OVERVIEW

The mission of Big Bend Community College is to serve the educational needs of a diverse population throughout its service district. As a comprehensive two-year community college, the institution works with its partners to provide a variety of educational opportunities by implementing the following Board of Trustees End Statements:

E-1: Big Bend Community College is dedicated to our mission as stated above.

E-2: Big Bend Community College provides quality resources and affordable access to the diverse population in its entire district.

E-3: Big Bend Community College works with organizations and agencies to enhance access and service for our district population.

E-4: Big Bend Community College students and clients develop and achieve their goals supported by the staff and resources of the college and its partners.

E-5: Big Bend Community College provides and maintains a climate of purpose, respect and safety for students, staff and partners.

E-6: The Board will promote a climate of cultural understanding to be reflected in an approach for both students and college employees that results in an attitude of inquiry and openness. In the workplace and community, this approach sets a standard for customer service and civility in all interactions. In the classroom, it leads to understanding of our world and the people in it.

BIG BEND COMMUNITY COLLEGE
Facility Master Plan

A letter from President William C. Bonaudí:

We have an opportunity to put on paper a fresh view of the structures, purposes and relationships that we believe will serve the emerging needs of students who will come to us for help in achieving their dreams 20 years from now.

I look to that time and see a continuing need for a campus that reflects our continued support of student success. While our infrastructure will need to be even more flexible, efficient, sustainable and bold in design in adapting to successful new technologies, the Big Bend Family must survive as a corps of staff who will affirmatively interact with students, visitors and each other.

With an eye to the future, our campus will be modern, efficient, and flexible. New and replacement buildings will provide the latest educational technology and will be designed to attract new students to our institution. Old buildings and structures will be replaced with new and improved buildings that will meet the needs of current and future students.

We will continue to reach out to our off-campus students and residents, providing those who have the skills and motivation, all the services and instruction available on campus. Yet, we will always consider the majority of our students who will thrive in a personal “high-touch” environment. A web page will not be the key to attracting, retaining and helping students reach their goals. A vibrant campus climate with services, training, and athletic activities is the key to continue to draw students and visitors to all the state resources we make available to the central Columbia Basin.

The opportunity is to create a vibrant physical master plan that creates these ideas and reflects the vision of strong personal support of our students, our visitors and of each other.

William C. Bonaudí, Ed.D., President
HIGHLIGHTS OF THE PLAN

The college community, regional industry leaders and interested community members joined in a collaborative effort to define the goals, objectives and vision for the future of the Big Bend Community College Campus in correlation with the Academic Master Plan (AMP) and Board of Trustees’ Ends Statements E-1, E-2, E-3, E-4, E-5, E-6.

-Objectives of Goal #1 (E-1, E-2) will be met through the addition of new buildings such as a Professional & Technical Education Center and the Global Learning Opportunity Center, as well as planned renovations to existing facilities in order to provide the college with state-of-the-art learning facilities. This will provide the college with spaces that simulate actual work environments, are technology-driven and are adaptable to future teaching methodologies. These campus improvements will also support high-demand programs such as the Nursing, Agriculture and Energy programs.

-Goal #2 objectives (E-1, E-2, E-3) are satisfied by ensuring future campus improvements are planned with accessibility, life safety and sustainability in mind. All buildings, whether new construction or renovations, will be designed to provide safe and secure learning environments for individual and group study. As instructional methodologies incorporate new and emerging technologies, the college will ensure ease of access to technology. Campus security at night will be improved by enhancements to the lighting and surveillance systems.

-Objectives of Goal #3 (E-1, E-2, E-3) address the importance of conveying a sense of place and campus identity. Entrances to campus will be accentuated with improved signage and landscaping. Design strategies that reduce pedestrian vehicle conflicts will be implemented at crosswalks, pathways and parking lots. Pedestrian boulevards and quads will be planned for that connect key facilities with the campus core and that provide outdoor, informal gathering spaces. The plan also calls for outdoor recreational facilities such as soccer fields and tennis courts that increase community engagement, making Big Bend Community College a hub for the surrounding community. These amenities are envisioned to tie into a natural landscape that incorporates native, adaptive plantings that require minimal irrigation.

-Objectives of Goal #4 (E-1, E-3, E-4, E-5, E-6) will enable the college to strengthen its partnerships with regional industries while continuing to collaborate with civic organizations. The Professional and Technical Education Center and the Global Learning Opportunity Center will become strong recruitment tools for the college while providing spaces for specialized training specific to industry, continuing education programs and will provide flexible space for meetings and training opportunities. The Global Learning Opportunity Center will also provide a high level of service to critical programs such as the Agriculture and Energy Programs. A new Performing Arts Center will be planned for, expanding the college’s ability to host cultural events while expanding its fine arts offerings. Additionally, a new Recreation & Athletics Center will offer physical fitness spaces for students, staff and the community as a whole.

-Objectives of Goal #5 (E-1 thru E-6) are directed towards the communities within the college’s service district. As a community college, Big Bend is dedicated to engaging its community members through campus-wide improvements that are welcoming and inviting. Improvements and additions to campus facilities will enable the college to maintain its current programs at a high level of service with an eye to future advancements in technology and teaching methodologies. The new educational, recreational and cultural facilities described above will become strong attractions for the community that will help develop a stronger sense of pride and ownership in the campus.

GUIDING PRINCIPLES

A set of planning principles is being utilized to develop the Facility Master Plan. These guides care full consideration to the context and history of the campus and its surroundings. These design principles include:

- Sustainability
- Connections with community
- Flexible, adaptable, multi-use spaces
- Safety & accessibility
- Adaptability to future technologies
- Informal & formal learning spaces
ACKNOWLEDGEMENTS

Facility Master Plan
Big Bend Community College

BOARD OF TRUSTEES
Mike Blakely
Katherine Kenison
Jon Lane
Angela Pixton
Mike Wren

ADMINISTRATION
Dr. Bill Bonaudi, President
Gail Hamburg, Vice President for Financial and Administrative Services
Bob Mohrbacher, Vice President for Instruction and Student Services
Holly Moos, Vice President of Human Resources and Labor
Candy Lacher, Associate Vice President of Student Services

FACILITY MASTER PLANNING COMMITTEE
Gail Hamburg
Bob Mohrbacher
Todd Davis
Holly Moos
Mike O’Konek
Clyde Rasmussen
Shantel McCashland
Annemarie Cadle
Rie Palovic
Julia Gamboa

Scott Carsey
Shawn McDanielf

DEPARTMENT OF GENERAL ADMINISTRATION
Dave Lohrenengel, Project Manager

GRANT COUNTY ECONOMIC DEVELOPMENT COUNCIL
Jonathan Smith, Managing Director

GRANT COUNTY DEPARTMENT OF COMMUNITY DEVELOPMENT
Tyler Lawrence, Assistant Planner

SPECIAL THANKS
Terry Kinzel
Heidi Summers
John Peterson
Katherine Christian
Chris Riley
Daneen Berry-Guerin
Mike DeHoog
Jerry Wright
Deena Westerman
Valerie Kirkwood
Starr Bernhardt
Mary Shannon

RGU ARCHITECTURE & PLANNING
Robert G Uhrich, AIA, LEED®AP
Lauri Uhrich
Redgy Erb, LEED®AP

Everyone is a genius. But if you judge a fish on its ability to climb a tree, it will live its whole life believing that it is stupid.

-A. Einstein
1 Overview
- Facility Master Plan Components
- Academic Master Plan
- Goals & Objectives

2 Environmental Scan
- External Connectivity
- External Educational Trends
- External Demographics
- External Growth Occupations
- External High Wage Opportunities
- External Findings
- Internal Student Demographics
- Internal Resources and Retention
- Student Survey Results
- Facility Assessment Survey Results

3 Space Utilization
- Programs
- Space Utilization
- Facility Placement
- Space Need Calculation

4 Current Conditions
- Landscape & Zoning
- Infrastructure
- Circulation
- Facility Condition
- Building Summaries
- Zoning Recommendation
- Existing Campus
- Existing Campus Zones

5 Recommendations
- Design Standards
- Sustainability
- Planned Projects
- Project Schedule - Biennium
- Proposed Campus Zones
- Immediate Needs
- Short Term Needs
- Medium Term Needs
- Long Term Needs
- Long Range Campus Development Plan
- Campus Landscaping Plan

6 Immediate Needs
- Professional Technical Education Center
- Allied Health
- Global Learning Opportunity Center
OVERVIEW
FACILITY MASTER PLAN

The Facility Master Plan is a strategic effort brought about by Big Bend Community College’s Administration. The purpose of this effort is to evaluate and identify the physical needs of the campus to support Big Bend’s academic mission and strategic vision.

In October of 2010 a group of campus visionaries were appointed to assist RGU Architecture & Planning with gathering the qualitative and quantitative data necessary to conduct a comprehensive study of the campus and its effectiveness in serving current and future academic programs. This committee served as the primary connection between the College and the consulting team.

Through the committee RGU was able to identify goals and guiding principles for the Facility Master Plan. Each goal is directly related to the College’s Mission and End Statements and all recommendations support Big Bend’s Vision.

Big Bend Community College’s 2011 Facility Master Plan is comprised of six main components.

Component 1 contains an overview of the College’s academic and campus history. It further examines the College’s mission and academic goals. To increase validity the consulting team spent several days on campus in an effort to grasp a true sense of its culture. RGU collected and reviewed past studies, surveys and reports to learn more about Big Bend’s campus and its vision for the future.

Several strategic planning meetings were held, focus groups conducted, surveys developed and distributed, qualitative interviews were conducted and observations were made. Great effort was made to ensure that the information used to develop the Facility Master Plan was gathered from a cross-sectional campus and community perspective. The consulting team attended college workshops, met with regional economic leaders and interviewed area businesses and industry.

Component 2 is an external and internal scan of Big Bend. This scan takes considerable care to review what is happening surrounding the campus as well as what is happening within the campus. Information is gathered through several means. Interviews with faculty and students were conducted, surveys distributed, and small focus groups were held. Input was gathered from the college’s Institution Research Department, Grant County Economic Development Council, Grant County Planning Department, students and the Washington State Board for Community and Technical Colleges.

Component 3 is an in-depth assessment of the space availability and usage across campus.

Component 4 is an in-depth assessment of the conditions of current facilities and their ability to meet current and future educational trends. Time was spent analyzing how each of the facilities functioned and improvements that could be made to enhance learning objectives. Guiding principles were:

- Multiple use of space
- Flexibility of space
- Adaptability of space
- How well the space promotes collaboration, peer-to-peer exchanges, learning communities and real-world experiences
- How the facilities function alone and with the campus
- Accessibility of the facility
- Technology and the ability for future upgrades
- The facilities’ ability to promote collaboration with other educational sectors, community organizations and private industry
- Sustainability of the facility
- Emergency preparedness and disaster protection features

Additionally, all of the buildings’ major components were reviewed and analyzed.

Component 5 is the consulting team’s recommendations and tentative schedule for future capital projects and possible funding sources. The consulting team created a strategic time line for capital improvements that will need updating on an ongoing basis.

Component 6 is immediate needs. This will need to be continually updated as projects are realized.
MISSION
The mission of Big Bend Community College is to serve the educational needs of a diverse population throughout its service district. As a comprehensive two-year community college, the institution works with its partners to provide a variety of educational opportunities, including: courses and training for university and college transfer, occupational and technical programs, basic skills and developmental education, community and continuing education, pre-employment and customized training for local business and industry, and support services for students to help promote student access, success and retention.

VISION
The residents of the Big Bend Community College service district will recognize the college as a regional resource to provide learning opportunities that are accessible, professional, innovative, and service-oriented. They will view the college as supporting regional economic development through partnerships with local business and industry that address current and emerging workforce challenges.

ENDS STATEMENT E-3 PARTNERSHIPS
• BBCC works with organizations and agencies to enhance access and service for our district population

This is seen through active participation by the BBCC Board, staff and students at the local, state, and national and international levels, in planning and implementation of both policy and service.

ENDS STATEMENT E-4 STUDENT ACHIEVEMENT
• BBCC students and clients develop and achieve their goals supported by the staff and resources of the college and its partners

Accordingly, the college develops and utilizes a comprehensive range of assessment tools and practices, consistent with the college mission.

ENDS STATEMENT E-5 CLIMATE
• BBCC provides and maintains a climate of purpose, respect, and safety for students, staff, and partners

This means the college will establish, maintain, and review standards of service, safety, and ethical conduct for students and staff. The college efforts in its personnel and student recruitment policies reflect a commitment to cultural inclusiveness.

ENDS STATEMENT E-6 MULTICULTURALISM
• The Board will promote a climate of cultural understanding to be reflected in an approach for both students and college employees that results in an attitude of inquiry and openness. In the workplace and community, this approach sets a standard for customer service and civility in all interactions. In the classroom it leads to understanding of our world and the people in it

Big Bend Community College devotes its resources and efforts to student success. Student success is indicated by increased momentum points, student enrollment, student retention, and number of certificates and degrees awarded.
FACILITY MASTER PLAN
GOALS & OBJECTIVES

The Master Plan goals were developed through a series of meetings held with the Facility Master Planning Committee at the beginning of the planning process.

Special emphasis was placed on correlating the Master Plan Goals with the College’s overall Mission and Ends Statements.

GOAL #1
OFFER STATE OF THE ART TEACHING AND LEARNING OPPORTUNITIES

Objectives:
1. Provide educational spaces that reflect current and future needs of area businesses and industry.
2. Provide flexible, properly sized, modern classrooms and labs that enhance current and future instructional methodologies.
3. Provide flexible, user-friendly technology campuswide and throughout Big Bend’s service district.
4. Provide informal learning areas that encourage student-to-student and student-to-faculty interactions.

GOAL #2
PROVIDE A SAFE, ACCESSIBLE AND SUSTAINABLE CAMPUS

Objectives:
1. Increase security by installing additional lighting, security cameras and by providing 24-hour security.
2. Provide for ADA compliance, accessibility and fire sprinklers in facilities.
3. Provide safe and accessible computer and tutoring labs throughout campus.
4. Provide technology that is easy to access campus-wide.
5. Provide individual and group study areas that are flexible, safe and secure.
6. Provide useful and aesthetically pleasing signage.
7. Increase use of public transportation.

GOAL #3
CREATE A SENSE OF CAMPUS IDENTITY

Objectives:
1. Create a user-friendly inviting campus and facilities with a central core, special places and consistent landscaping.
2. Enhance campus pedestrian and vehicular entrances.
3. Transform Big Bend’s image from that of ‘The Base’ to a provider of excellence in higher education, technical education and continuing education opportunities.
4. Define the campus edge with peripheral signage.
5. Building designs represent their usage.
6. Provide community recreational and collaborative space.

GOAL #4
EXPAND AND ENHANCE PARTNERSHIPS AND COLLABORATION

Objectives:
1. Develop a Professional & Technical Education Facility.
2. Develop a Global Learning Opportunity Center.
3. Strengthen K-12 outreach programs.
4. Feature Allied Arts and other cultural events.
5. Provide space that allows for regional and statewide meetings and training in a central location.
6. Develop and offer continuing education classes.
7. Develop a recreation and fitness center that offers membership to the community.

GOAL #5
INCREASE COMMUNITY ENGAGEMENT WITH THE COLLEGE

Objectives:
1. Create a more welcoming campus.
2. Create a Recreation & Athletic Center and Outdoor Athletic Fields.
3. Provide more on-campus events and activities that attract the community to campus.
4. Create welcoming and inviting outdoor gathering and reflection space.
5. Increase sense of community ownership in the College.
6. Capitalize on training opportunities in developing business and industry, specifically, energy, aviation and agriculture.
When Moses Lake was chosen for the site of the Big Bend Community College campus, it was a town of 10,000 people with a booming economy and a rosy future. Larson Air Force Base was flourishing with a military population of approximately 4,000 airmen. Titan missile silos were being built, bringing thousands of workers into the area, and Boeing was operating its flight test facility there, employing about 500 people at its peak. Wanapum and Priest Rapids Dams were being constructed on the nearby Columbia River by the Grant County P.U.D., while the Columbia Basin Federal Irrigation Project was turning Moses Lake into the primary farm service center of the area. The population of the town was expected to grow, and like any town that has faced a decade-long population boom, Moses Lake was faced with a severe housing shortage. There was a surplus of potential college students in the area, some for vocational and some for academic transfer programs.

The college was named Big Bend as the result of a contest. Early settlers had given the name “Big Bend Country” to the five counties situated within the bend of the Columbia River. It was an appropriate name for the new school.

A number of teachers were taken from the ranks of the local high school and the college received its first student application. On September 12, 1962 the college officially opened even though it was still without a campus. Classes were held in the high school building and on the Air Force base. Because these buildings were in use during the day, classes began at 4 p.m. and ran until 10 p.m. The new college had six administrators, 23 full-time faculty, and 30 part-time faculty comprised mostly of teachers in the area and Air Force personnel and dependents.

The new school opened in the Fall of 1963 on a portion of its 144 acre campus. Designed by a local architect and costing $1.4 million, the school contained a covered courtyard with fountain, a gymnasium, classroom building, student union-library and an administration building. College newspapers of the time depict a school full of spirit. Frequent dramatic productions were performed for various groups at the air base as well as at the college itself.

The college was still settling into its shining new buildings when the news came that was to cause a decade-long slump in the economy of the area. The Defense Department announced in 1964 that it would close Larson Air Force Base in June of 1966. Immediately personnel and equipment began to be transferred to other bases.

Big Bend President Philips, realizing the disastrous effect that this move would have on the community and college, immediately began to take measures to resuscitate the area. As chairman of the Larson Action Committee, he went to Washington, D.C. to convince the authorities to turn the air base over to local use (Big Bend Community College).

As the Air Force vacated the hangars and runways of the air base, Big Bend Community College took advantage of the government’s gift to move its new Aviation Division from the Moses Lake Municipal Airport. Also relocated on the former base were the aviation mechanics and practical nursing programs. New programs also began in welding, electronics and automotive technology.

Relocating the college on the old air base presented many problems. Divisions such as Science and Humanities found themselves separated by many acres, students were challenged to find the bookstore, which was sandwiched in the middle of one of the dormitories, and everyone felt a little like a G.I.

One of the first buildings to undergo remodeling was the base theatre, later named the Wallenstein Performing Arts Center. In 1974, the spring before the campus move was made, the theatre was hurriedly made ready for the first annual college musical, which starred Leonard Nimoy as Fagan in “Oliver.”

The opening of school in the Fall of 1981 brought into use the new gymnasium and activities facility as well as an enlarged administration and student center complete with bookstore. In addition, fascias had been added to a number of other buildings, giving an architectural unity to the campus.

