x - 4} \div \frac{2x^2 + 3x - 5}{3x^2 + 2x - 8}$	Q2:
You have completed the videos for 16.1 Mul	Itiply and Divide Rational Expressions. On your own

paper, complete the homework assignment.

16.2 Add and Subtract Rational Expressions 16.2a Review LCD/LCM of Numbers with Prime Factorization

Prime Factorization:			
To find the LCD/LCM use	factors with	exponents	
Example 1:		Q1:	
Find the LCD/LCN 20 and 36	Л:		
Example 2: Find the LCD/LCN 18,54 and 81	Л:	Q2:	

16.2b LCD/LCM of Monomials

To find the LC	CD/LCM with variables use	factors with	exponents	
Example 1:	Find the LCD/LCM: $5x^3y^2$ and $4x^2y^5$	Q1:		
Example 2:	Find the LCD/LCM: $7ab^2c$ and $3a^4b$	Q2:		

16.2c LCD/LCM of Polynomials

To find the LCD/LCM with polynomials use	factors with	exponents	
This means we must first			
Example 1:	Q1:		
Find the LCD/LCM:			
$x^{2} + 3x - 18$ and $x^{2} + 4x - 21$			
Example 2:	- Q2:		
Find the LCD/LCM:			
$x^2 - 10x + 25$ and $x^2 - x - 20$			

To add or subtract we	the denominators by	by the missing
Example 1: $\frac{5}{21} + \frac{7}{15}$	Q1:	
Example 2: $\frac{8}{14} - \frac{3}{10}$	Q2:	

16.2d Review Adding and Subtracting Fractions

16.2e Add and Subtract with Common Denominator

Add the ______ and keep the _____

When subtracting we will first ______ the negative

Don't forget to _____

Example 1:

$$\frac{x^2 + 4x}{x^2 - 2x - 15} + \frac{x + 6}{x^2 - 2x - 15}$$

Example 2:

$$\frac{x^2 + 2x}{2x^2 - 9x - 5} - \frac{6x + 5}{2x^2 - 9x - 5}$$

Q1:

Q2:

16.2f Add and Subtract with Different Denominators

To add or subtract we	the denominators by	by the missing
This means we must first	the denominato	Drs
Example 1:	Q1:	
$\frac{2x}{x^2-9} + \frac{5}{x^2+x-6}$	5	
Example 2: $2x + 7$ $3x - 3x $		
$\frac{2x+7}{x^2-2x-3} - \frac{3x-3}{x^2+6x}$; + 5	
You have completed the v	videos for 16.2 Add and Subtract	Rational Expressions. On your own paper,
complete the homework		, ,

16.3 Compound Fractions 16.3a Numbers

Compound/Complex Fractions:

Clear ______ by multiplying each ______ by the ______ of everything Example 1: Q1: $\frac{\frac{3}{4} + \frac{5}{6}}{\frac{1}{2} - \frac{4}{3}}$ Example 2: Q2: $\frac{\frac{1}{2}+2}{1+\frac{9}{4}}$

16.3b Monomials

Recall: To find the LCD with variables, use the ______ exponents Be sure to check for ______ by _____ the numerator and denominator. Example 1: Q1: $\frac{1-\frac{9}{x^2}}{\frac{1}{x}+\frac{3}{x^2}}$ Example 2: Q2: $\frac{\frac{1}{y^3} - \frac{1}{x^3}}{\frac{1}{x^2y^3} - \frac{1}{x^3y^2}}$

16.3c Binomials

Recall: To find the LCD with variables, use the ______ exponents. Be sure to check for ______ by _____ the numerator and denominator. Example 1: Q1: $\frac{\frac{5}{x-2}}{3+\frac{2}{x-2}}$ Example 2: Q2: $\frac{\frac{x}{x-9} + \frac{5}{x+9}}{\frac{x}{x} - \frac{5}{5}}$ $x + 9 \quad x - 9$

Q1:

Q2:

Recall: $5x^{-3} =$

If there is any or	we can't just	terms. Instead make
--------------------	---------------	---------------------

Example 1:

$$\frac{1\!+\!10x^{-1}+25x^{-2}}{1\!-\!25x^{-2}}$$

Example 2:

$$\frac{8b^{-3} + 27a^{-3}}{4a^{-1}b^{-3} - 6a^{-2}b^{-2} + 9a^{-3}b^{-1}}$$

You have completed the videos for 16.3 Compound Fractions. On your own paper, complete the homework assignment.