Big Bend Today - Over the years a new humanities building has been built and renovations and additions have been made to the base bowling alley to become the math and science building. Between 2004-2008 Big Bend opened the doors of two new facilities: the 1900 Fine Arts facility and the 1800 Grant County Advanced Technology Education Center that houses a state of the art Library and Resource Learning Center. Additionally it brings cultural, community and academic events to campus through its engaging Masto Conference Center.

These two facilities have created the framework for the future campus. Future plans will work within the guidelines set to create an engaging campus core that maximizes student interactions and access to student services. Big Bend continues its pursuit to create campus unity. Many of the struggles faced in 1975 remain. Distance still separates students from each other, from resources and from student services. Environments remain ill suited for academic purposes. The overall feel of the campus remains that of an abandoned Air Force base.

The Grant County Advanced Technology Education Center has been a great accomplishment. It serves as the hub of the campus, offering students a place to connect with each other, community events and with the outside world. The state of the art Library Resource Center and food service facilities offer modern day learning environments and comfortable places to gather. Future facilities will be designed to feature many of these same guiding principles.
Big Bend Community College recognizes that its future depends on how it plans for and reacts to what is happening around it locally, nationally and globally. Delivering sustainable education and skills advancement opportunities to an increasingly diverse population under a realm of varying conditions will require foreword, analytical, strategic, and collaborative planning.

The trends identified through this external environmental scan will largely influence the future direction of the college, local community, surrounding business, industry and students. It is vital that the college recognize and incorporate current educational and economic trends into its planning efforts.

THE COLLEGE GLOBALLY

The United States economy is no longer restricted to its borders. Increasingly, companies are competing on a global level. Technology advancements are streamlining processes and allowing service and manufacturing industries to access cheaper labor and establish their companies worldwide.

As countries move themselves out of third world status we will see both increased competition and expanding markets. This trend will bring either tremendous opportunities or overwhelming obstacles, depending upon the skill sets of the nation’s workforce. Economic growth and community development will require a connected and coordinated relationship between educators, economic leaders and local business and industry. Creating collaborative and coordinated partnerships is key to providing a workforce that can compete on a local and global level.

THE COLLEGE IN RELATIONSHIP TO THE NATION

To obtain an accurate picture of what may lie ahead for the college, it is critical to understand both the current and projected economic outlook of the nation.

Currently, the fiscal stability and productivity of our nation remains at risk as we continue to face difficult economic times. The weak fiscal state of our nation has brought decreasing economic support of our education system and has resulted in Big Bend Community College tightening its belt and placing more emphasis on strategic planning, partnering, leveraging and private fundraising.

According to the Bureau of Economic Analysis, Real Gross Domestic Product, the output of goods and services produced by labor and property located in the United States, increased 1.9% in the first quarter of 2011 following a 3.1% increase in the last quarter of 2010. Although this is an improvement from 2008, growth remains stagnant and consumers remain wary.

To complicate matters further, privatized trade schools and online higher education opportunities are emerging throughout the nation. In addition to decreased funding, public colleges are now competing with private companies for students.

Students can access courses offered by schools 2000 miles away in the privacy of their own living rooms. Competition for students is increasing on a state, national, and global level. Faced with these obstacles Big Bend must offer affordable educational opportunities that are reflective of industry need to an increasingly diverse, low income and nontraditional student population.

THE COLLEGE IN RELATIONSHIP TO THE STATE

The economy of Central Washington has a direct influence on Big Bend, both because it affects jobs and services in the community and region, and because it impacts resources available to the college. Currently, Washington State’s economic outlook is uncertain. According to the State Department of Employment Security, in May 2011, the State reported an unemployment rate of 8.8%. For the same period Grant County posted an unemployment rate of 9.8%.

Many Big Bend service area residents are still feeling the effects of the recession and are turning to Big Bend for skill enhancement and training. This increased demand is occurring when Washington State’s support for Community and Technical College education is being severely cut.

Due to the ongoing economic downturn, Washington State is looking for ways to reduce spending. The State Board for Community and Technical Colleges (SBCTC) has mothballed several previously funded capital projects and stopped receiving proposals for future projects. The effects of reduced capital funding are being felt statewide. Big Bend will need to strategically plan for all future capital improvements. Maximizing community engagement and developing programs that are representative of the current and future needs of surrounding business and industry will be essential.
THE COLLEGE IN RELATIONSHIP TO THE LOCAL REGION AND WORKFORCE

Big Bend Community College is located in Moses Lake, Washington, approximately 6 miles from the city center. The region is primarily an agricultural setting, but in recent years has experienced growth in manufacturing and alternative energy. Grant County’s economy is largely based on agriculture, food processing, energy, manufacturing and the health care industry.

SERVICE AREA

While assessing conditions at Big Bend, it is critical to examine the college service area. Big Bend serves Washington State’s Community College District #18. District #18 is made up of 4,600 square miles. Students attending Big Bend travel from as far away as 75 miles. The district serves 15 school districts and communities.

Within the service area, the population currently totals almost 120,000. By the year 2020, using current growth rates the population in the College’s service area is projected to increase by roughly 20,000. This population is growing at a rate of 1.8% per year. This average is significantly higher than that of both the State (1.01%) and the nation (1.23%). This growth suggests future increases in enrollment at the College.

Grant and Adams Counties have been identified by the Educational Needs Index (ENI) as a critical area for educational needs. This index takes an in-depth look at educational, economic and population factors. Key items include:

- Current level of educational attainment of the state and its respective counties
- Current health of each of the state’s counties from an economic perspective
- Counties that are quickly growing and/or have shifting demographics that skew toward youth, young adults, or at-risk minority groups
- Counties that are under-educated, facing economic challenges, and facing robust population growth and shifting demographics in categories of youth, young adults, or at-risk minority groups

Grant and Adams Counties present all of these factors. Serving this diverse, disadvantaged, and struggling group involves adaptability, teamwork and incorporating innovative instructional methodologies. Key to assisting the college will be the development of the campus infrastructure. Facilities need to be able to serve a multitude of activities, offering inviting and friendly spaces that are multifunctional, adaptable and accessible to a wide range of instructional methodologies.

THE COLLEGE IN RELATIONSHIP TO CURRENT EDUCATIONAL TRENDS

Big Bend recognizes that education looks nothing like it did 10-15 years ago and is changing more rapidly as we move forward. As instruction continues to move from instructor-centered to learning-centered, physical space will need to adapt and flex in ways that we are only beginning to understand.

Instructors will become facilitators of learning and may even move to more of a partner role. They will lead students down the path of project based learning accessing needed resources and working in collaboration with K-12, community, business and industry, and higher education. These collaborations will occur locally, at a state level, nationally and globally.

Learning-Centered facilities must:

- Be multi functional and flexible
- Allow faculty to work effectively together
- Offer accessibility
- Foster interdisciplinary collaborations
- Integrate education and research
- Encourage small and large group interaction outside of the classroom
- Combine academic and student life
- Offer interior and exterior environments for reflection
- Encourage use of technology
- Encourage wide ranging and cross disciplinary knowledge
- Lead to increased integration and continuity of the curriculum
- Promote active and collaborative teaching methods
- Increase student engagement
- Increase student-teacher interactions
- Increase student-to-student service interactions
- Expose students to new opportunities and possibilities
- Increase student interactions with diverse populations and different perspectives
- Offer hands-on opportunities
- Encourage collaboration with other students, instructors, and future employers
- Be inviting places where students want to spend time
- Support alternative learning methodologies
- Involve and represent the real world
EDUCATIONAL TRENDS (cont.)

As we move further into the 21st century, these traits will increase in importance. Students are actively taking control of their education and demanding meaningful and relevant education. As one Big Bend student stated, “Why should I listen for 15 minutes to an instructor define the meaning of something when I can GOOGLE it and learn everything I need to know in less than 30 seconds.”

The student population is becoming increasingly diverse in race, ethnicity, religion, education and age. Instructors are serving students from different backgrounds and generations. Millennials expect customized active collaborative learning. Generation X and Baby Boomers are more comfortable with traditional lecture style instruction. Instructors must incorporate lectures, educational experiences and resources that meet both of these demands.

Technology has enabled students to learn anytime and anywhere. Students are beginning to demand educational opportunities that are on their own schedule. This is beginning to blur traditional quarter and semester-based education and call for opportunities that are more in pace with students’ abilities, prior learning and current schedules. Customizing of learning opportunities will occur at all levels. Students will be the leaders in their own educational pathway. Instruction will be based mostly on technical and soft skills and less on facts. Students must be able to critically think, adapt and problem solve. They must gain understanding of workplace ethics, global perspectives, the need for sustainability and how to conduct research. Utilization of technology will be central to their ability to learn and succeed.

Students will continually return to college for skill upgrades. The college will need to work with area industry and business to develop pathways that will increase needed skill levels. Customizing will occur according to economic demand. The college may choose to offer all courses or work with other higher educational institutions to offer customized education experiences to its students. No longer will colleges be able to operate as stand alone entities. They will work in collaboration with K-12, higher education, surrounding business and industry, and the surrounding community.

ENROLLMENT

Funding cuts to the community college system come at a time when Big Bend is seeing an increase in demand for enrollment. As the economy weakens, people tend to seek educational opportunities to increase their skill set. Whether they have lost their jobs or are looking to secure their current position, enhancing their skills through courses at the community colleges makes sense. Likewise, employers are realizing that in order to stay competitive the skill sets of their employees need to continually improve. They are finding it more efficient and economical to team with community colleges to instruct on new methodologies, technologies and equipment.

With fewer job openings and more people out of work, the current job market has become significantly more competitive. In order to compete, employees are increasing their educational level and furthering their vocational skills. Trends are showing older adults returning to school in order to enhance their skills or for retraining so they can escape declining industries.

Budget cuts have not been limited to the Community & Technical College System. Universities are also feeling the squeeze. In response to budget cuts 4-year Colleges and Universities throughout the state are raising the cost of tuition. As the costs of attending these schools go up more and more, students are choosing to start their education at 2-year community colleges. Additionally, many community colleges are starting to offer 4-year programs or teaming with 4-year institutions to offer bachelor degrees on site. Rather than extend its resources further, Big Bend has chosen to team with Heritage and Central Washington Universities to offer 4-year higher education opportunities on the Big Bend campus.

The poor economy has resulted in Big Bend experiencing significant increases in student enrollment. Meeting the needs of these students at a time of statewide cutbacks has been a challenge. The theme of "doing more with less" is very real for Big Bend.

Recent high school students, unable to afford tuition hikes at Washington state universities, and displaced workers are continuing to fuel enrollment increases. Many of the students are coming to Big Bend because of the low tuition, career training and the belief in opportunity.

Typically 30% of area high school students choose to start their educational careers at Big Bend. The table below forecasts the upcoming graduates for the next four years. Trends show that students are increasingly choosing to attend local community colleges in order to save money. Getting their core classes out of the way at lower cost is becoming more attractive to both students and their parents.

POPULATION GROWTH

Big Bend serves three counties, encompassing 15 school districts. According to the 2010 census, Grant County has grown by 19% since 2000. Adams County has seen 8% growth and Lincoln County has experienced 5%. Area school district cohort schedules support these claims. On an average, Big Bend should experience 1.8 % to 2% growth in enrollment every year for the foreseeable future.
EXTERNAL SCAN
AREA DEMOGRAPHICS

AGE PROFILE
Over the next five years, the service area population is projected to grow by approximately 10% or 12,000 people. The median age in the service area population in 2010 was 32.97 and is increasing slightly. It is important to note that although the service area population is aging, it is still quite young when compared to the state of Washington where the median age is 37.06 years.

This projected shift in the population will provide an opportunity for the college to offer new or expanded programs that will be appealing and specifically targeted to older age groups. While the older population in the service area is projected to grow, the important age group of 15-19 year olds is projected to decrease by 5%. Additionally, the age group of 20-25 year olds is also projected to decrease by 5%. These two age groups are traditionally the largest age group of students attending the College.

This decrease may largely be due to the rising student drop out rate. Area high school administrators are stating that many of their students are in need of technical education opportunities during the last few years in order to maintain interest. Providing hands-on opportunities is a necessary motivator. It keeps students interested and motivated to learn. Through collaborative efforts the college is working with area school districts to attract these students and offer them the opportunity of learning a trade while finishing their high school education.

HOUSEHOLDS BY INCOME
The median per capita income for the college service area in 2009 was $18,823. This is nearly $10,000 below the state’s median per capita income of $29,320. The median household income of $44,843 is also significantly below that of the state median of $56,479.

The service area also reports an average household size larger than the state’s average. Additionally, the service area contains a large (42%) Hispanic population. This is considerably higher than the state average of 11.2%. Furthermore, in Grant and Adams County over 34% of households speak another language other than English in the home.

EDUCATIONAL OBTAINMENT
BBCC district educational attainment is significantly lower than the state average. Only 13.6% of residents 25 years of age or older have obtained a bachelor’s degree compared to 30.8% of the residents of Washington State. Additionally, there are significant differences in the percentage of residents that graduate from high school.

- 80.8% are high school graduates
- 25.5% attended some college but did not receive a degree
- 6.9% have obtained an Associate’s degree
- 8.5% a Bachelor’s degree
- 4.3% a Graduate degree

WORKFORCE CHARACTERISTICS OF THE LOCAL REGION
The service area of the college has been directly affected by the current state of the economy. The current unemployment rate for Grant County is 9.8%. Neighboring Adams County reported an unemployment rate of 8.8%.

This decrease may largely be due to the rising student drop out rate. Area high school administrators are stating that many of their students are in need of technical education opportunities during the last few years in order to maintain interest. Providing hands-on opportunities is a necessary motivator. It keeps students interested and motivated to learn. Through collaborative efforts the college is working with area school districts to attract these students and offer them the opportunity of learning a trade while finishing their high school education.

EDUCATIONAL OBTAINMENT
BBCC district educational attainment is significantly lower than the state average. Only 13.6% of residents 25 years of age or older have obtained a bachelor’s degree compared to 30.8% of the residents of Washington State. Additionally, there are significant differences in the percentage of residents that graduate from high school.

- 80.8% are high school graduates
- 25.5% attended some college but did not receive a degree
- 6.9% have obtained an Associate’s degree
- 8.5% a Bachelor’s degree
- 4.3% a Graduate degree

WORKFORCE CHARACTERISTICS OF THE LOCAL REGION
The service area of the college has been directly affected by the current state of the economy. The current unemployment rate for Grant County is 9.8%. Neighboring Adams County reported an unemployment rate of 8.8%.

This decrease may largely be due to the rising student drop out rate. Area high school administrators are stating that many of their students are in need of technical education opportunities during the last few years in order to maintain interest. Providing hands-on opportunities is a necessary motivator. It keeps students interested and motivated to learn. Through collaborative efforts the college is working with area school districts to attract these students and offer them the opportunity of learning a trade while finishing their high school education.

EDUCATIONAL OBTAINMENT
BBCC district educational attainment is significantly lower than the state average. Only 13.6% of residents 25 years of age or older have obtained a bachelor’s degree compared to 30.8% of the residents of Washington State. Additionally, there are significant differences in the percentage of residents that graduate from high school.

- 80.8% are high school graduates
- 25.5% attended some college but did not receive a degree
- 6.9% have obtained an Associate’s degree
- 8.5% a Bachelor’s degree
- 4.3% a Graduate degree

WORKFORCE CHARACTERISTICS OF THE LOCAL REGION
The service area of the college has been directly affected by the current state of the economy. The current unemployment rate for Grant County is 9.8%. Neighboring Adams County reported an unemployment rate of 8.8%.

This decrease may largely be due to the rising student drop out rate. Area high school administrators are stating that many of their students are in need of technical education opportunities during the last few years in order to maintain interest. Providing hands-on opportunities is a necessary motivator. It keeps students interested and motivated to learn. Through collaborative efforts the college is working with area school districts to attract these students and offer them the opportunity of learning a trade while finishing their high school education.

EDUCATIONAL OBTAINMENT
BBCC district educational attainment is significantly lower than the state average. Only 13.6% of residents 25 years of age or older have obtained a bachelor’s degree compared to 30.8% of the residents of Washington State. Additionally, there are significant differences in the percentage of residents that graduate from high school.

- 80.8% are high school graduates
- 25.5% attended some college but did not receive a degree
- 6.9% have obtained an Associate’s degree
- 8.5% a Bachelor’s degree
- 4.3% a Graduate degree

WORKFORCE CHARACTERISTICS OF THE LOCAL REGION
The service area of the college has been directly affected by the current state of the economy. The current unemployment rate for Grant County is 9.8%. Neighboring Adams County reported an unemployment rate of 8.8%.

This decrease may largely be due to the rising student drop out rate. Area high school administrators are stating that many of their students are in need of technical education opportunities during the last few years in order to maintain interest. Providing hands-on opportunities is a necessary motivator. It keeps students interested and motivated to learn. Through collaborative efforts the college is working with area school districts to attract these students and offer them the opportunity of learning a trade while finishing their high school education.

EDUCATIONAL OBTAINMENT
BBCC district educational attainment is significantly lower than the state average. Only 13.6% of residents 25 years of age or older have obtained a bachelor’s degree compared to 30.8% of the residents of Washington State. Additionally, there are significant differences in the percentage of residents that graduate from high school.
The table to the right shows the projected fastest growing occupations in the service area over the next several years. Of the twenty-two fields identified twelve require substantial preparation (2-4 years of academic work beyond high school). Washington State has strategically broken down the region by occupation clusters. Each cluster is based on the specific needs of the region. For North Central Washington the high demand clusters have been identified as Healthcare, Agriculture, Food Production, Electrical Utilities, Cut-Stone Production and Metal Manufacturing. This data provides valuable information for the college to determine its course offerings in an effort to provide employment opportunities within the college service area. These statistics, used in conjunction with the educational level data previously provided, are instructive in the planning of possible target areas for outreach and specific program growth.

GROWTH OCCUPATIONS
According to the Economic Development Council of Grant County, as of 2010 there are 3,323 firms located within the county experiencing an average annual growth rate of 6%. The following represents the top five high-demand career opportunities:

- Health Care
- Agriculture & Food Products
- Energy
- Manufacturing Specialties
- Gambling & Recreation

FASTEST GROWING OCCUPATIONS

The table to the right shows the projected fastest growing occupations in the service area over the next several years. Of the twenty-two fields identified twelve require substantial preparation (2-4 years of academic work beyond high school).

Washington State has strategically broken down the region by occupation clusters. Each cluster is based on the specific needs of the region. For North Central Washington the high demand clusters have been identified as Healthcare, Agriculture, Food Production, Electrical Utilities, Cut-Stone Production and Metal Manufacturing.