STOP

Recall: $\frac{3}{4}x - \frac{1}{2} = \frac{5}{6}$

Clear fractions by multiplying each	by the	
Example 1:	Q1:	
$\frac{5}{x} = \frac{3}{7x} - 4$		
Example 2: $\frac{4}{x+5} + x = \frac{-2}{x+5}$	Q2:	

16.4b Factoring Denominator

To identify all the factors in the	we may have to	the	
Example 1:	Q1:		
$\frac{x}{x-6} + \frac{1}{x-7} = \frac{-3x-8}{x^2 - 13x + 42}$			
Example 2:	Q2:		
$\frac{2}{x+3} - \frac{9x}{x^2 - 9} = \frac{1}{x-3}$			

16.4c Extraneous Solutions

Because we are working with fractions, the	cannot be
Example 1: $\frac{x}{x-8} - \frac{2}{x-4} = \frac{-3x+56}{x^2 - 12x + 32}$	Q1:
Example 2: $\frac{x}{x-2} + \frac{2}{x-4} = \frac{4x-12}{x^2-6x+8}$	Q2:

16.5 Equations with Radicals 16.5a Odd Roots

The opposite of taking a root is to do an				
$\sqrt[3]{x} = 4$ then $x =$	(Note: This only worl	ks for an	index)	
Example 1:		Q1:		
³ √2.	$\overline{x-5} = 6$			
Example 2:		Q2:		
الم	$\overline{x-7}=2$			

16.5b Even Roots

The opposite of taking a root is to do an _____

With even roots we must ______ the answer in the original equation! (called ______)

Recall: $(a+b)^2 =$

Example 1:

 $x = \sqrt{5x + 24}$

Example 2:

$$\sqrt{40-3x} = 2x-5$$

Q1:

IMPORTANT: Before we can clear a radical it must first be

Example 1:

 $4 + 2\sqrt{2x - 1} = 2x$

Example 2:

 $2\sqrt{5x+1} - 2 = 2x$

Q1:

16.6 Equations with Exponents 16.6a Odd Exponents

The opposite of taking an exponent is to do a				
If $x^3 = 8$, then $x =$	(Note: This only works f	(Note: This only works for an		exponent)
Example 1:		Q1:		
(3 <i>x</i> +	$5)^{5} = 32$			
Example 2: (2 <i>x</i> –	$(-1)^3 = 64$	Q2:		

Consider: $(5)^2 =$ and $(-5)^2 =$

When we clear an even exponent, we have ______

Example 1:

 $\left(5x-1\right)^2 = 49$

Example 2:

 $\left(3x+2\right)^4 = 81$

Q1:

16.6c Isolate Exponent

IMPORTANT: Before we can clear an exponent, it must first be ______

 $5(3x-2)^2+6=46$

Example 1: $(3x-6)^{3/2} = 64$ Example 2: $(5x+1)^{4/5} = 16$ Q1: Q2: Q2: Q2:

16.7 Rectangle Problems 16.7a Area Problems

Area of a rectangle:	
To help visualize the rectangle,	
There are three ways to solve any quadratic equation	
1. 2. 3.	
Example 1: The length of a rectangle is 2 ft longer than the width. The area of the rectangle is 48 ft ² . What are the dimensions of the rectangle?	Q1:
Example 2: The area of a rectangle is 72 cm ² . If the width is 6 cm less than the length, what are the dimensions of the rectangle?	Q2:

16.7b Perimeter Problems

Tip: Solve the	_ equation for a variable and	in the	equation.
----------------	-------------------------------	--------	-----------

Example 1:

The area of a rectangle is 54m². If the perimeter is 30 meters, what are the dimensions of the rectangle?

Q1:

Example 2:

The perimeter of a rectangle is 22 inches. If the area of the same rectangle is 24 in², what are the dimensions?

16.7c Bigger

We may have to draw _____ rectangles

Multiply/Add to the ______ rectangle to make it equal the ______ rectangle

Example 1:

Each side of a square is decreased 6 inches. When this happens, the area of the larger square is 16 times the area of the smaller square. How many inches is the side of the original square? Q1:

Example 2:

The length of a rectangle is 9 feet longer than it is wide. If each side is increased 9 feet, then the area is multiplied by 3. What are the dimensions of the original rectangle?

16.7d Frames

To help visualize the frame _____

Remember the frame is on the ______ and _____ also the ______ and _____

Example 1:

A frame measures 13 inches by 10 inches and is of uniform width. If the area of the picture inside is 54 square inches, what is the width of the frame?

Q1:

Example 2:

An 8-inch by 12-inch drawing has a frame of uniform width around it. The area of the frame is equal to the area of the picture. What is the width of the frame?

16.7e Percent of a Field				
Clearly identify the area of the	and	rectangles!		
Be careful with, is it talking	about the	,, or	?	
Example 1: A man mows his 40 ft by 50 ft rectangular lawn in spiral pattern starting from the outside edge. By noon he is 90% done. How wide of a strip has he cut around the outside edge?	a Q1:			
Example 2: A woman has a 50 ft by 25 ft rectangular field tha she wants to increase by 68% by cultivating a strip of uniform width around the current field. How wide of a strip should she cultivate?				