This data provides valuable information for the college to determine its course offerings in an effort to provide employment opportunities within the college service area. These statistics, used in conjunction with the educational level data previously provided, are instructive in the planning of possible target areas for outreach and specific program growth.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Farming, Fishing, and Forestry Occupations</td>
<td>24,946</td>
<td>25,799</td>
<td>26,794</td>
<td>0.70%</td>
<td>0.70%</td>
<td>169</td>
<td>192</td>
<td>913</td>
<td>819</td>
<td>Low to High</td>
</tr>
<tr>
<td>41</td>
<td>Sales and Related Occupations</td>
<td>10,859</td>
<td>11,387</td>
<td>12,299</td>
<td>1.00%</td>
<td>1.60%</td>
<td>105</td>
<td>182</td>
<td>490</td>
<td>488</td>
<td>Low to High</td>
</tr>
<tr>
<td>43</td>
<td>Office and Administrative Support</td>
<td>13,708</td>
<td>14,102</td>
<td>14,951</td>
<td>0.60%</td>
<td>1.20%</td>
<td>75</td>
<td>167</td>
<td>352</td>
<td>460</td>
<td>Low to High</td>
</tr>
<tr>
<td>53</td>
<td>Transportation and Material Moving</td>
<td>10,208</td>
<td>10,462</td>
<td>11,183</td>
<td>0.50%</td>
<td>1.30%</td>
<td>50</td>
<td>141</td>
<td>279</td>
<td>391</td>
<td>Low to High</td>
</tr>
<tr>
<td>47</td>
<td>Construction and Extraction Occupations</td>
<td>7,986</td>
<td>7,982</td>
<td>7,891</td>
<td>-2.40%</td>
<td>2.20%</td>
<td>-182</td>
<td>166</td>
<td>22</td>
<td>300</td>
<td>Low to High</td>
</tr>
<tr>
<td>35</td>
<td>Food Preparation and Serving Related</td>
<td>8,244</td>
<td>8,225</td>
<td>8,385</td>
<td>0.00%</td>
<td>0.40%</td>
<td>-4</td>
<td>33</td>
<td>378</td>
<td>272</td>
<td>Low to High</td>
</tr>
<tr>
<td>26</td>
<td>Education, Training, and Library</td>
<td>7,456</td>
<td>7,636</td>
<td>7,845</td>
<td>0.50%</td>
<td>0.50%</td>
<td>36</td>
<td>38</td>
<td>186</td>
<td>213</td>
<td>Medium to High</td>
</tr>
<tr>
<td>20</td>
<td>Healthcare Practitioner and Technical</td>
<td>4,846</td>
<td>5,319</td>
<td>5,723</td>
<td>1.90%</td>
<td>1.50%</td>
<td>97</td>
<td>81</td>
<td>181</td>
<td>200</td>
<td>Medium to High</td>
</tr>
<tr>
<td>39</td>
<td>Personal Care and Service Occupations</td>
<td>4,794</td>
<td>5,005</td>
<td>5,268</td>
<td>0.90%</td>
<td>1.00%</td>
<td>41</td>
<td>52</td>
<td>171</td>
<td>173</td>
<td>Low to High</td>
</tr>
<tr>
<td>49</td>
<td>Installation, Maintenance, and Repair</td>
<td>5,193</td>
<td>5,276</td>
<td>5,552</td>
<td>0.30%</td>
<td>1.00%</td>
<td>16</td>
<td>51</td>
<td>109</td>
<td>173</td>
<td>Low to High</td>
</tr>
<tr>
<td>75</td>
<td>Production Occupations</td>
<td>6,120</td>
<td>5,937</td>
<td>6,129</td>
<td>-0.60%</td>
<td>0.60%</td>
<td>32</td>
<td>39</td>
<td>113</td>
<td>163</td>
<td>Low to High</td>
</tr>
<tr>
<td>37</td>
<td>Building and Grounds Cleaning and Maintenance Workers</td>
<td>4,662</td>
<td>4,798</td>
<td>5,107</td>
<td>0.60%</td>
<td>1.30%</td>
<td>26</td>
<td>60</td>
<td>96</td>
<td>148</td>
<td>Low to Medium</td>
</tr>
<tr>
<td>25</td>
<td>Management Occupations</td>
<td>3,353</td>
<td>3,410</td>
<td>3,565</td>
<td>0.30%</td>
<td>0.90%</td>
<td>9</td>
<td>27</td>
<td>85</td>
<td>119</td>
<td>Medium to High</td>
</tr>
<tr>
<td>13</td>
<td>Business and Financial Operations</td>
<td>2,438</td>
<td>2,500</td>
<td>2,715</td>
<td>0.50%</td>
<td>1.60%</td>
<td>12</td>
<td>39</td>
<td>54</td>
<td>98</td>
<td>Medium to High</td>
</tr>
<tr>
<td>31</td>
<td>Healthcare Support Occupations</td>
<td>2,841</td>
<td>3,104</td>
<td>3,304</td>
<td>1.80%</td>
<td>1.30%</td>
<td>51</td>
<td>39</td>
<td>83</td>
<td>84</td>
<td>Medium to High</td>
</tr>
<tr>
<td>33</td>
<td>Protective Service Occupations</td>
<td>1,768</td>
<td>1,827</td>
<td>1,928</td>
<td>0.70%</td>
<td>1.10%</td>
<td>10</td>
<td>19</td>
<td>71</td>
<td>74</td>
<td>Medium to High</td>
</tr>
<tr>
<td>19</td>
<td>Life, Physical, and Social Science</td>
<td>1,569</td>
<td>1,619</td>
<td>1,680</td>
<td>0.60%</td>
<td>0.70%</td>
<td>8</td>
<td>12</td>
<td>57</td>
<td>67</td>
<td>High</td>
</tr>
<tr>
<td>27</td>
<td>Arts, Design, Entertainment, Sports, and Media</td>
<td>1,550</td>
<td>1,584</td>
<td>1,654</td>
<td>0.40%</td>
<td>0.90%</td>
<td>5</td>
<td>14</td>
<td>41</td>
<td>52</td>
<td>Low to High</td>
</tr>
<tr>
<td>21</td>
<td>Community and Social Service</td>
<td>1,533</td>
<td>1,576</td>
<td>1,626</td>
<td>0.60%</td>
<td>0.70%</td>
<td>8</td>
<td>9</td>
<td>37</td>
<td>47</td>
<td>Medium to High</td>
</tr>
<tr>
<td>15</td>
<td>Computer and Mathematical Science</td>
<td>748</td>
<td>792</td>
<td>875</td>
<td>1.10%</td>
<td>2.00%</td>
<td>8</td>
<td>17</td>
<td>22</td>
<td>34</td>
<td>Medium to High</td>
</tr>
<tr>
<td>17</td>
<td>Architecture and Engineering</td>
<td>1,061</td>
<td>1,081</td>
<td>1,148</td>
<td>0.40%</td>
<td>1.20%</td>
<td>3</td>
<td>11</td>
<td>22</td>
<td>33</td>
<td>High</td>
</tr>
<tr>
<td>23</td>
<td>Legal Occupations</td>
<td>617</td>
<td>631</td>
<td>669</td>
<td>0.40%</td>
<td>1.20%</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>18</td>
<td>Medium to High</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>126,477</td>
<td>129,132</td>
<td>136,259</td>
<td>0.4%</td>
<td>1.10%</td>
<td>514</td>
<td>1,396</td>
<td>3,776</td>
<td>4,426</td>
<td>Low to High</td>
</tr>
</tbody>
</table>
The SBCTC Data Warehouse contains the following student earnings information after their first year of graduating or earning certification:

HIGH WAGE JOBS

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Median Wages</th>
<th>Median Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airframe/Power Plant</td>
<td>$15.93</td>
<td>$30,137</td>
</tr>
<tr>
<td>Associate Degree Nurse</td>
<td>$28.11</td>
<td>$50,306</td>
</tr>
<tr>
<td>Computer Maintenance Tech</td>
<td>$14.82</td>
<td>$24,605</td>
</tr>
<tr>
<td>Construction Trades</td>
<td>$15.40</td>
<td>$24,000</td>
</tr>
<tr>
<td>Dental Hygienist</td>
<td>$40.94</td>
<td>$54,496</td>
</tr>
<tr>
<td>Dental Lab Tech</td>
<td>$16.31</td>
<td>$25,988</td>
</tr>
<tr>
<td>Drafting</td>
<td>$16.76</td>
<td>$31,984</td>
</tr>
<tr>
<td>Electrical Equipment Repair</td>
<td>$18.19</td>
<td>$29,862</td>
</tr>
<tr>
<td>Electronics Technology</td>
<td>$17.55</td>
<td>$34,807</td>
</tr>
<tr>
<td>Engineering Technology</td>
<td>$18.55</td>
<td>$34,872</td>
</tr>
<tr>
<td>Industrial Technology</td>
<td>$18.33</td>
<td>$30,698</td>
</tr>
<tr>
<td>Information Technology</td>
<td>$16.02</td>
<td>$27,998</td>
</tr>
<tr>
<td>Legal/Real Estate Services</td>
<td>$17.00</td>
<td>$30,886</td>
</tr>
<tr>
<td>Machinist</td>
<td>$16.34</td>
<td>$32,218</td>
</tr>
<tr>
<td>Medical Lab Tech/Histologic</td>
<td>$19.51</td>
<td>$39,309</td>
</tr>
<tr>
<td>Medical X-Ray</td>
<td>$26.39</td>
<td>$46,899</td>
</tr>
<tr>
<td>Health Tech (radiology tech, EKG tech, denture tech, hemodialysis tech, etc)</td>
<td>$20.54</td>
<td>$36,891</td>
</tr>
<tr>
<td>Paramedic EMT, Operating Tech</td>
<td>$17.99</td>
<td>$33,725</td>
</tr>
<tr>
<td>Physical Therapy</td>
<td>$21.12</td>
<td>$38,481</td>
</tr>
<tr>
<td>Practical Nurse</td>
<td>$20.08</td>
<td>$35,496</td>
</tr>
<tr>
<td>Precision, Production, Crafts</td>
<td>$16.31</td>
<td>$25,988</td>
</tr>
<tr>
<td>Protective Services</td>
<td>$16.23</td>
<td>$28,953</td>
</tr>
<tr>
<td>Transportation Operators</td>
<td>$15.41</td>
<td>$26,099</td>
</tr>
<tr>
<td>Welding</td>
<td>$20.49</td>
<td>$36,948</td>
</tr>
</tbody>
</table>

MEDIUM WAGE JOBS

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Median Wages</th>
<th>Median Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>$14.90</td>
<td>$24,987</td>
</tr>
<tr>
<td>Agriculture, Forestry, Fisheries</td>
<td>$13.67</td>
<td>$26,066</td>
</tr>
<tr>
<td>Auto Diesel</td>
<td>$13.39</td>
<td>$23,703</td>
</tr>
<tr>
<td>Commercial & Graphic Art</td>
<td>$13.33</td>
<td>$24,000</td>
</tr>
<tr>
<td>Dental Assisting</td>
<td>$14.97</td>
<td>$19,072</td>
</tr>
<tr>
<td>Managerial Support</td>
<td>$16.33</td>
<td>$25,221</td>
</tr>
<tr>
<td>Marketing & Sales</td>
<td>$14.49</td>
<td>$24,482</td>
</tr>
<tr>
<td>Medical Assisting</td>
<td>$13.79</td>
<td>$23,505</td>
</tr>
<tr>
<td>Health Related Assistance</td>
<td>$14.83</td>
<td>$22,258</td>
</tr>
<tr>
<td>Health Services</td>
<td>$14.37</td>
<td>$16,776</td>
</tr>
<tr>
<td>Technical</td>
<td>$13.90</td>
<td>$23,341</td>
</tr>
<tr>
<td>Pharmacy Assisting</td>
<td>$14.11</td>
<td>$24,393</td>
</tr>
</tbody>
</table>

LOW WAGE JOBS

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Median Wages</th>
<th>Median Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Support</td>
<td>$12.97</td>
<td>$21,790</td>
</tr>
<tr>
<td>Cosmetology</td>
<td>$11.10</td>
<td>$15,847</td>
</tr>
<tr>
<td>Culinary Arts</td>
<td>$12.00</td>
<td>$18,281</td>
</tr>
<tr>
<td>Early Childhood Education</td>
<td>$12.55</td>
<td>$20,502</td>
</tr>
<tr>
<td>Nursing Assistant</td>
<td>$11.37</td>
<td>$18,302</td>
</tr>
<tr>
<td>Social Services</td>
<td>$13.75</td>
<td>$23,343</td>
</tr>
<tr>
<td>Teaching/Library Assistant</td>
<td>$12.16</td>
<td>$16,471</td>
</tr>
<tr>
<td>Veterinarian Assistant</td>
<td>$13.01</td>
<td>$23,246</td>
</tr>
</tbody>
</table>
EXTERNAL ENVIRONMENTAL SCAN IMPLICATIONS FOR BIG BEND COMMUNITY COLLEGE

Big Bend needs to actively respond to the emerging needs within its service district, Washington state, the United States and the world. Big Bend has the drive to become the hub of the district; providing education, cultural enrichment, recreational, economic growth and lifelong learning opportunities but needs the resources to do so.

Unfortunately, Big Bend’s roots rely on the adaptive reuse of a military base. Since inception the college has been known as “The Base”. Removing this stigma and emerging in the minds of the community as a leader in higher education and a high quality provider of educational and career opportunities is a priority. Big Bend needs to get the attention of area industry and business. Understanding needs to be gained that Big Bend is a world class educational resource that will work with them to provide and upgrade skills as needed.

In order to accomplish this, Big Bend needs much more than a facelift. Facilities need to be replaced and revitalized. Big Bend has been operating in conditions that were never meant to house education. Over 80% of the current campus remains housed in former base facilities. Over 80% of the current campus remains housed in former base facilities.

Classroom and lab space must provide for modern day learning methodologies. The majority of Big Bend’s campus does not meet the basic essential needs of thermal comfort, acoustical control, accessibility and safety. Operating in these conditions limits the College’s ability to connect with students and the surrounding community. Business and Industry are reluctant to assist the college or have their employees attend the college for skill enhancement when the facilities are in disrepair.

Many of the classrooms and lab spaces we use today did not meet the educational needs of the 1960s. Big Bend has made do and carries the attitude that we will make this work. A strong example of this is the nursing program. They moved from an undersized facility into a larger facility that received a few new walls, new flooring and paint and were ecstatic even though the facility lacked thermal comfort, acoustic control, accessibility, functional classrooms, water where necessary, a solid technology infrastructure and the basic lab space they need to run their curriculum.

Competing in the global economy for students and instructors requires a college to offer something special. Its facilities must be up to date and house modern day learning environments. Test scores, student retention and instructor retention have been directly linked to facility quality and condition. Who wants to go to a college, or work for a college, that offers an environment similar to a temporary 1950’s military operation? Most facilities at Big Bend are beyond their useful life. The nature of their construction makes it impossible for them to be renovated to meet current education needs or for modern day technology to be incorporated without creating safety hazards.

Additionally, becoming a source of pride to the community and developing solid ties with economic agencies and business and industry will take an overhaul of the existing campus. Since 1966, the campus has experienced relatively little change. Over 80% of the current campus remains housed in former base facilities.

With the increasing demands due to the downturn in the economy, enrollment at BBCC is increasing. Demand for workforce training, retraining, and quick turn-around programs is increasing. Additionally, Big Bend is experiencing growth in allied health, remedial and transfer programs. Replacement of these facilities and development of the campus core are essential to providing a 21st century education to the Big Bend District.
The Institutional Research and Planning Department at Big Bend maintains a significant amount of data regarding student demographics and trends. This information allowed the consulting team to gain insight into the characteristics of the students attending Big Bend.

STUDENT DEMOGRAPHIC PROFILE

LOCAL POPULATION GROWTH

Big Bend Community College has grown from a student population of 1819 FTE in fall 2007-2008 to its largest FTE count to date of 2131 in 2009-2010. The head-count for 2010-2011 was 4481 and for Fall 2011 it is 4584.

ETHNIC PROFILE

Approximately 55% of Big Bend’s Students are white, 38% are hispanic, and the remaining 7% are of other ethnicity.

GENDER PROFILE

Female students make up 58% and males students make up 42% of the total student population at Big Bend.

AGE PROFILE

Community colleges traditionally target individuals between the ages of 19-24 years old. At Big Bend, the largest age group is those 24 years of age and over, making up 49% of the student population. The age of the traditional student is steadily rising due to the trend of older adults returning to the college for retraining and career changes.

STUDENT EMPLOYMENT

Over fifty percent (50%) of Big Bend students are employed. Of those employed 35% are working full time and 65% part time.

FIRST GENERATION

Eighty percent (80%) of Big Bend students are the first generation of their families to attend college. Many lack the mentors and role models at home to assist in making informed education and career choices. Accessing and understanding financial aid and other student services is often challenging for these students.

STUDENT ETHNICITY

- Asian/Native Hawaiian: 3%
- African American: 4%
- Alaskan Native/Native American: 2%
- Hispanic: 38%
- White/Caucasian: 54%
- Other Races: 2%

STUDENT EMPLOYMENT

- Over fi 50% of Big Bend students are employed. Of those employed:
 - 35% are working full time
 - 65% part time

- **First Generation Students**
 - 80% of Big Bend students are the first generation of their families to attend college.
 - Many lack the mentors and role models at home to assist in making informed education and career choices.
 - Accessing and understanding financial aid and other student services is often challenging for these students.

AGE BREAKDOWNS

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 20</td>
<td>1118</td>
<td>25%</td>
</tr>
<tr>
<td>20-24</td>
<td>1240</td>
<td>28%</td>
</tr>
<tr>
<td>25-29</td>
<td>607</td>
<td>14%</td>
</tr>
<tr>
<td>30-34</td>
<td>440</td>
<td>10%</td>
</tr>
<tr>
<td>35-39</td>
<td>337</td>
<td>8%</td>
</tr>
<tr>
<td>40-44</td>
<td>258</td>
<td>6%</td>
</tr>
<tr>
<td>45-49</td>
<td>221</td>
<td>5%</td>
</tr>
<tr>
<td>50-54</td>
<td>129</td>
<td>3%</td>
</tr>
<tr>
<td>55-59</td>
<td>84</td>
<td>2%</td>
</tr>
<tr>
<td>60-64</td>
<td>39</td>
<td>1%</td>
</tr>
<tr>
<td>65 or above</td>
<td>18</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>4481</td>
<td>100%</td>
</tr>
</tbody>
</table>

ACADEMIC/TRANSFER STUDENTS

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 20</td>
<td>781</td>
<td>40%</td>
</tr>
<tr>
<td>20-24</td>
<td>605</td>
<td>31%</td>
</tr>
<tr>
<td>25-29</td>
<td>201</td>
<td>10%</td>
</tr>
<tr>
<td>30-34</td>
<td>113</td>
<td>6%</td>
</tr>
<tr>
<td>35-39</td>
<td>82</td>
<td>4%</td>
</tr>
<tr>
<td>40-44</td>
<td>57</td>
<td>3%</td>
</tr>
<tr>
<td>45-49</td>
<td>48</td>
<td>2%</td>
</tr>
<tr>
<td>50-54</td>
<td>29</td>
<td>1%</td>
</tr>
<tr>
<td>55-59</td>
<td>20</td>
<td>1%</td>
</tr>
<tr>
<td>60-64</td>
<td>8</td>
<td>0%</td>
</tr>
<tr>
<td>65 or above</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>1539</td>
<td>100%</td>
</tr>
</tbody>
</table>

PROFESSIONAL/TECHNICAL STUDENTS

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 20</td>
<td>256</td>
<td>17%</td>
</tr>
<tr>
<td>20-24</td>
<td>448</td>
<td>29%</td>
</tr>
<tr>
<td>25-29</td>
<td>274</td>
<td>18%</td>
</tr>
<tr>
<td>30-34</td>
<td>171</td>
<td>11%</td>
</tr>
<tr>
<td>35-39</td>
<td>138</td>
<td>9%</td>
</tr>
<tr>
<td>40-44</td>
<td>67</td>
<td>4%</td>
</tr>
<tr>
<td>45-49</td>
<td>69</td>
<td>4%</td>
</tr>
<tr>
<td>50-54</td>
<td>53</td>
<td>3%</td>
</tr>
<tr>
<td>55-59</td>
<td>30</td>
<td>2%</td>
</tr>
<tr>
<td>60-64</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>65 or above</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>139</td>
<td>100%</td>
</tr>
</tbody>
</table>

BASIC SKILLS

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 20</td>
<td>130</td>
<td>12%</td>
</tr>
<tr>
<td>20-24</td>
<td>322</td>
<td>24%</td>
</tr>
<tr>
<td>25-29</td>
<td>148</td>
<td>11%</td>
</tr>
<tr>
<td>30-34</td>
<td>134</td>
<td>10%</td>
</tr>
<tr>
<td>35-39</td>
<td>107</td>
<td>11%</td>
</tr>
<tr>
<td>40-44</td>
<td>96</td>
<td>10%</td>
</tr>
<tr>
<td>45-49</td>
<td>71</td>
<td>7%</td>
</tr>
<tr>
<td>50-54</td>
<td>32</td>
<td>3%</td>
</tr>
<tr>
<td>55-59</td>
<td>12</td>
<td>1%</td>
</tr>
<tr>
<td>60-64</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>65 or above</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>583</td>
<td>100%</td>
</tr>
</tbody>
</table>
TIME OF DAY DISTRIBUTION
Examing the distribution of when students take classes at the College shows 61% of the student population takes classes before 12:00 pm (Noon), 31% attend in the afternoon and 8% during the evening.

STUDENT LOAD PATTERNS
Students at Big Bend Community College who take 12 or more credits (full-time students) account for 69% of the overall college enrollment. The percentage of students that are part-time status (fewer than 12 credits) is 31%.

Community Colleges usually see a higher number of part-time students largely due to their full and part time employment. The growing number of full time students is a characteristic worth examining further.

COLLEGE READINESS
For the 2011 calendar year, 68% of entering freshman are in need of remedial English. The number has been steadily increasing over the last few years.

Even more distressing is the 95% of entering freshman who are in need of remedial Math. With limited resources available, Big Bend must look for innovative ways to work with area school districts to increase the number of college ready students.

K-12 PROGRAMS
Big Bend realizes that future employment opportunities will require some form of higher education. They are actively developing programs to assist K-12 in creating a college-attending culture among students. Activities include campus visits, collaborative classes and counselor outreach.

Future K-12 collaborative plans include offering Science Technology Math and Engineering (STEM) summer camps and other programs aimed at increasing math skills and interest in STEM educational opportunities.

Additionally, Big Bend strives to reach K-12 dropouts and assist them in obtaining their GED and becoming college ready through the Adult Basic Education program.

HIGH SCHOOL PROGRAMS
BBCC works with more than a dozen high schools throughout our service district in order enhance the college-going culture of the region, assist with educational planning, and provide access to college programs, including a variety of dual-credit programs. In addition, our Basic Skills program provides GED certification for students who did not obtain a high school diploma.

The Running Start program allows high school students to enroll simultaneously in college and high school classes. This allows students to accelerate their degree path, in many cases completing an Associate degree at the same time that they graduate from high school. Students can enroll both on campus and through distance learning. BBCC is currently serving about 160 Running Start students.

College in the High School allows students to receive college credit for classes taught at their high schools. The classes use BBCC curriculum but follow the high school academic schedule, allowing students to accelerate their college degree pathway without driving to campus.

Upward Bound is a federally funded program that helps motivate and support high school students from disadvantaged backgrounds in their pursuit of a college degree by offering comprehensive year-round academic and personal assistance. Students receive tutoring assistance to help them improve their academic skills and prepare for college. Assistance is provided for students and their families in completing college applications, financial aid forms and scholarship applications.

In addition, BBCC works with area high schools to provide students with access to information on financial aid, admissions, and career planning. Big Bend provides college tours and other events for both high school and middle school students, in order to help them start thinking early about their career and education options.

BUSINESS & INDUSTRY COLLABORATIONS
In 2009 Big Bend began working in collaboration with eight manufacturing companies as well as Grant County Economic Development Council, Worksource and Skill Source to offer a certified Pre-employment Training Program. This program is aimed towards all those who are wanting to gain employment in the manufacturing field including those who recently graduated high school, were laid off, are underemployed, unemployed or needing to reenter the workforce.

The program is six weeks long and includes 120 hours of training that is geared towards entry level positions in the manufacturing field. In the past, employers have struggled with finding adequately skilled and trained applicants for entry level positions with their companies. This program was developed to match education with in demand skill sets. Business and industry, community and educational leaders are working together to overcome this barrier.

The curriculum for this program has been designed by businesses and provides a skills set necessary for all manufacturing positions, including basic math, reading, safety, teamwork, communications, computer technology, personal development, good manufacturing practices, as well as tours and work simulation by prospective employers. In addition to the Pre-employment Training program Big Bend actively works with surrounding business and industry to align program curriculum with industry needs.
4 YR COLLABORATIONS

During the evening hours and on weekends Big Bend facilities are utilized by Heritage University and Central Washington University (CWU) to offer Bachelor and Master Degree educational opportunities to the central Columbia basin region. Both Heritage and CWU utilize classroom and support space in the 1800 and 1600 buildings.

Heritage at Big Bend enrolls approximately 75 students annually with 20-25 completing their degrees each year. Heritage offers bachelor degree programs in education, early childhood education and social work. Heritage also offers a Masters in Education.

Central Washington University at Big Bend currently enrolls 28 students and offers bachelor degree programs in flight technology, information technology and administrative management, interdisciplinary studies, business administration, and accounting. Additionally CWU at Big Bend offers a Masters in Education program.

TRANSFER RATES

In addition to providing space for Heritage and CWU, Big Bend maintains a close working relationship with several higher education institutions. Transfer students tend to choose Central Washington University (CWU), Eastern Washington University (EWU) and Washington State University (WSU) to continue their Bachelor degree program.

TRAVEL-TIME

Big Bend serves a large geographical area in Central Washington State covering Grant County, Adams County and parts of Lincoln County. The service area extends approximately 70 miles in each direction, creating a drive time of over 60 minutes for some students.

Thirty-four percent of Big Bend students live within 10 minutes of the campus and nearly 70% live within 30 minutes of the campus. Nineteen percent of students are spending an hour or more commuting in each direction.

PUBLIC TRANSPORTATION

Grant Transit Authority (GTA) offers students monthly passes for $20.00. Two routes serve the college on an hourly basis from 6am to 9pm, offering approximately 39 stops daily.

GTA does an effective job of offering Grant County students, staff, and faculty public transportation options. Programs offered by GTA include: public transportation and car/van pools.

Unfortunately, students residing in Adams and Lincoln County are often left with no option but to drive their own vehicle.

DISTANCE LEARNING (e-LEARNING)

At Big Bend, enrollment in e-Learning classes has increased 200% in the past five years. FTE generation from e-learning enrollments has increased approximately 163% during this same period. The charts below demonstrate the rapid growth of e-learning.

Additionally, the College is developing and offering blended/hybrid courses and online tutoring. Big Bend anticipates tremendous growth in e-learning due to increasing transportation costs and their large demographic service area. In order to effectively service the growth in e-learning and blended/hybrid curriculum, Big Bend will need to expand its e-learning service center/testing center.

STUDENT DEMOGRAPHICS

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of Classes</th>
<th>Enrollment</th>
<th>FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-07</td>
<td>116</td>
<td>1098</td>
<td>120.11</td>
</tr>
<tr>
<td>2007-08</td>
<td>147</td>
<td>1491</td>
<td>153.37</td>
</tr>
<tr>
<td>2008-09</td>
<td>151</td>
<td>2117</td>
<td>204.53</td>
</tr>
<tr>
<td>2009-10</td>
<td>200</td>
<td>3083</td>
<td>278.21</td>
</tr>
<tr>
<td>2010-11</td>
<td>199</td>
<td>3501</td>
<td>316.02</td>
</tr>
</tbody>
</table>

E-Learning Growth
STUDENT SERVICES
Student Services provide an array of wrap-around services to support students in their education journey. We strive to help students at every step of the process from access through retention to success and completion. Starting with admissions and registration processes, BBCC staff welcomes students to campus and points them toward the resources they will need to succeed.

Advising and counseling, financial aid, the bookstore, testing and tutoring—we aim for an environment that welcomes students, helps them navigate easily, and helps them interact productively with BBCC staff.

Student Services require physical spaces that allow for easy communication and collaboration between departments. This allows us to work efficiently and to help students find their way from Admissions, to Financial Aid, to Advising, to Registration without feeling isolated.

FINANCIAL AID
The number of FAFSA applications submitted through Big Bend increased by 62% between 2007-08 to 2010-11. The number of students receiving financial aid increased 43% during this same time. More and more students are needing to access vital student service programs such as Financial Aid and Career Advising.

With 80% of the students being first generation it is essential that students be able to access financial aid and career advising easily and with a welcoming attitude. If environments are not welcoming students often give up.

FINANCIAL AID
The number of FAFSA applications submitted through Big Bend increased by 62% between 2007-08 to 2010-11. The number of students receiving financial aid increased 43% during this same time. More and more students are needing to access vital student service programs such as Financial Aid and Career Advising.

With 80% of the students being first generation it is essential that students be able to access financial aid and career advising easily and with a welcoming attitude. If environments are not welcoming students often give up.

STUDENT ENGAGEMENT/RETENTION
It is critical to think about how students interact with the space around them. Finding patterns of how students utilize space will allow for more effective learning space design. This ensures that resources are allocated in ways that support student needs. A common theme appears in the 2011 student survey. Students are utilizing the Library at record numbers. Creating engaging, inviting informal learning space is essential to providing a high quality learning environment.
Student Survey

The purpose of the surveys was to incorporate the thoughts and experiences of the Big Bend student into the planning process. Their input will help to shape future capital improvement projects on campus.

Student Life and Recreation

TOP COMMENTS / CONCERNS:
1. The Library should be preserved/expanded at all costs.
2. Recreational amenities such as the gym are important.
3. Improve the recreational playing fields.
4. Promote more campus events.

QUOTES FROM STUDENTS ABOUT THE COLLEGE:
- “I think the soccer field grass is too long and we need a new goalie box, new nets, and new out of bounds lines.”
- “It would be nice to have more access to Gym and not have it reserved for military.”
- “The BBCC campus is easy to navigate and has great parking lots.”
- “More Gym equipment with more access to weight room facilities and more places to eat.”
- “We need more funding for sports.”
- “I would like to see more team spirit for game days...today I saw a group of people sitting on the cement steps, one played the guitar and the others sang and it was awesome. I wish we had more of that.”
- “We are like sardines in the cafeteria. We need more room. Also, there could be more study rooms in the Library.”
- “...it’s a campus you can just sit down on the grass ten minutes before class with a friend.”
- “Have a movie night once in a while where the school plays a new movie on the big screen.”

Learning Environments

TOP COMMENTS / CONCERNS:
1. Need more, larger classrooms to decrease wait lists.
2. Provide more online classes.
3. Access to the wireless network at the Library is good.
4. Technology equipment in classrooms needs updated/improved.

QUOTES FROM STUDENTS ABOUT THE COLLEGE:
- “I’m in the Running Start Program and the people here seem to be more helpful and nice.”
- “I like the instructors. They’re always willing to help after class.”
- “The online/arranged classes are extremely hard to get ahead of.”
- “The Theatre is falling apart and should be updated, especially the music room.”
- “Revise the Computer Science Department to include BBI so that students can get real hands on experience, training and education.”
- “What is not working is when study rooms are locked up due to College activities when students need to study or get tutoring.”
- “More science classes must be offered in order for a student to complete pre and co-requisite classes in the Allied Health Program.”
- “Math lab goes hand in hand with math lectures on the internet. You can go over the notes as much as you need. These types of notes should be available for every math student.”

Student Support and Services

TOP COMMENTS / CONCERNS:
1. Faculty is easy to access and helpful.
2. Tutoring centers and help labs are important to student success.
3. Student Services is easy to access and helpful to students.
4. Need more A&J, student event and lounge space.

QUOTES FROM STUDENTS ABOUT THE COLLEGE:
- “The feature I appreciate the most in the campus is all the help for students.”
- “We need a place to borrow laptops on a daily basis.”
- “Being able to have a math or English lab for help.”
- “Student Services is without a doubt one of the best things on campus.”
- “The bookstore didn’t order enough books for one of my classes. I’m still waiting.”
- “The math, English labs because teachers in there are helpful and help the student to learn.”
- “The student to teacher ratio. There is a lot of one on one time.”
- “The tutors are very helpful and I could truly say that they have helped me pass my classes.”
- “Instructors are helpful and friendly, also the update to the financial aid website are awesome.”

Student Safety and Security

TOP COMMENTS / CONCERNS:
1. Certain parking lots and areas of campus appear unsafe at night.
2. Need better traffic control and visibility of crosswalks.
3. Bus stop needs improved security.
4. Areas of student housing seem unsafe during peak use and at night.

QUOTES FROM STUDENTS ABOUT THE COLLEGE:
- “Need cameras and a pay phone installed at the bus stop.”
- “I feel safe in every place on campus. I am here during the day so I do not know if I would not feel safe at night.”
- “The nursing parking lot is very secluded.”
- “I like how there’s so many lights outside so it’s never super dark at night.”
- “I don’t feel safe in the dorm bathroom, too many people. There are a lot of people after midnight. Need more bathrooms.”
- “Parking lots need more lighting at night.”
- “The crosswalk area from behind the 1400 Building to the Gym is a bit risky, because it’s hard to see cars leaving. It would be safer if the first 3-4 spots were left vacant.”
- “The parking lot by the Library doesn’t always feel safe to me. Mostly at night but it seems like random people are always over there watching people at night, not all the lights works so more light would be nice.”
- “The area between the dorms and 1600 and 1700 buildings isn’t well lit at night and is a little scary at night.”
Facility Assessment Survey - Faculty and Staff

Facility assessment questionnaires were completed by several College faculty and staff. Their input was critical in gaining insight and understanding of how well BBCC’s facilities support the mission, goals and objectives of each program.

1000 - WorkFirst
TOP COMMENTS / CONCERNS:
1. Need more classroom, individual and group study space
2. More efficient use of space
3. Heating and cooling system is inconsistent, not efficient
4. Need more computers in the computer lab
QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- “Our spatial needs are met most of the time, however it would be beneficial if we had more space.”
- “We must juggle workshops and it is difficult to put all students in one area for a meeting.”
- “You can hear through the walls and classrooms are small.”
- “Our program continues to make changes and we could use more space.”
- “One side of our building is hot while the other side is cold.”
- “In an ideal world our computer lab would have 50 computers and our GED classroom would have a bigger room with more computers also. We would have 3 additional classrooms that are bigger in size than the 2 that we have now.”

1200 - Science, Math, Engineering
TOP COMMENTS / CONCERNS:
1. Insufficient space to grow the program
2. Rooms don’t facilitate technology and there is a lack of available, modern technology equipment
3. Classrooms and offices should be closer to laboratory space
4. Need more lab space to accommodate all the students who want to take classes wait lists are large
QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- “Waiting lists for chemistry are standard now. This is more a function of not offering classes. if we did accommodate all the students that want our courses we would probably need more lab space.”
- “Current lab space is a standing only area. If students could be seated it would allow me to provide more lecture and demonstration in lab than is currently possible. The lab space condemns me to teach chemistry labs in the same style that they were taught 50 years ago.”
- “Our society has a need for more Science, Technology, Engineering and Mathematics students, but if we don’t get the students here there isn’t a lot we can do about it.”

1400 - Student Center/ Administration/Bookstore
TOP COMMENTS / CONCERNS:
1. Reconfigure layouts/space adjacencies for better efficiency and function
2. Need a computer lab/student testing center
3. Lack of acoustical separation between public spaces and private offices
4. Space is limited for current student services, bookstore and ASB functions
QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- “We are beginning to serve more high school students on BBCC’s campus because more of them are taking advantage of Running Start requiring us to advise more students on campus than ever before.”
- “It would be nice to have an additional room with a computer workstation set up to proctor accommodated tests and training students on various assistive technology programs.”
- “Programs need to be provided for companies (Quincy Data Center, REC, BMV) to allow students to acquire the needed education to become successful employees of these companies and others.”