16.8 Work Problems 16.8a One Unknown Time

Adam does a	ioh in 4 hours	Each hour he does	of the j	inh
	job in 4 nours.	Luch nour ne uoes	01 the	100.

Betty does a job in 12 hours. Each hour she does ______ of the job.

Together, each hour they do ______ of the job

This means together it would take them _____ hours to do the entire job.

Work equation:

Example 1:

Catherine can paint a house in 15 hours. Dan can paint it in 30 hours. How long will it take them working together?

Q1:

Example 2:

Even can clean a room in 3 hours. If his sister Faith helps, it takes them $2\frac{2}{5}$ hours. How long will it take Faith working alone?

16.8b Two Unknown Times

Be sure to clearly identify who is the _____

Example 1:

Tony does a job in 16 hours less time than Marissa, and they can do it together in 15 hours. How long will it take each to do the job alone? Q1:

Example 2:

Alex can complete his project in 21 hours less than Hillary. If they work together it can get done in 10 hours. How long does it take each working alone? Q2:

You have completed the videos for 16.8 Work Problems. On your own paper, complete the homework assignment.

16.9 Distance and Revenue Problems

16.9a Simultaneous Products

Simultaneous product:	equations with	variables that are	
To solve:	both by the same	Then	

Example 1:

xy = 72(x-5)(y+2) = 56

Revenue Equation:

Beware: Profit =

To solve: Divide by what we _____

Example 1:

A group of college students bought a couch for \$80. However, five of them failed to pay their share so the others had to each pay \$8 more. How many students were in the original group?

Example 2:

A merchant bought several pieces of silk for \$70. He sold all but two of them at a profit of \$4 per piece. His total profit was \$18. How many pieces did he originally purchase? Q1:

Distance Equation:

To solve: Divide by what we _____

Example 1:

A man rode his bike to a park 60 miles away. On the return trip he went 2 mph slower which made the trip take 1 hour longer. How fast did he ride to the park?

Example 2:

After driving through a construction zone for 45 miles, a woman realized that if she had just driven 6 mph faster, she would have arrived 2 hours sooner. How fast did she drive? Q1:

Downwind/stream:

Upwind/stream:

Example 1:

Zoe rows a boat downstream for 80 miles. The return trip upstream took 12 hours longer. If the current flows at 3 mph, how fast does Zoe row in still water?

Example 2:

Darius flies a plane against a headwind for 5084 miles. The return trip with the wind took 20 hours less time. If the wind speed is 10 mph, how fast does Darius fly the plane when there is no wind? Q1:

STOP

You have completed the videos for 16.9 Distance and Revenue Problems. On your own paper, complete the homework assignment.

Congratulations! You made it through the material for Unit 16: College Algebra Topics. It is time to prepare for your exam. On a separate sheet of paper, complete the practice test. Once you have completed the practice test, ask your instructor to take the test. Good luck!

Unit 17: Functions

To work through the unit, you should:

- 1. Watch a video, as you watch, fill out the workbook (top and example sections).
- 2. Complete Q1 and Q2 in WAMAP, put your work in the right column of the page.
- 3. Repeat #1 and #2 with each page until you reach the 🕯.
- 4. Complete the homework assignment on your own paper.
- 5. Repeat #1 thru #4 until you reach the end of the unit.
- 6. Complete the review/practice test on your own paper.
- 7. Take the unit exam.

17.1 Evaluate Functions 17.1a Functions

17.1b Function Notation

Function notation:

What is inside of the function	the

Example 1:

$$f(x) = -x^2 + 2x - 5$$

Find $f(3)$
Q1:
 $g(x) = \sqrt{2x + 5}$
Find $g(20)$
Q2:
Q2:

When replacing a variable, we always use _____ What is inside of the function ______ the _____ Example 1: Q1: $f(x) = \sqrt{2x} + 3x$ Find $f(8x^2)$ Q2: Example 2: $p(n) = n^2 - 2n + 5$ Find p(n-3)

17.1c Evaluate Function at an Expression

138

17.1d Domain

Domain:

Fractions:

Even Radicals:

Example 1: Q1: Find the domain: $f(x) = 3\sqrt[4]{2x-6} + 4$ Example 2: Q2: Find the domain: $g(x) = 3|2x+7|^2 - 4$ Example 3: Q3: Find the domain: $h(x) = \frac{x-1}{x^2 - x - 2}$

You have completed the videos for 17.1 Evaluate Functions. On your own paper, complete the homework assignment.