1600 - Business and Liberal Arts
TOP COMMENTS / CONCERNS:
1. Need more conference/seminar type classrooms to facilitate group work
2. Need more enhanced classrooms, the building has one
3. Spaces don’t accommodate current teaching methodologies
4. Building lacks sufficient, dedicated computer lab space
QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- “...the department has redesigned its classes to utilize learning communities within the classroom...A traditional classroom layout doesn’t facilitate this type of learning, we really don’t have any classrooms which work well for such classes.”
- “In an ideal world, BBCC would have a variety of different classroom types allowing for a variety of learning/teaching methods. The traditional classroom with a “front” doesn’t necessarily meet our instructional needs anymore.”
- “We really need more computer labs on this campus. I often have to request #1802 months in advance to be able to have available space for my students to work on their exams and projects as a class.”
Facility Assessment Survey - Faculty and Staff

1700 - Allied Health

TOP COMMENTS / CONCERNS:
1. Program cannot grow due to insufficient clinical training room space
2. Lack of integrated technology to accommodate distance learning
3. Poor acoustical separation between public common areas and private areas
4. Program spaces are over-booked

QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- "Both group and individual study spaces are critical for our students."
- "When many students are present normal conversations ratchets up the volume in the absence of sound dampening surfaces."
- "Potentially increased use of skills lab and simulation technology." (question on future needs of the program)
- "Usually have a waiting list of 20-30. Do not anticipate increasing enrollment due to faculty and clinical training site limitations."
- "We would like to be able to utilize Mediasite or other recordable technology in at least two of our rooms in preparation for developing some distance learning education for nursing."

3100 - Aircraft Hangar

TOP COMMENTS / CONCERNS:
1. Facility is outdated and in poor repair
2. Inefficient heating and cooling system
3. Poor integration of technology and access to the wireless network
4. Lighting is poor and minimal access to natural daylight

QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- "Our current space looks like something from the 1950’s. The flight program and others conduct many tours through the facilities. The facilities do not show well."
- "We could use wireless in the building to keep us from running back and forth to access online maintenance information."
- "The aircraft maintenance could be larger but increasing the maintenance space would decrease the aircraft storage space."
- "We have no windows in the shop so ambient lighting is very poor in the winter months when the hangar door is kept closed. The shop areas lights are okay. Lighting in the aircraft storage area is poor."
- "Wireless network would help with efficiency."

3200 - Aviation Maintenance Technology

TOP COMMENTS / CONCERNS:
1. Need more classroom and storage space
2. Need space to teach emerging technologies such as composites materials
3. Inefficient heating and cooling system
4. Need more technology integrated into the classrooms

QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- "At the current time the facilities are cramped for space, if we continue to grow in the future we will be out of adequate space very soon."
- "Two classrooms and three classes going on at the same time. Too many aircraft, their associated parts, mock-ups, and test equipment in the small space available."
- "We take our program and the students we train in this very technical and potentially hazardous business of aviation very seriously."
- "There are numerous special aviation technologies that we would love to have."
- "...now we have 10 aircraft and a lot of test equipment that was never here before. Add 40 students and we are overflowing."

3300 - Automotive Technology

TOP COMMENTS / CONCERNS:
1. Need more laboratory space
2. More project storage space
3. Classroom and lab space are in separate buildings causing access and safety issues
4. Need modern equipment and technology to teach maintenance on newer vehicles

QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- "An ideal space would have a lab facility that was double in size as compared to our current facility. It would have vehicle lifts in every service bay with air supply, electrical outlets, good lighting and proper exhaust ventilation throughout the facility."
- "There would be two modern classrooms with current teaching technology and adequate storage within or adjacent to the classroom. We would have a larger more central tool and equipment storage room."
- "There would be a student lounge/lunchroom as our students are here all day."
- "There would be a library area with 20 computers and adequate storage space to organize and access our periodicals and service manuals."
Facility Assessment Survey - Faculty and Staff

3400 - Welding Technology
TOP COMMENTS / CONCERNS:
1. Age and condition of the building
2. Space cannot be reconfigured for changing needs
3. Classroom and lab spaces are too small
4. Overcrowded classrooms and hallways

QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- "We are not able to reconfigure for changing needs. It is not flexible electrically. There is poor ventilation and poor lighting."
- "I anticipate growth in the future due to the growing demand for welders and we are in desperate need of more space."
- "There is a long waiting list because people want into the field."
- "Need more covered work space, more outdoor power, better ventilation, NC Plasma system and computers to support fabrication area or reconfigurable area, larger storage room, and separate aluminum and titanium room."

3500 - Maintenance Mechanics Technology
TOP COMMENTS / CONCERNS:
1. Age and condition of the building
2. Poor, inefficient climate control
3. Offices should be near the classroom and laboratory spaces
4. Overcrowded classrooms and hallways

QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- "I am currently housed in a building that is a left over from the Air Force days. It is approximately 60 years old. It is hardly adequate in many aspects, however we have adapted to what we have."
- "The building is too small, lacks interior storage, is ridiculous to climate control, isn’t legally compliant, would probably be excessive to remodel and generally houses multiple subject labs in the same space that are not necessarily related. In a word, it is too small, too old, and generally degrading."
- "It would be beneficial to be near the electrical labs and classrooms as well as near the welding labs. My office should be near my assigned spaces."

3600 - Industrial Electrical Technology
TOP COMMENTS / CONCERNS:
1. Need dedicated space for specialized training equipment
2. Need more classroom and lab space
3. Need multi-purpose space
4. Need computer labs for the specialized training of the program

QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- "In recent years our enrollment has effectively doubled plus. We are literally in a “sitting in someone’s lap” situation. Our classroom space and labs are taxed beyond their maximum."
- "We have a very steady and growing job market in our occupations. It seems that our programs have been discovered in recent years and we have seen a heavy influx of new and returning students."
- "...the buildings are poorly sealed and insulated, they are poorly controlled, horribly inefficient and costly."
- "Being able to accommodate community activities is beneficial for visibility purposes. Having a reasonable space dedicated to that purpose or multipurpose is desirable."

4200 - Security, Maintenance
TOP COMMENTS / CONCERNS:
1. Better technology and equipment
2. Poor heating and cooling system
3. Need more work space
4. Current building placement is adequate

QUOTES FROM FACULTY AND STAFF ABOUT THE FACILITY:
- "The present building and placement in building works."
- "Bathroom is cold. Open vent directly to outside that cold air flows and blows through."
- "I could use a fair size bulletin board on one wall (instead of putting nail and tack holes in walls)."
PROGRAMS
BIG BEND

TYPES OF STUDENTS
The College offers Associate Degrees for a wide range of academic, professional and technical programs. The College also offers certificates for many of its professional/technical programs.

For the 2010-11 Academic Year, transfer students made up 43% of the total student population. Professional-Technical Students made up 33% of the students and Adult Basic Education made up the remaining 24%. These percentages have remained fairly constant over the years.

Recent decreases in state funding are directly related to the college decreasing student enrollment in Adult Basic Education. Demand far exceeds available funding. Additionally, current skill levels for entering students is at an all-time low.

TRANSFER PROGRAMS
• Associates in Arts and Science -Direct Transfer Agreement Degree
• Associates in Science Transfer Degree
• Associate in Business Degree
• Associate in Elementary Education Degree
• Associate in Pre-Nursing Degree
• Associate in General Studies Degree

PROFESSIONAL TECHNICAL EDUCATION
• Accounting Technician
• Aviation Maintenance Technology
• Automotive Technology
• Business Information Management
• Business Medical Services
• Commercial Drivers License
• Chemical Laboratory Technology
• Early Childhood Education
• Industrial Systems Technology
• Medical Assistant
• Nursing Assistant
• Practical Nursing
• Welding Technology

ADULT BASIC EDUCATION
• High School Completion
• GED Preparation
• Adult Basic Education
• English as a Second Language
• Citizenship

CONTINUING EDUCATION
• The Executive Management Series - Accounting, Grant Writing, Grant Management, Motivating Employees, Recruitment & Retention
• Computer Workshops
• Computer Series for Seniors
• Culinary Series
• Fitness & Well-being
• Leadership Training Series
• Personal Enrichment Workshops
• Welding
• Art
• Music

PROGRAMS OF STUDY
• Accounting
• Agriculture
• Anthropology
• Art
• Aviation
• Biology
• Business Administration
• Chemistry
• Commercial Drivers License
• Computer Science
• Criminal Justice
• Early Childhood Education
• Economics
• English
• Foreign Language
• History
• Industrial Systems Technology
• Industrial Systems Technology - Industrial Electrical Option
• Mathematics
• Medical Assistant
• Music
• Nursing
• Philosophy
• Physical Education
• Physics Psychology
• Physics
• Psychology
• Religious Studies
• Sociology
• Welding

STUDENT SERVICES
• Counseling Center
• Career Advising
• Career Placement
• Disability Services
• Student Support Services
• Veterans Coordinator
• Financial Aid Office
• Worker Retraining Program
• English Skills Lab
• Foreign Language Lab
• Math Resource Center
• Online Tutoring
• Peer Tutoring
• BBCC Library
• Athletics
• Gym
• BBCC Bookstore
• BBCC Technology Services
• Learning Center Childcare
• Residence Halls
When Classes are Offered

Classroom Size

- Over 1000 SF: 10%
- 1000-1500 SF: 13%
- 500-1000 SF: 20%
- 300-500 SF: 27%
- Under 500 SF: 15%

Classrooms

Classrooms are located in 10 different buildings across campus with 60% of the classrooms located in the following four buildings:

1. 1800 Grant County ATEC
2. 1200 Science Math and Engineering
3. 1600 Business and Liberal Arts Building
4. 1900 Fine Arts Building

These four buildings are located at the heart of campus, making it easy for students to transition from one facility to another.

Across campus there are 20 general classrooms used for open scheduling. The classrooms in the 1600 Business Liberal Arts Building are being utilized at an average of 18 hours per week, the classrooms in the 1200 Math and Science building are being used at a rate of 16.36 hours per week, the classrooms in the 1800 building are being used 14.53 hours per week, and the classrooms located in the 1900 Fine Arts Building are being used an average of 10.51 hours a week.

This low classroom utilization rate suggests that there is sufficient classroom space for future enrollment growth.

However, it is important to note that 15 of the available 20 general classrooms are in poor condition and do not adequately meet the needs of today’s teaching and learning environments.

Classroom Condition

The classrooms located in the 1200, 1600, and 2000 buildings are noisy, oddly shaped, fluctuate greatly in temperature and are inflexible. Many of the classrooms are under 600 square feet and do not offer technology.

Instructors are finding it difficult to foster group learning and include modern technology in their instruction. Additionally, the location of the classrooms in comparison to offices and informal learning areas limit beneficial instructor-student exchanges.

Technology Enhanced Classrooms

There are 7 technology enhanced classrooms on campus, one of which is more of an office used for individual recordings. The enhanced classrooms being used at the highest rate are located in the 1600 Business and Liberal Arts building and in the 1200 Science, Math and Engineering building.

These classrooms are being used between 19:30 to 28:30 hours per week, well over the average 17:00 classroom usage. As e-learning increases and the power of lecture capture is realized, all classrooms will need to be equipped with modern day technology. This allows students to access and review information on demand and is essential to the anytime anywhere learning environment.

Classroom Condition

The classrooms located in the 1200, 1600, and 2000 buildings are noisy, oddly shaped, fluctuate greatly in temperature and are inflexible. Many of the classrooms are under 600 square feet and do not offer technology.

Instructors are finding it difficult to foster group learning and include modern technology in their instruction. Additionally, the location of the classrooms in comparison to offices and informal learning areas limit beneficial instructor-student exchanges.

Technology Enhanced Classrooms

There are 7 technology enhanced classrooms on campus, one of which is more of an office used for individual recordings. The enhanced classrooms being used at the highest rate are located in the 1600 Business and Liberal Arts building and in the 1200 Science, Math and Engineering building.

These classrooms are being used between 19:30 to 28:30 hours per week, well over the average 17:00 classroom usage. As e-learning increases and the power of lecture capture is realized, all classrooms will need to be equipped with modern day technology. This allows students to access and review information on demand and is essential to the anytime anywhere learning environment.

Classroom Condition

The classrooms located in the 1200, 1600, and 2000 buildings are noisy, oddly shaped, fluctuate greatly in temperature and are inflexible. Many of the classrooms are under 600 square feet and do not offer technology.

Instructors are finding it difficult to foster group learning and include modern technology in their instruction. Additionally, the location of the classrooms in comparison to offices and informal learning areas limit beneficial instructor-student exchanges.

Technology Enhanced Classrooms

There are 7 technology enhanced classrooms on campus, one of which is more of an office used for individual recordings. The enhanced classrooms being used at the highest rate are located in the 1600 Business and Liberal Arts building and in the 1200 Science, Math and Engineering building.

These classrooms are being used between 19:30 to 28:30 hours per week, well over the average 17:00 classroom usage. As e-learning increases and the power of lecture capture is realized, all classrooms will need to be equipped with modern day technology. This allows students to access and review information on demand and is essential to the anytime anywhere learning environment.

Classroom Condition

The classrooms located in the 1200, 1600, and 2000 buildings are noisy, oddly shaped, fluctuate greatly in temperature and are inflexible. Many of the classrooms are under 600 square feet and do not offer technology.

Instructors are finding it difficult to foster group learning and include modern technology in their instruction. Additionally, the location of the classrooms in comparison to offices and informal learning areas limit beneficial instructor-student exchanges.

Technology Enhanced Classrooms

There are 7 technology enhanced classrooms on campus, one of which is more of an office used for individual recordings. The enhanced classrooms being used at the highest rate are located in the 1600 Business and Liberal Arts building and in the 1200 Science, Math and Engineering building.

These classrooms are being used between 19:30 to 28:30 hours per week, well over the average 17:00 classroom usage. As e-learning increases and the power of lecture capture is realized, all classrooms will need to be equipped with modern day technology. This allows students to access and review information on demand and is essential to the anytime anywhere learning environment.

Classroom Condition

The classrooms located in the 1200, 1600, and 2000 buildings are noisy, oddly shaped, fluctuate greatly in temperature and are inflexible. Many of the classrooms are under 600 square feet and do not offer technology.
"Any new learning space should be built with the assumption that it will last 30 times longer than any technology that would sit inside it"

William Gibson

SPACE UTILIZATION
HOURS IN USE

“Any new learning space should be built with the assumption that it will last 30 times longer than any technology that would sit inside it”

William Gibson

TECHNOLOGY ENHANCED CLASSROOMS

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Sf</th>
<th>No of Stations</th>
<th>Hrs per week</th>
<th>% occupancy based on 24hrs per week</th>
<th>Students per Week</th>
<th>Student Capacity per Program</th>
<th>Room Capacity Efficiency</th>
<th>Overall Occupancy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1215</td>
<td>910</td>
<td>40</td>
<td>23:40:00</td>
<td>99%</td>
<td>229</td>
<td>270</td>
<td>85%</td>
<td>84%</td>
</tr>
<tr>
<td>1426</td>
<td>774</td>
<td>40</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1602</td>
<td>1220</td>
<td>66</td>
<td>28:30:00</td>
<td>119%</td>
<td>198</td>
<td>120</td>
<td>86%</td>
<td>102%</td>
</tr>
<tr>
<td>1609</td>
<td>695</td>
<td>29</td>
<td>19:30:00</td>
<td>81%</td>
<td>157</td>
<td>159</td>
<td>99%</td>
<td>80%</td>
</tr>
<tr>
<td>1703</td>
<td>145</td>
<td>1</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1855b</td>
<td>700</td>
<td>21</td>
<td>13:40:00</td>
<td>57%</td>
<td>66</td>
<td>69</td>
<td>96%</td>
<td>54%</td>
</tr>
<tr>
<td>1910</td>
<td>840</td>
<td>20</td>
<td>10:05:00</td>
<td>42%</td>
<td>90</td>
<td>90</td>
<td>100%</td>
<td>42%</td>
</tr>
<tr>
<td>Totals</td>
<td>5284</td>
<td>217</td>
<td>95:25:00</td>
<td>80%</td>
<td>740</td>
<td>818</td>
<td>93%</td>
<td>73%</td>
</tr>
</tbody>
</table>

SCIENCE LABS

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Sf</th>
<th>No of Stations</th>
<th>Hrs per week</th>
<th>% occupancy based on 12hrs per week</th>
<th>Students per Week</th>
<th>Student Capacity per Program</th>
<th>Room Capacity Efficiency</th>
<th>Overall Occupancy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1209</td>
<td>1011</td>
<td>40</td>
<td>8:00:00</td>
<td>67%</td>
<td>47</td>
<td>48</td>
<td>98%</td>
<td>65%</td>
</tr>
<tr>
<td>1211</td>
<td>1040</td>
<td>40</td>
<td>13:00:00</td>
<td>108%</td>
<td>125</td>
<td>132</td>
<td>95%</td>
<td>103%</td>
</tr>
<tr>
<td>1216</td>
<td>1403</td>
<td>40</td>
<td>10:00:00</td>
<td>83%</td>
<td>84</td>
<td>81</td>
<td>104%</td>
<td>86%</td>
</tr>
<tr>
<td>1217</td>
<td>1017</td>
<td>40</td>
<td>8:20:00</td>
<td>69%</td>
<td>24</td>
<td>24</td>
<td>100%</td>
<td>69%</td>
</tr>
<tr>
<td>Totals</td>
<td>4471</td>
<td>160</td>
<td>39:20:00</td>
<td>82%</td>
<td>280</td>
<td>285</td>
<td>99%</td>
<td>81%</td>
</tr>
</tbody>
</table>

COMPUTER RESOURCE ROOMS

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Sf</th>
<th>No of Stations</th>
<th>Hrs per week</th>
<th>% occupancy based on 24hrs per week</th>
<th>Students per Week</th>
<th>Student Capacity per Program</th>
<th>Room Capacity Efficiency</th>
<th>Overall Occupancy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1201-c</td>
<td>833</td>
<td>50</td>
<td>7:30:00</td>
<td>31%</td>
<td>31</td>
<td>50</td>
<td>62%</td>
<td>50%</td>
</tr>
<tr>
<td>1508</td>
<td>657</td>
<td>24</td>
<td>Arranged</td>
<td>Arranged</td>
<td>Arranged</td>
<td>Arranged</td>
<td>Arranged</td>
<td>Arranged</td>
</tr>
<tr>
<td>1612</td>
<td>1030</td>
<td>30</td>
<td>11:20:00</td>
<td>47%</td>
<td>67</td>
<td>83</td>
<td>81%</td>
<td>58%</td>
</tr>
<tr>
<td>1613</td>
<td>1434</td>
<td>25</td>
<td>Arranged</td>
<td>Arranged</td>
<td>Arranged</td>
<td>Arranged</td>
<td>Arranged</td>
<td>Arranged</td>
</tr>
<tr>
<td>1718</td>
<td>1161</td>
<td>40</td>
<td>7:40:00</td>
<td>32%</td>
<td>52</td>
<td>65</td>
<td>80%</td>
<td>40%</td>
</tr>
<tr>
<td>1801</td>
<td>950</td>
<td>33</td>
<td>24:30:00</td>
<td>102%</td>
<td>161</td>
<td>161</td>
<td>100%</td>
<td>102%</td>
</tr>
<tr>
<td>Totals</td>
<td>6065</td>
<td>202</td>
<td>51:00:00</td>
<td>53%</td>
<td>311</td>
<td>359</td>
<td>87%</td>
<td>67%</td>
</tr>
</tbody>
</table>

COMPUTER RESOURCE ROOMS
Currently Big Bend hosts six computer resource rooms across campus. Four are for dedicated purposes, one is open when not being used for testing and one is used for testing only.

Students can access computers in the Library Resource Center and in the Student Center. Additional computers are available off the Math Tutoring Lab, in the 1200 building. The limited availability of computers make it difficult for students to access needed software/technology to complete their assignments. One of the recurring themes discovered in a student survey was the desire for available computer labs throughout campus. In addition, wireless connections throughout campus need to be improved. The College Information and Technology Department is currently working on upgrading the system, as funding becomes available.

SCIENCE LABS
There are four science labs located in the 1200 building. These laboratories are dated and ill equipped for today’s modern instruction methodologies and technology. Lab space needs to integrate today’s instruction methodologies and technology. Computers should be integrated into the lab at the lab stations, not in a separate corner or room. Lab stations should also allow for both lecture and lab to happen simultaneously. Currently, the laboratories are unable to accommodate either of these modern day features. Additionally, lighting is poor and ventilation needs improvement.

The overall efficiency rate of 81% suggests that the College should begin planning for additional lab space.
SPACE UTILIZATION
TUTORING & LEARNING RESOURCE CENTERS

LEARNING RESOURCE CENTER - LIBRARY
The Library serves as the campus hub to exploration. The Library is one of the only places on campus where students can access computers to conduct research and complete necessary assignments.

The Librarian is a prime resource for students to learn how to effectively operate computer software and gain research skills. Many students struggle with basic computer usage and are in need of ongoing assistance as they learn to use the computer as a research tool and to complete online course work and assignments. Below is a chart that shows current and past usage.

In a recent student survey 30% of respondents stated that their favorite place on campus was the Library. Reasons ranged from it is relaxing to it allows you to access the internet when you do not have access at home.

MATH/SCIENCE RESOURCE CENTER
Math Resource/Tutoring Center in Building 1200 allows students to receive one on one assistance when needed. The Student Survey strongly showed the success of this program. Twelve percent of students stated the best thing about BBCC is the Math Resource Center.

Students even stated their success is because of the Math Resource Center. In 2011 the college implemented a card swiping method to calculate Math Lab usage. The cards show the Math Lab was used 9,629 times by 903 different students. Resource Center Staff believes this is only a fraction of the usage due to errors in the card program.

ENGLISH SKILLS RESOURCE CENTER
The card swipe system shows the English Skills Resource Center being accessed 2,955 times by 392 different users. The English Resource Center was also credited with being one of the best things about Big Bend by 12% of students. The following tables shows the characteristics of students using tutoring labs:

In order to increase tutoring access Big Bend is offering many online tutoring programs. Success seems to be similar to the success rates that are being experienced on campus.

ONLINE TUTORING

CLASS DISTRIBUTION SCHEDULE

STUDENT COMMUTE TIME

<table>
<thead>
<tr>
<th>Duration</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Minutes</td>
<td>34%</td>
</tr>
<tr>
<td>20 Minutes</td>
<td>20%</td>
</tr>
<tr>
<td>30 Minutes</td>
<td>15%</td>
</tr>
<tr>
<td>45 minutes</td>
<td>12%</td>
</tr>
<tr>
<td>60 + Minutes</td>
<td>14%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00am</td>
<td>16%</td>
</tr>
<tr>
<td>9:15am</td>
<td>10%</td>
</tr>
<tr>
<td>10:30am</td>
<td>16%</td>
</tr>
<tr>
<td>11:45am</td>
<td>14%</td>
</tr>
<tr>
<td>1:00pm</td>
<td>13%</td>
</tr>
<tr>
<td>2:15pm</td>
<td>12%</td>
</tr>
<tr>
<td>3:30pm</td>
<td>14%</td>
</tr>
<tr>
<td>4:45pm</td>
<td>16%</td>
</tr>
<tr>
<td>6:00pm</td>
<td>14%</td>
</tr>
<tr>
<td>7:15pm</td>
<td>16%</td>
</tr>
<tr>
<td>8:30pm</td>
<td>16%</td>
</tr>
<tr>
<td>9:45pm</td>
<td>16%</td>
</tr>
<tr>
<td>11:00pm</td>
<td>16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Online Tutoring Success %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>12%</td>
</tr>
<tr>
<td>Chemistry</td>
<td>9%</td>
</tr>
<tr>
<td>English</td>
<td>25%</td>
</tr>
<tr>
<td>Math</td>
<td>217%</td>
</tr>
<tr>
<td>Physics</td>
<td>4%</td>
</tr>
<tr>
<td>Science General</td>
<td>6%</td>
</tr>
<tr>
<td>Social Science</td>
<td>11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Math Lab Success %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-College Math</td>
<td>337%</td>
</tr>
<tr>
<td>Math College Level</td>
<td>174%</td>
</tr>
<tr>
<td>Chemistry</td>
<td>68%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>English Lab Success %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-College English</td>
<td>122%</td>
</tr>
<tr>
<td>College English</td>
<td>133%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>396</td>
<td>66%</td>
</tr>
<tr>
<td>Male</td>
<td>207</td>
<td>34%</td>
</tr>
<tr>
<td>Under 20 years old</td>
<td>87</td>
<td>14%</td>
</tr>
<tr>
<td>Age 20-24</td>
<td>229</td>
<td>38%</td>
</tr>
<tr>
<td>Age 25 and older</td>
<td>285</td>
<td>47%</td>
</tr>
<tr>
<td>Latino</td>
<td>221</td>
<td>37%</td>
</tr>
<tr>
<td>White</td>
<td>353</td>
<td>59%</td>
</tr>
<tr>
<td>Other</td>
<td>29</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Math Lab</th>
<th>Success %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-College Math</td>
<td>337%</td>
</tr>
<tr>
<td>Math College Level</td>
<td>174%</td>
</tr>
<tr>
<td>Chemistry</td>
<td>68%</td>
</tr>
</tbody>
</table>
ACCESS

DISTANCE FROM CAMPUS CORE
Academic Transfer, Professional Technical and Adult Basic Education Programs are currently widely separated across campus.

Academic transfer programs are located in the core of campus with the majority of workforce training, professional technical and adult basic education located on the outskirts. The college hopes to remove this separation by developing the core of campus to serve all programs.

The campus map to the right illustrates the location of the following:

- Classrooms
- Laboratories and Resource Centers
- Adult Basic Education
- Professional Technical Education

Student Services are located at the core of campus in the 1400 building. Math and English Resource Centers are located in the 1200 building and in the 1800 building. Access to these facilities and resources is difficult for professional technical education and adult basic education students. The distance is a significant barrier. If a student wants to ask a quick math question or stop by the financial aid office they have to get into their car and drive to the core of campus or at a minimum take a 5 minute walk.
The chart below demonstrates the current Washington state recommendation for net assignable square feet (NASF) per full-time equivalent (FTE) values compared to Big Bends existing NASF per FTE. The chart to the right demonstrates the space currently utilized by Academic Transfer, Professional Technical Education and Adult Basic Education Programs. Items to be looked at closer are the reported overage of classroom space, need for additional basic skills resource centers, accessibility/availability of computer resource centers and access to student recreation and student services.

It is important to note that the calculations are based on BBCC count of 2131 FTE’s; this number varies significantly from the current State calculations.

STATE SPACE GUIDELINES

The chart below demonstrates the current Washington state recommendation for net assignable square feet (NASF) per full-time equivalent (FTE) values compared to Big Bends existing NASF per FTE. The chart to the right demonstrates the space currently utilized by Academic Transfer, Professional Technical Education and Adult Basic Education Programs. Items to be looked at closer are the reported overage of classroom space, need for additional basic skills resource centers, accessibility/availability of computer resource centers and access to student recreation and student services.

It is important to note that the calculations are based on BBCC count of 2131 FTE’s; this number varies significantly from the current State calculations.

SPACE NEED CALCULATION
CURRENT

<table>
<thead>
<tr>
<th>All Students 2009-10 2131 FTE’s</th>
<th>Class</th>
<th>Academic 2009-10 938 FTE’s</th>
<th>Professional Technical 2009-10 682 FTE’s</th>
<th>Adult Basic Education 2009-10 511 FTE’s</th>
<th>Total Existing Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State Calculation</td>
<td>Existing</td>
<td>State Calculation</td>
<td>Existing</td>
<td>State Calculation</td>
</tr>
<tr>
<td>GENERAL CLASSROOM, SMART CLASSROOM & LECTURE HALL</td>
<td>A1</td>
<td>12.4</td>
<td>7.5</td>
<td>NA</td>
<td>32.1</td>
</tr>
<tr>
<td>BASIC SKILLS LABS</td>
<td>A2</td>
<td>NA</td>
<td>NA</td>
<td>27.6</td>
<td>0</td>
</tr>
<tr>
<td>SCIENCE LABS</td>
<td>B1</td>
<td>6</td>
<td>3.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>COMPUTER LABS</td>
<td>B2, B4, B5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>5.1</td>
</tr>
<tr>
<td>MUSIC</td>
<td>C1</td>
<td>1,780</td>
<td>2,130</td>
<td>1,280</td>
<td>N/A</td>
</tr>
<tr>
<td>ART</td>
<td>C2</td>
<td>2,840</td>
<td>5,280</td>
<td>1,920</td>
<td>N/A</td>
</tr>
<tr>
<td>DRAMA</td>
<td>C3</td>
<td>2,200</td>
<td>3,927</td>
<td>1,600</td>
<td>N/A</td>
</tr>
<tr>
<td>PROFESSIONAL TECHNICAL</td>
<td>B3, D1, D2</td>
<td>0</td>
<td>0</td>
<td>107,609</td>
<td>107,609</td>
</tr>
<tr>
<td>AUDITORIUM</td>
<td>C4</td>
<td>3,980</td>
<td>N/A</td>
<td>2,880</td>
<td>N/A</td>
</tr>
<tr>
<td>LIBRARY/LRC</td>
<td>E1</td>
<td>15,758</td>
<td>21,060</td>
<td>8,184</td>
<td>1,422</td>
</tr>
<tr>
<td>PHYSICAL EDUCATION</td>
<td>H3</td>
<td>13,000</td>
<td>24,457</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FACULTY OFFICE</td>
<td>F1</td>
<td>7,598</td>
<td>9,837</td>
<td>7,366</td>
<td>5,590</td>
</tr>
<tr>
<td>PROFESSIONAL TECHNICAL</td>
<td>B3, D1, D2</td>
<td>0</td>
<td>0</td>
<td>107,609</td>
<td>107,609</td>
</tr>
<tr>
<td>SUBTOTAL INSTRUCTIONAL SUPPORT</td>
<td>40,316</td>
<td>55,354</td>
<td>18,430</td>
<td>7,012</td>
<td>12,431</td>
</tr>
<tr>
<td>TOTAL INSTRUCTIONAL SPACE</td>
<td>67,178</td>
<td>109,007</td>
<td>140,523</td>
<td>114,621</td>
<td>31,770</td>
</tr>
<tr>
<td>ADMIN/STUD SERV</td>
<td>G1, G2</td>
<td>8,423</td>
<td>17,388</td>
<td>6,124</td>
<td>0</td>
</tr>
<tr>
<td>S CTR & RELATED</td>
<td>H1, H2</td>
<td>12,372</td>
<td>29,549</td>
<td>8,996</td>
<td>1,072</td>
</tr>
<tr>
<td>STORES/MAINT</td>
<td>I1</td>
<td>6,566</td>
<td>4,943</td>
<td>2,728</td>
<td>0</td>
</tr>
<tr>
<td>CHILD CARE</td>
<td>I4</td>
<td>3,180</td>
<td>0</td>
<td>2,319</td>
<td>0</td>
</tr>
<tr>
<td>MISCELLANEOUS J, K, L, Z</td>
<td>0</td>
<td>1,047</td>
<td>0</td>
<td>183</td>
<td>0</td>
</tr>
<tr>
<td>SUBTOTAL STUDENT SERVICE/OTHER</td>
<td>30,550</td>
<td>52,927</td>
<td>20,167</td>
<td>1,255</td>
<td>16,640</td>
</tr>
<tr>
<td>TOTAL SPACE</td>
<td>97,728</td>
<td>161,934</td>
<td>160,690</td>
<td>115,876</td>
<td>48,410</td>
</tr>
</tbody>
</table>
The tables on the right show current space usage and projected space needs based on Washington State calculations. These space projections are based off Big Bend’s 2009-2010 calculation of 2131 FTE’s. Growth is projected at 2% per year.

The consultant team recommends renovating and reallocating space in correlation with replacing facilities that have outlived their useful life. Changing use for informal learning and learning resource centers throughout campus will create an inviting educational environment.

Additionally, the college should undergo a systematic evaluation of how it is currently using space. Tracking space utilization will allow the college to better understand its unique spatial needs and the necessary space requirements to effectively increase student performance and serve the surrounding community.

Current Inventory

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>2009-10 2131 FTE’s</th>
<th>2014-15</th>
<th>2018-19</th>
<th>2022-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GENERAL CLASSRM</td>
<td>29,232</td>
<td>16,747</td>
<td>-12,486</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>BASIC SKILLS LABS</td>
<td>2,667</td>
<td>14,104</td>
<td>11,447</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>SCIENCE LAB</td>
<td>7,934</td>
<td>8,015</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>B2,B4,B5</td>
<td>COMPUTER LABS</td>
<td>5,352</td>
<td>6,819</td>
<td>1,467</td>
<td></td>
</tr>
<tr>
<td>B3,D1,D2</td>
<td>PROFESSIONAL TECHNICAL</td>
<td>107,609</td>
<td>107,609</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C1,C2,C3,C4</td>
<td>ART, MUSIC, DRAMA, AUDITORIUM</td>
<td>18,080</td>
<td>24,000</td>
<td>5,920</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>LIBRARY/LEARNING RESOURCE CENTER</td>
<td>20,341</td>
<td>30,704</td>
<td>9,733</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>FACULTY OFFICE</td>
<td>15,714</td>
<td>20,554</td>
<td>4,840</td>
<td></td>
</tr>
<tr>
<td>G1,G2</td>
<td>ADMIN/STUD SERV</td>
<td>15,351</td>
<td>19,136</td>
<td>3,785</td>
<td></td>
</tr>
<tr>
<td>H1,H2</td>
<td>STUDENT CENTER & RELATED</td>
<td>28,415</td>
<td>28,108</td>
<td>-307</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>C STORES/MAINT</td>
<td>19,964</td>
<td>12,871</td>
<td>-7,093</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>CHILD CARE</td>
<td>0</td>
<td>7,242</td>
<td>7,242</td>
<td></td>
</tr>
<tr>
<td>J,K,L,Z</td>
<td>MISCELLANEOUS</td>
<td>3,426</td>
<td>3,426</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>298,755</td>
<td>311,705</td>
<td>12,950</td>
<td></td>
</tr>
</tbody>
</table>

Space Projections Based on State Allocation

<table>
<thead>
<tr>
<th>Class</th>
<th>Space Projections</th>
<th>2009-10</th>
<th>2014-15</th>
<th>2018-19</th>
<th>2022-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GENERAL CLASSRM</td>
<td>11,632</td>
<td>5,115</td>
<td>12,847</td>
<td>5,647</td>
</tr>
<tr>
<td>A2</td>
<td>BASIC SKILLS LABS</td>
<td>14,104</td>
<td>6,216</td>
<td>2,635</td>
<td>6,726</td>
</tr>
<tr>
<td>B1</td>
<td>SCIENCE LAB</td>
<td>5,628</td>
<td>3,002</td>
<td>2,182</td>
<td>3,315</td>
</tr>
<tr>
<td>B2,B4,B5</td>
<td>COMPUTER LABS</td>
<td>5,352</td>
<td>9,000</td>
<td>2,672</td>
<td>3,315</td>
</tr>
<tr>
<td>C1</td>
<td>MUSIC</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td>C2</td>
<td>ART</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
</tr>
<tr>
<td>C3</td>
<td>DRAMA</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>B3,D1,D2</td>
<td>PROFESSIONAL TECHNICAL</td>
<td>107,609</td>
<td>107,609</td>
<td>107,609</td>
<td>107,609</td>
</tr>
<tr>
<td>C4</td>
<td>AUDITORIUM</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
</tr>
<tr>
<td>E1</td>
<td>LIBRARY/LRC</td>
<td>15,758</td>
<td>6,132</td>
<td>17,106</td>
<td>6,768</td>
</tr>
<tr>
<td>H3</td>
<td>PHYS EDUCATION</td>
<td>13,000</td>
<td>13,000</td>
<td>13,000</td>
<td>13,000</td>
</tr>
<tr>
<td>F1</td>
<td>FACULTY OFFICE</td>
<td>7,998</td>
<td>7,366</td>
<td>5,590</td>
<td>8,392</td>
</tr>
<tr>
<td>G1,G2</td>
<td>ADMIN/STUD SERV</td>
<td>8,423</td>
<td>6,124</td>
<td>4,589</td>
<td>9,165</td>
</tr>
<tr>
<td>H1,H2</td>
<td>S CTR & RELATED</td>
<td>12,372</td>
<td>8,996</td>
<td>6,740</td>
<td>13,477</td>
</tr>
<tr>
<td>I1</td>
<td>C STORES/MAINT</td>
<td>6,566</td>
<td>2,728</td>
<td>3,577</td>
<td>7,144</td>
</tr>
<tr>
<td>H4</td>
<td>CHILD CARE</td>
<td>3,189</td>
<td>2,319</td>
<td>1,734</td>
<td>3,522</td>
</tr>
<tr>
<td>J,K,L,Z</td>
<td>MISCELLANOUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Sf Need</td>
<td></td>
<td>308,279</td>
<td>332,996</td>
<td>336,036</td>
<td>336,036</td>
</tr>
</tbody>
</table>
ENVIRONMENT
LANDSCAPE & ZONING

LANDSCAPE & ZONING
BBCC is located in an Urban Public Facilities zone of Grant County, Washington. It is bordered on the west and south by urban light industrial zones, and to the north and east by an urban commercial zone. The general campus area is bordered by the Grand County International Airport. Closer to the waterfront and just beyond the light industrial zone to the south is an urban residential zone.