17.2 Operations on Functions 17.2a Add Functions

Add Functions: $(f+g)(x) =$			
With a number we will	both, then	the results	
With a variable we will	the two functions	Use	!
Example 1:	Q1:		
f(x) = x - 4			
$g(x) = x^2 - 6x + 8$			
Find $(f+g)(-2)$			
Example 2:	Q2:		
$f(x) = x^2 - 5x$			
$f(x) = x^2 - 5x$ $g(x) = x - 5$			
Find $(f+g)(x)$			

17.2b Subtract Functions

Subtract Functions: $(f-g)(x) =$			
With a number we will	both, then	the results	
With a variable we will	the two functions	Use	<u>!</u>
Example 1:	Q1:		
$f(x) = x - 4$ $g(x) = x^{2} - 6x + 8$			
$g(x) = x^2 - 6x + 8$			
Find $(f-g)(-2)$			
Example 2:	Q2:		
$f(x) = x^2 - 5x$			
$f(x) = x^2 - 5x$ $g(x) = x - 5$			
Find $(f-g)(x)$			

17.2c Multiply Functions

Multiply Functions: $(f\Box g)(x)$ =	=			
With a number we will	both, then		the results	
With a variable we will	the two functions		Use	!
Example 1:		Q1:		
f(x) = x - c	4			
$g(x) = x^2 - 6x$	$f(x) = x - 4$ $g(x) = x^{2} - 6x + 8$			
Find $(f \Box g)(-2)$				
Example 2:		Q2:		
	5 <i>x</i>			
$f(x) = x^2 - z$ $g(x) = x - z$	5			
Find $(f \Box g)(x)$				

Example 1:

$$f(x) = x - 4$$
$$g(x) = x^{2} - 6x + 8$$
Find $\left(\frac{f}{g}\right)(-2)$

Q1:

Example 2:

Find $\left(\frac{f}{g}\right)(x)$

$$f(x) = x^2 - 5x$$
$$g(x) = x - 5$$

Q2:

Composition of Functions:								
$(f \circ g)(x) =$								
With numbers,	the	and put	in					
With a variable, put the	in for the		in the					
Example 1:		Example 2:						
$f(x) = \sqrt{x+6}$ $g(x) = x+3$			$p(x) = x^2 + 2x$					
$g(x) = x + 3$ $(f \circ g)(7) =$		$(p \circ r)(x) =$	r(x) = x + 3					
$g\left\lceil f(7)\right\rceil =$		r[p(n)] =						
g[J(')]-		$\left[P(n) \right]^{-}$						

17.2f Compose a Function with Itself

A function can be composed with _____

Example 1: f(x) = 2x - 4Find $(f \circ f)(-2)$ Q1: Find $(f \circ f)(-2)$

Example 2:

$$g(x) = x^2 - 3x$$

Find g[g(x)]

Q2:

If we are composing several functions, start in the ______ and work ______

Example 1:

$$f(x) = x + 2$$
$$g(x) = x^{2} - 5$$
$$h(x) = \sqrt{3x}$$
Find $(f \circ g \circ h)(2)$

Example 2:

$$f(x) = x + 2$$
$$g(x) = x^{2} - 5$$
$$h(x) = \sqrt{3x}$$

Find $(f \circ g \circ h)(a)$

17.3 Inverse Functions 17.3a Show Functions are Inverses

Inverse Function:

To test if functions are inverses, calculate ______ and _____, the answer to both should be ______

Example 1:

Are they inverses? f(x) = 3x - 8 $g(x) = \frac{x}{3} + 8$

Example 2:

Are they inverses?

$$f(x) = \frac{5}{x-3} + 6$$
$$g(x) = \frac{5}{x-6} + 3$$

17.3b Finding an Inverse Function

To find an inverse function ______ the _____ and _____, then solve for _____.

(the _____ is the y!)

Example 1:

Find the inverse:

$$h(x) = \frac{-3}{x-1} - 2$$

Example 2:

Find the inverse:

$$g(x) = 5\sqrt[3]{x-6} + 4$$

17.3c Inverse of Rational Functions

Clear fractions by			_		
Put the terms with		on one side and			_ on the other side
Factor out the	and		_ to	get it alone	
Example 1:				Example 2:	

Find the inverse:

$$f(x) = \frac{2x-5}{x+3}$$

Find the inverse:

$$g\left(x\right) = \frac{5x+1}{2x-5}$$

17.4 Graphs of Quadratic Functions 17.4a Key Points

Example 1:

Graph the function:

$$f(x) = x^2 - 2x - 3$$

Example 2:

You have completed the videos for 17.4 Graphs of Quadratic Functions. On your own paper, complete the homework assignment.

Congratulations! You made it through the material for Unit 17: Functions. It is time to prepare for your exam. On a separate sheet of paper, complete the practice test. Once you have completed the practice test, ask your instructor to take the test. Good luck!

Unit 18: Proficiency Exam #3

To work through this unit, you should:

- 1. Complete the review/practice tests on your own paper.
- 2. Take the (two part) unit exam.