The nearness of the Airport coupled with proximity of related commercial and industrial businesses mean BBCC is ideally situated to serve the training and education needs of the area. The Grant County Economic Development Council is also located on the campus. These factors give BBCC a distinct advantage in providing a skilled workforce to meet the specific training demands of businesses within its service district. The adjacent residential area in combination with the college’s dormitories, provides ample housing opportunities for students interested in living close to campus. Recreational opportunities and events need to be brought to campus to foster increases in student residency.

Big Bend Community College - County Zoning Map

Big Bend Community College - 2009 Aerial Image
EXISTING CAMPUS
Upgrading the existing campus infrastructure is challenging due to incomplete documentation provided by the Air Force. The college has been systematically upgrading the infrastructure with each replacement and major renovation. The lines on the existing utilities map show the known sewer, underground power and water lines. Upgrades will continue as the college moves forward with replacing facilities.

Careful documentation of all updates will be mandatory to reduce future conflicts and increase the college’s knowledge about location of major utilities throughout campus.

In the future the college hopes to implement natural gas and maximize solar opportunities. Through partnerships with the Port and with area solar manufacturers many different options to increase sustainability are currently being explored.

Water and sanitary sewer is supplied through the City of Moses Lake. Upgrades to the waterlines are occurring as facilities are replaced.

Electrical service and distribution will systematically be upgraded and placed underground as aging facilities are replaced.

Currently the college is researching and working towards development of a well on campus to provide irrigation. Tests have shown excessively high TCE levels and are not suitable for potable water supplies but...
Many of Big Bend’s facilities are over 50 years old. They were never designed with energy or water efficiency in mind. Through systematic replacement utility costs can be decreased. On average the college can expect to save a minimum of 30% in utility cost through the development of high performance sustainable buildings. This calculates to around $200,000 in savings per year. Additionally, the college is researching the possibilities of installing a well for irrigation purposes. Due to the high level of TCE’s the well will only be used for irrigation. Benefits from this project will be a substantial decrease in city water usage, beautified campus and removal of TCE’s from the region’s water supply.

Campus Utility Costs

<table>
<thead>
<tr>
<th>UTILITY COMPANY</th>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY OF MOSES LAKE</td>
<td>3446.05</td>
<td>3734.15</td>
<td>4815.97</td>
<td>4863.70</td>
<td>6928.03</td>
<td>12014.36</td>
<td>13343.61</td>
<td>16118.56</td>
<td>12445.80</td>
<td>6061.55</td>
<td>3818.02</td>
<td>3070.97</td>
<td>$90,660.77</td>
</tr>
<tr>
<td>PUD</td>
<td>33876.83</td>
<td>35591.75</td>
<td>29014.25</td>
<td>28031.11</td>
<td>23409.82</td>
<td>22215.99</td>
<td>17584.57</td>
<td>17220.04</td>
<td>18047.54</td>
<td>21571.35</td>
<td>33203.83</td>
<td>36848.75</td>
<td>$316,615.83</td>
</tr>
<tr>
<td>AMERIGAS/MISC.</td>
<td>31318.50</td>
<td>32066.97</td>
<td>41594.24</td>
<td>14224.82</td>
<td>13299.77</td>
<td>3667.92</td>
<td>1538.93</td>
<td>1266.31</td>
<td>4396.71</td>
<td>2879.03</td>
<td>17021.81</td>
<td>47135.83</td>
<td>$210,410.84</td>
</tr>
<tr>
<td>CUMULATIVE</td>
<td>68,641.38</td>
<td>71,392.87</td>
<td>75,424.46</td>
<td>47,119.63</td>
<td>43637.62</td>
<td>37,898.27</td>
<td>32,467.11</td>
<td>34,604.91</td>
<td>34,890.05</td>
<td>30,511.93</td>
<td>54,043.66</td>
<td>87,055.55</td>
<td>$617,687.44</td>
</tr>
</tbody>
</table>

2011 Facility Master Plan
“When we look realistically at the world in which we are living today and become aware of what the actual problems of learning are, our conception of education changes radically. Although the educational system remains basically unchanged, we are no longer dealing primarily with the vertical transmission of the tried and true by the old, mature, and experienced teacher to the young, immature, inexperienced pupil. This was the system of education developed in a stable, slowly changing culture. In a world of rapid change, vertical transmission of knowledge alone no longer serves the purposes of education.”

- Margaret Mead (1958)

DEVELOPING A STRONG CAMPUS CORE

Developing a strong, sustainable campus core with walkways, community gathering areas and environmentally friendly facilities will allow Big Bend to demonstrate its commitment to the environment through a built reality. Core sustainable design elements will include:

ENERGY AND WATER

- Orient new facilities to maximize the benefits of the sun
- Incorporate solar and other renewable energy when cost effective
- Maximize energy efficiency of new construction through building envelopes and mechanical systems - strive for over 50% reduction
- Utilize energy efficient interior and exterior lighting
- Water conservation through low-flow hands-free faucets, toilets & urinals.

SITE

- Maximize natural attributes of the campus - such as the expansive open space. Future developments will infill the existing campus with minimal disturbance outside the campus border. However, future developments should be sensitive in maintaining as much open space as possible. This can be accomplished by designing new buildings with smaller site footprints.
- During design carefully plan for stormwater control, both quality and quantity. Maximize graywater reuse opportunities.
- Increase density – plan for compact clusters of development. This reduces required infrastructure (utility runs, paved walkways), reduces travel time between facilities (more walkable campus) and provides for more open space beyond the developed area.
- Transportation/Parking – new parking lots can be designed as smaller lots located closer to building clusters. Add landscaping islands and tree canopies to bring the lots down to human scale and to shade them from excessive heat gain from exposure to the sun. Take advantage of technological advances in permeable and low solar reflective paving materials to reduce solar gain and stormwater runoff. Improve lighting and security measures at the transit station and provide incentives that encourage use of public transit.
- Open space – this facility master plan looks for opportunities to increase open space as facilities are renovated or replaced. New open spaces such as the soccer fields, tennis courts, and courtyard are planned in close proximity to the campus core. These areas will serve as natural buffers between the campus and its surroundings. Benefits of buffer zones; maintain view corridors, block wind, noise and undesirable views, block sun during warm months, admit it during cool months, and beautification and enjoyment of campus vistas/views.
- Locate open spaces closer to the campus core to ensure utilization, and form informal outdoor gathering areas. Future improvements to campus open space will include native/adaptive plants that require minimal additional irrigation.
- Encourage alternative transportation by creating attractive bus shelters and strategically placing bike racks and shower access across campus.
- Encourage carpooling, hybrid and electric vehicles through preferred placement of parking stalls and parking permits.

BUILDINGS

- Use of USGBC LEED design principles in the placement, orientation and sizing of building pads (although in the plan they are merely shown as diagrammatic placeholders for future reference).
- New facilities are planned to address a central axis and pedestrian corridors. Future developments should be clustered together to reduce infrastructure needs.
- Buildings are arranged to allow quick and easy access to parking. Also, new facilities such as the PTEC are planned to be closer to the campus core to reduce automobile trips from outlying zones.

- Current new facilities like ATEC attract events and activities to campus. This will continue to be a draw for the region as the building was designed and built to last.
- Waste Management - strategically place recycling centers throughout campus. During Construction divert over 50% of waste from disposal whenever possible
- Develop and administer indoor thermal comfort surveys to be completed by students, staff and faculty. Evaluate and make needed improvements when possible
- Increasing indoor environment quality by specifying low emitting materials during design
- Utilize products that are made of pre and post recycled materials,
- Utilize products made from certified wood, rapidly renewable and regional materials when possible
- New construction and renovation will maximize natural day-lighting and view opportunities.
- Develop educational components that feature the buildings sustainable efforts and inform others of sustainability measures
- Design buildings to last 50 years - incorporate design features that allow them to flex and adapt as necessary.

2011 Facility Master Plan

Big Bend

Community College
CIRCULATION

VEHICLE & PEDESTRIAN

INTRODUCTION

A campus landscape is a type of urban park. The mix of recreation fields, green spaces, paths and plantings make them the ideal place to study, reflect or just to relax in nature. Our perception of how beautiful a campus is can be linked to how well the natural and built environments relate to each other. This landscaping plan looks at current issues while forecasting items that may arise as the campus continues to develop. Site-specific elements, vehicular and pedestrian circulation are the key points of this portion of the master plan.

When addressing circulation it is important to consider how people will arrive on campus and how they will navigate the landscape once they have arrived. Vehicle and pedestrian concerns drive the planning process in providing a network of roads, parking lots, walkways and outdoor environments that are welcoming and safe.

The Big Bend campus is blessed with an abundance of space, both developed and open. There is an abundance of open, green space with the potential for development of beautiful, scenic landscapes. However, there are apparent issues that should be addressed when considering how growth on campus will affect ease of circulation.

KNOWN ISSUES

Site - from a general site perspective, the campus has ample open space. Space between buildings and developed zones is plentiful with good access to parking. Yet there are campus zones that are removed from the core of campus and, as a result, are disconnected from vital campus services. These areas include the Aviation program, Professional Technical Education programs and the WorkFirst Training facility.

The campus also lacks a strong sense of identity as a place of higher education due to its former use as a military base and distance from the downtown district. There are no meaningful arrival points to the campus and there are no clear connections from the immediate area. The Port, Housing Authority, the Economic Development Council and neighboring industries would all benefit from stronger connections with Big Bend.

Another site element of concern is the underdeveloped campus perimeter or edge. Although substantial investment has been made in the development of the College Parkway, it requires an increased level of definition if it is to serve as a campus boundary.

The open generous size of the campus is both a blessing and a curse. Campus growth can occur while still maintaining the open space. Yet large expanses of the campus green are left underdeveloped and lack the charm and inviting qualities one would expect of a college campus.

Known issues include:

Vehicle Circulation - From a vehicular circulation point of view, several issues require attention. The location of the Big Bend campus causes students to rely heavily on personal automobiles as the primary way of getting to campus. Past campus improvements have catered to this trend as expansive parking lots have been placed close to major buildings. The continuation of this planning practice will diminish the pedestrian nature of the campus.

Upon arriving at campus, there are eight main vehicle entry points, none of which are clearly defined as a main entry. Some roads are undeveloped and require paving to be considered useful campus linkages. The new College Parkway creates a campus edge, but lacks mature, developed landscaping that would better define it as a boundary. Signage could also be improved along the perimeter drive and secondary streets to better facilitate wayfinding.

Parking is abundant and free to students, staff and visitors. It is evenly dispersed around campus and is close to major buildings. However, two parking lots (north along Bolling St. and 30th Ave. entrance to campus) are at the perimeter of campus and present safety and security issues, especially at night.

Pedestrian Circulation - For pedestrian access, there is good connectivity between parking lots and buildings. Three areas of concern though are the parking lot north of Chanute St., the lot north of Wallenstein Theatre, and the lot west of the Business & Liberal Arts Building where pedestrian paths cross parking lots. Also, the parking lots north of ATEC and adjacent to Smith Hall require the pedestrian to cross streets. Vehicle-pedestrian conflicts can occur at these locations.

Pedestrian paths are abundant on campus, yet there is a shortage of pedestrian amenities that encourage informal gatherings. Outside of the ATEC plaza there are no exterior spaces that promote social interaction.

Distance between campus zones is also a concern. The Aviation, Professional Technical Education and WorkFirst Training buildings are all located at the perimeter of campus. Walking times from the center of campus to these facilities range between 6-8 minutes and causes students of these programs to be disconnected from the students and services located at the core of campus. This distance also limits access to public transit for these students and faculty.

EXISTING
CIRCULATION

VEHICLE & PEDESTRIAN

OBJECTIVES

In light of the above known issues, the committee resolved to create a campus landscaping plan that addresses specific site elements and circulation while thoughtfully maintaining campus resources. Place-making will be a guiding design principle, meaning we intend to create special outdoor spaces that encourage cultural and social interaction.

SITE

The first issue to address is the physical disconnect of the Aviation, Professional Technical Education and WorkFirst Training Campus Zones. While the Aviation Program should remain at its current location near the airfield, it is recommended to relocate the Technical Education programs closer to the campus core. Locating a new Professional Technical Education Center (PTEC) closer to the center of campus will provide students enrolled in these programs with greater access to vital services and amenities. Additionally, improving pedestrian amenities and landscaping along the path to the Aviation buildings will help to integrate these facilities with the rest of campus.

To address the concern of campus identity, the first objective will be to develop a main vehicular entrance to campus. The intersection of 28th Ave. NE and Randolph Road has already been identified as the desired point of arrival and provides a link to the campus transit station. Improvements to the signage and landscaping at this location will help define it as the main campus entrance. Secondary entrances to campus can also be improved to give a cohesive look to the campus border.

Substantial investment has been made in the development of the College Parkway as a campus edge. This roadway can be further enhanced by increasing the density of landscaping elements and improving signage and way finding. The corridor can become more pedestrian friendly by including a vegetative buffer between traffic lanes and sidewalks.

VEHICULAR CIRCULATION

The Big Bend service district extends approximately 70 miles in each direction and 70% of students have commuting times ranging between 10 and 30 minutes. This heavy reliance on cars can be reduced with more reliance on public transportation such as the GTA. As the campus develops, additional transit stops can be built to serve more areas. As new facilities are constructed, parking for these projects will need to be carefully planned. To maintain a pedestrian-friendly campus, parking lots should be located at the perimeter of building clusters in order to maintain pathways and open space in the heart of the campus. New parking lots should be designed with tree islands, integrated sidewalks and smaller blocks that relate to human scale.

Road improvements will also support vehicle circulation. Beyond defining the eight entry points, there are underdeveloped roads on campus that can be improved by including them in the scope of future building projects. Future road improvements should follow campus design standards for fenestration, include pedestrian amenities such as crosswalks, and provide signage that promotes way finding.

Campus parking lots can be made safer through effective lighting strategies and by reducing the chances of vehicle-pedestrian conflicts. Lighting should sufficiently illuminate all areas of parking during planned use. Traffic calming devices can help protect pedestrians and include; raised or variegated material crosswalks, landscape bulb outs, reduced speed limits near crosswalks, or pedestrian-activated crossing signals.

PEDESTRIAN CIRCULATION

To further ensure pedestrian safety locations where pedestrians cross parking lots and streets need to be improved. Including traffic calming devices, marked crosswalks, integrated sidewalks and signage will increase pedestrian safety. Defining areas where roads and parking can be vacated in favor of pedestrian access is another strategy to consider.

Campus pedestrian paths should be welcoming and provide features that encourage their use. Plazas, courtyards and benches provide spaces for informal gatherings and help create a sense of place in the landscape. The landscaping plan shows grand pedestrian boulevards that create linkages between points of arrival and main campus buildings. More than a sidewalk, the boulevards will include raised planting beds, tree islands, integrated benches and plazas at key intersections with other paths.

An important objective of the landscaping plan is to ensure that all campus zones are an integral part of the campus community. Even though distances between buildings can not be changed, we can plan for stronger connections from the center of campus to the outlying areas. This can be accomplished by increasing the density of trees and plantings and planning for sidewalks along the paths to these disconnected campus zones. The Biennium maps detail the strategic location of new facilities in open spaces between existing buildings. This type of infill development will help to shorten walking times between buildings and will help establish a more densely developed campus core.

IMPLEMENTATION - RECOMMENDATIONS

The landscaping plan seeks to create a people-oriented campus that promotes sustainability, social interaction and strong connections with surrounding industries. This can be accomplished by developing special places on campus that enhance student life and attract the community to campus. The planning committee recommends the following site improvements:

SITE

Integrating the many campus zones into a cohesive fabric is the first step in place-making. To make stronger connections to the campus core, the landscaping plan includes increased density of plantings and pathways between the campus core and the Aviation facilities. New recreational facilities such as the Global Learning Opportunity Center (GLOC) and the PTEC will bring the Workforce Training and Technical Education programs closer to the center of campus. Planned developments should occur within the existing campus boundary. This sustainable practice will help lessen the environmental impact of campus development. Increasing campus density will also help the College maintain open space within its border.

Campus identity will be strengthened by refining the main and secondary vehicle access points. A main campus entrance is planned for Randolph Road with enhanced signage and wayfinding. The additional seven, secondary vehicle entrances along the College Parkway can also be improved with signage and landscaping. On a larger scale, the college should also consider its partnerships with its
neighbors by collectively planning to develop the entrance to the greater College, Port and Airport area. The intersections of Randolph Road with both Highway 17 and Patton Boulevard are key locations to consider.

Planning for a consistent landscape will also help the college to create a sense of arrival and identity. Adoption of design standards in the density, grouping and species of plantings will aid in the development of a mature landscape. As capital projects are constructed approved landscaping plans should fit within the desired campus form. Special places such as courtyards, pedestrian boulevards, intersections, vehicle entrances and designated streets can be differentiated from the landscape to signify their importance. Other landscaping features such as sidewalks, benches and light poles should have a consistent finish across the entire campus.

The College Parkway is another area where campus identity can be improved. Design elements that increase the profile of this area should include; planting density, vegetative strips, special lighting, banners and signage, and varied materials at key intersections.

VEHICULAR CIRCULATION

To reduce reliance on personal vehicles, the College should work with GTA in determining locations for additional transit stops. Some recommended locations along College Parkway include the intersections of 30th Ave and the east end of Bolling Street. These locations afford better access to the Aviation facilities and the planned student housing east of the DeVries Activity Center.

A key element in planning for vehicle circulation is deciding where cars will be allowed. As the campus core develops and connections are made with outlying zones, it will become increasingly critical to protect the pedestrian nature of campus. It is recommended that the core of campus between both east and west edges of College Parkway, and stretching between Bolling Street to the north and Chanute Street to the south, remain a pedestrian zone. Pedestrian pathway improvements have already occurred along the Chanute Street corridor and could include a future pedestrian boulevard as shown on the landscaping plan.

The Bolling Street corridor is an excellent candidate for the creation of a campus main street. The landscaping plan depicts tree islands, integrated sidewalks and crosswalks with varying materials. Signage, banners and lighting along the street could add to the main street feel. Since this roadway serves as the main access point to the ATEC building and future athletic facilities, it follows that the importance of this campus linkage should be celebrated and enhanced. Parking lots have been redistributed throughout the campus perimeter to better serve the campus zones. Their proportions are kept smaller to help reduce the amount of heat generated by the asphalt as it is exposed to the sun. Design elements will include integrated tree islands and sidewalks, appropriate lighting, considerations for drainage and filtration, and traffic calming devices. The landscaping plan shows new parking lots for the Recreation Center, Soccer Dome, PTEC and student housing. Improvements to existing parking lots are shown for the Global Learning Opportunity Center, Science & Engineering, Aviation, and the Childhood Development Center. A key consideration in the design of future parking lots is the mitigation of possible vehicle-pedestrian conflicts.

PEDESTRIAN CIRCULATION

The main concept in accommodating pedestrians is the development of the campus core as a pedestrian-friendly zone. The landscaping plan shows pedestrian boulevards serving as main linkages between points of arrival and main building clusters. Examples include: the east-west corridor of Chanute Street, east from the courtyard to the western end of Allied Health, and the north-south axis from the transit station to ATEC. Some design elements of the boulevards include raised planter beds with integrated benches, plazas and courtyards, and varied materials at intersections. It is the intent of these paths to not only provide a primary means of access but to offer places for informal gatherings between students and their professors.

Additional informal gathering spaces are planned for at the location of the DeVries Activity Center after the Recreation Center is constructed and at the western edge of the Chanute Street pedestrian boulevard. The open space between ATEC and Allied Health contains the only existing campus quad and plaza, and therefore shows excellent potential for the development of more outdoor gathering space.

It should be noted that quality outdoor space must include ample open green space. The landscaping plan strives to provide this by improving existing lawns, creating green space where it formerly did not exist, and by including green space as part of the scope of new capital projects. These will become critical areas for recreation, campus events and attract community residents. Plans to install an irrigation well on campus will greatly ease the cost associated with these improvements.

Along roadways, pedestrian paths will be separated from traffic with vegetative buffers. Traffic calming devices at intersections and parking lots will also facilitate pedestrian safety. The landscaping plan shows new pedestrian paths as an integral part of planned capital projects. These paths are planned to connect these new facilities with campus core and to better integrate outlying campus zones.

RECOMMENDED
The chart to the right outlines the buildings statistics. Information available includes the year the building was built, when the college placed it in service and the total amount invested to date. Additional information includes the last Facility Condition Score, the RGU Facility Condition Score and the Facility Master Plan Recommendation.

<table>
<thead>
<tr>
<th>Building</th>
<th>Building Name</th>
<th>Year Built</th>
<th>Year 50 years Old</th>
<th>Sq Ft</th>
<th>Assignable Sq Ft</th>
<th>Year Occupied</th>
<th>Acquisition Cost</th>
<th>Last Renovation</th>
<th>Cost</th>
<th>Total Cost</th>
<th>2009 Andre Pac Score</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Job Skills</td>
<td>1959</td>
<td>2009</td>
<td>5091</td>
<td>2847</td>
<td>1996</td>
<td>$23,047.00</td>
<td>1996</td>
<td>$130,711.00</td>
<td>$185,966.00</td>
<td>564</td>
<td>292</td>
</tr>
<tr>
<td>1100</td>
<td>Performing Arts</td>
<td>1959</td>
<td>2006</td>
<td>15186</td>
<td>1046</td>
<td>1996</td>
<td>$9,471.00</td>
<td>2007</td>
<td>$185,966.00</td>
<td>$381,571.00</td>
<td>514</td>
<td>305</td>
</tr>
<tr>
<td>1200</td>
<td>Science, Math</td>
<td>1961</td>
<td>2011</td>
<td>27257</td>
<td>1881</td>
<td>1975</td>
<td>$40,149.00</td>
<td>1997</td>
<td>$37,180.00</td>
<td>$218,800.00</td>
<td>438</td>
<td>224</td>
</tr>
<tr>
<td>1300</td>
<td>Early Childhood Center</td>
<td>1959</td>
<td>2006</td>
<td>3620</td>
<td>2628</td>
<td>1978</td>
<td>$15,962.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>294</td>
</tr>
<tr>
<td>1301</td>
<td>Childcare</td>
<td>2004</td>
<td>2004</td>
<td>3302</td>
<td>304</td>
<td>2004</td>
<td>$157,230.00</td>
<td></td>
<td>$157,230.00</td>
<td>286</td>
<td>190</td>
<td>Replace</td>
</tr>
<tr>
<td>1400</td>
<td>Student Center/Admin</td>
<td>1959</td>
<td>2009</td>
<td>32153</td>
<td>21942</td>
<td>1972</td>
<td>$105,736.00</td>
<td>1993</td>
<td>$681,105.00</td>
<td>$926,765.00</td>
<td>442</td>
<td>Replace</td>
</tr>
<tr>
<td>1500</td>
<td>Smith Hall</td>
<td>1952</td>
<td>2002</td>
<td>24468</td>
<td>1425</td>
<td>1986</td>
<td>$91,856.00</td>
<td>1991</td>
<td>$89,831.00</td>
<td>$881,316.00</td>
<td>580</td>
<td>314</td>
</tr>
<tr>
<td>1600</td>
<td>Business & Liberal Arts</td>
<td>1985</td>
<td>2005</td>
<td>17760</td>
<td>1248</td>
<td>1985</td>
<td>$1,459,734.00</td>
<td>1996</td>
<td>$1,100.00</td>
<td>$1,461,834.00</td>
<td>410</td>
<td>Replace</td>
</tr>
<tr>
<td>1700</td>
<td>Allied Health & Information Technology</td>
<td>1952</td>
<td>2002</td>
<td>24464</td>
<td>12464</td>
<td>1975</td>
<td>$109,476.00</td>
<td>1995</td>
<td>$101,664.00</td>
<td>$420,615.00</td>
<td>612</td>
<td>388</td>
</tr>
<tr>
<td>1800</td>
<td>Grant County ARC & Library</td>
<td>2004</td>
<td>2004</td>
<td>69335</td>
<td>53133</td>
<td>2004</td>
<td>$14,151,473.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>1900</td>
<td>Fine Arts</td>
<td>1959</td>
<td>2009</td>
<td>15828</td>
<td>949</td>
<td>2009</td>
<td>$3,300,005.00</td>
<td></td>
<td>$3,300,005.00</td>
<td>153</td>
<td>194</td>
<td>Replace</td>
</tr>
<tr>
<td>2000</td>
<td>DeVries Activity Center</td>
<td>1981</td>
<td>2011</td>
<td>4418</td>
<td>26413</td>
<td>1981</td>
<td>$2,980,411.00</td>
<td>2006</td>
<td>$42,827.00</td>
<td>$2,980,411.00</td>
<td>498</td>
<td>215</td>
</tr>
<tr>
<td>3000</td>
<td>Aviation Flight Training</td>
<td>1955</td>
<td>2005</td>
<td>13764</td>
<td>813</td>
<td>1977</td>
<td>$24,342.00</td>
<td>2004</td>
<td>$9,321.00</td>
<td>$1,791,571.00</td>
<td>226</td>
<td>142</td>
</tr>
<tr>
<td>3100</td>
<td>Aircraft Hanger</td>
<td>1959</td>
<td>2000</td>
<td>30932</td>
<td>2523</td>
<td>1966</td>
<td>$126,418.00</td>
<td>1992</td>
<td>$1,136.00</td>
<td>$126,554.00</td>
<td>606</td>
<td>396</td>
</tr>
<tr>
<td>3200</td>
<td>Aviation Maintenance</td>
<td>1956</td>
<td>2006</td>
<td>27592</td>
<td>21761</td>
<td>1976</td>
<td>$126,418.00</td>
<td>1992</td>
<td>$4,970.00</td>
<td>$1,054,725.00</td>
<td>646</td>
<td>394</td>
</tr>
<tr>
<td>3300</td>
<td>Auto Mechanics Technology</td>
<td>1956</td>
<td>2006</td>
<td>31682</td>
<td>28483</td>
<td>1975</td>
<td>$126,418.00</td>
<td>1992</td>
<td>$1,136.00</td>
<td>$209,085.00</td>
<td>678</td>
<td>400</td>
</tr>
<tr>
<td>3400</td>
<td>Welding Technology</td>
<td>1955</td>
<td>2005</td>
<td>6580</td>
<td>5744</td>
<td>1966</td>
<td>$29,546.00</td>
<td>1995</td>
<td>$103,899.00</td>
<td>$133,445.00</td>
<td>690</td>
<td>114</td>
</tr>
<tr>
<td>3500</td>
<td>Maint. Mech Technology</td>
<td>1955</td>
<td>2005</td>
<td>4848</td>
<td>4469</td>
<td>1966</td>
<td>$21,428.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>656</td>
</tr>
<tr>
<td>3600</td>
<td>Industrial Electrical Tech</td>
<td>1955</td>
<td>2005</td>
<td>5847</td>
<td>3865</td>
<td>1966</td>
<td>$24,342.00</td>
<td>1995</td>
<td>$110,043.00</td>
<td>$147,429.00</td>
<td>646</td>
<td>488</td>
</tr>
<tr>
<td>4000</td>
<td>Paint & Carpenter Shop</td>
<td>1955</td>
<td>2005</td>
<td>4068</td>
<td>4000</td>
<td>1970</td>
<td>$20,163.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>630</td>
</tr>
<tr>
<td>4100</td>
<td>Automotive Technology Classrooms</td>
<td>1955</td>
<td>2005</td>
<td>4860</td>
<td>353</td>
<td>1966</td>
<td>$21,561.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>430</td>
</tr>
<tr>
<td>4200</td>
<td>Security & Maintenance</td>
<td>1955</td>
<td>2005</td>
<td>9312</td>
<td>5164</td>
<td>1966</td>
<td>$21,561.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>628</td>
</tr>
<tr>
<td>4300</td>
<td>Storage</td>
<td>1956</td>
<td>2005</td>
<td>3600</td>
<td>2000</td>
<td>1976</td>
<td>$11,052.00</td>
<td>1976</td>
<td>$11,052.00</td>
<td>$22,104.00</td>
<td>426</td>
<td>250</td>
</tr>
<tr>
<td>5000</td>
<td>Philips Hall</td>
<td>1963</td>
<td>2013</td>
<td>25737</td>
<td>25460</td>
<td>1975</td>
<td>$112,949.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>644</td>
</tr>
<tr>
<td>6000</td>
<td>Viking Hall</td>
<td>1963</td>
<td>2013</td>
<td>25737</td>
<td>25460</td>
<td>1975</td>
<td>$112,949.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>644</td>
</tr>
<tr>
<td>7700</td>
<td>Opportunity Center</td>
<td>1963</td>
<td>2013</td>
<td>36406</td>
<td>29072</td>
<td></td>
<td>$23,027,957.00</td>
<td></td>
<td>$1,840,530.00</td>
<td>$30,271,614.00</td>
<td>477,6206</td>
<td>644</td>
</tr>
</tbody>
</table>
Job Skills

FAST FACTS: WORKFIRST TRAINING ZONE
5,091 square feet
Year Built: 1959
Recommendation: Replace in future Growth
Project: Global Learning Opportunity Center
Prior Renovation: 1974

STRENGTHS
- Large Reception area to be used for informal learning and increased interactions

WEAKNESSES
- Underused inflexible space - small and odd shaped spaces
- Discouraged from campus - does not allow for community engagement
- Concrete cracking & CMU in poor condition
- Roof needs replaced
- Mechanical & Electrical Systems poor
- Finishes are in poor condition
- Code issues (accessibility)
- Building has outlived useful life

OPPORTUNITIES
- Renovation and reuse for a program that does not need regular engagement with campus life & community
- Moving the program to campus creates the opportunity to co-locate program with Basin Skills, tutoring labs and other student services to maximize adjacencies and efficiencies

RISKS OF NON-ACTION
- Student Success is not being optimized
- Students remain isolated
- Exposure to other programs limited
- Access to student services and resources remains an obstacle
- Lower student retention
- Economic Development doesn't reach full potential
- Program remains uninspiring

HISTORY
The Job Skills Building was originally designed in 1959 as a dental clinic. In 1974 it was renovated to serve the Colleges Allied Health programs and in 2009 began housing Big Bends WorkFirst Program.

FUTURE OUTLOOK
The facility has outlived its useful life. All major components and finishes in this facility are in poor condition. The WorkFirst Program needs to be brought into the core of campus. Remaining isolated from campus decreases student access to services, resources and experiences that they need to stay motivated and experience success. Recommendations have been made to place this program in the future Global Learning Opportunity Center.

<table>
<thead>
<tr>
<th>CODE</th>
<th>TYPE OF SPACE</th>
<th>SF</th>
<th>NO. OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>NO. OF STATIONS</th>
<th>AVERAGE ASSIGNED SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>CLASS LABORATORIES</td>
<td>2,013</td>
<td>3</td>
<td>523</td>
<td>54</td>
<td>37</td>
</tr>
<tr>
<td>F1</td>
<td>FACULTY SERVICES</td>
<td>556</td>
<td>6</td>
<td>92.67</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>LEARNING RESOURCE</td>
<td>278</td>
<td>1</td>
<td>278</td>
<td>5</td>
<td>55.6</td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE: 2,847
TOTAL SQUARE FOOTAGE: 5,091
EFFICIENCY: 56.0%

FLOOR PLAN - EXISTING
Performing Arts

1100

FAST FACTS: Arts Zone
13,180 square feet
Year Built: 1959
Recommendation: Future COP
and/or Match Funding project
Prior Renovation: 2007

STRENGTHS
- Interior finishes are serviceable
- Location is near the center of campus
- Incorporates informal learning space
- Offers an auditorium

WEAKNESSES
- Sold purpose inflexible design - does not work for modern day instruction
- Orchestra pit and stage are undersized
- Unfriendly technology infrastructure
- HVAC System is inefficient and noisy
- Poor lighting throughout
- Unattractive and unwelcoming exterior
- Code issues - Accessibility
- No informal learning areas

OPPORTUNITIES
- Replace with modern day performance art building
- Big Bend culture strongly values music and arts programs
- This is the only performing arts facility in the area and has tremendous possibility of growth

RISKS OF NON-ACTION
- College forced to reduce quality of music and performing arts programs
- Community connectedness reduced
- Future funding from community could be affected

CLASS

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIGNSABLE SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>MUSIC</td>
<td>1,956</td>
<td>4</td>
<td>489</td>
<td>37</td>
<td>52.87</td>
</tr>
<tr>
<td>C3</td>
<td>DRAMA</td>
<td>2,073</td>
<td>6</td>
<td>346</td>
<td>1</td>
<td>346</td>
</tr>
<tr>
<td>C4</td>
<td>AUDITORIUM</td>
<td>5,642</td>
<td>1</td>
<td>5,642</td>
<td>688</td>
<td>8.2</td>
</tr>
<tr>
<td>F1</td>
<td>FACULTY OFFICE</td>
<td>201</td>
<td>2</td>
<td>100.5</td>
<td>2</td>
<td>100.5</td>
</tr>
</tbody>
</table>

ASSIINDABLE SQUARE FOOTAGE
10,046

TOTAL SQUARE FOOTAGE
13,180

EFFICIENCY
76%

HISTORY
The building was originally built in 1959 to serve as the military base theater. A music practice room was added in 1973. In 2007 the project was funded for renovation but funds were used to build the new Fine Arts Building (1900).

FUTURE OUTLOOK
The consultant team recommends replacing the Willestien Theater in 2021. Currently the theater is unattractive and unwelcoming. Big Bend’s strong music culture is a source of pride for the area and a strong connection that the College shares with the surrounding community. Replacement of the facility will allow the College to strengthen its ties with the community and grow its Performing Arts programs.
Science, Math, Engineering

1200
Fast Facts: STEM Zone
27,257 square feet
Year Built: 1961
Recommendation: Future Renovation Project
Prior Renovation: 1997

STRENGTHS
- Large facility housing science and math programs in one facility
- Located in the Campus Core
- Large Classrooms
- Large Resource Center
- Surrounding green space

WEAKNESSES
- Access to technology is poor and labs are outdated
- Multiple renovations have created a maze
- Poor floor plan
- Adjacent ticket interdisciplinary collaboration and interaction space
- Uninviting with odd shaped rooms
- Poor daylighting, acoustic, indoor air quality
- Inefficient Mechanical & Electrical Systems
- Buildings merged without careful planning

OPPORTUNITIES
- Expand Basic Lab Space
- Expand Computer Lab Space
- Expand Resource Center
- Create atmosphere that blurs line between lab and classroom
- Major renovation or replacement could create space to increase collaborative opportunities with high schools and 4 year programs
- Progressive program will open opportunities for industry partnerships, collaborations and funding sources

RISKS OF NON-ACTION
- Continuation of students entering college without the necessary math skills
- Students not advancing to higher math and science levels
- College reputation low in providing high quality STEM Education and Career opportunities.
- Loss of student engagement and opportunities
- Loss of more skilled workforce
- Continuation of students unable to access STEM career opportunities

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIGNABLE SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GENERAL CLASSROOM</td>
<td>6,705</td>
<td>8</td>
<td>838</td>
<td>301</td>
<td>21.82</td>
</tr>
<tr>
<td>A2</td>
<td>BASIC SKILLS</td>
<td>1,567</td>
<td>1</td>
<td>1419</td>
<td>50</td>
<td>28.38</td>
</tr>
<tr>
<td>B1</td>
<td>SCIENCE LABS</td>
<td>5,763</td>
<td>6</td>
<td>961</td>
<td>231</td>
<td>35.25</td>
</tr>
<tr>
<td>B1, B3, B5</td>
<td>CLASS LABORATORY SERV</td>
<td>2,361</td>
<td>12</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>COMPUTER LABS</td>
<td>617</td>
<td>1</td>
<td>617</td>
<td>27</td>
<td>22.85</td>
</tr>
<tr>
<td>F1</td>
<td>FACULTY OFFICE</td>
<td>1,709</td>
<td>15</td>
<td>113.93</td>
<td>17</td>
<td>100.53</td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE: 18,862
TOTAL SQUARE FOOTAGE: 27,257
EFFICIENCY: 68.0%

HISTORY
Originally this building served as a bowling alley. In 1973 it was converted to a science building and in 1994 and 1999 major additions were made for new laboratories and classrooms.

FUTURE OUTLOOK
A major renovation or replacement is needed for this facility. Creating a dynamic facility that excites and engages students will assist in raising math and science skill levels. The College envisions a facility that allows students to work individually and in both small and large groups. Increasing interaction among students and instructors is essential. Application of STEM principles to the real world is desired. Areas need to be created for students to showcase their work with the technological and tutorial support that ensures success. Collaborative K-12 educational space will be incorporated into the future facility.

VICINITY MAP
Early Childhood Development Center
1300A&B

Fast Facts:
- Childcare Zone
- Building A - 3,630 square feet
- Building B - 3,302
- Year Built: Building A - 1959, Building B - 2004
- Recommendation: Use Minor Repair Money Project for 2011 Biennium

STRENGTHS
- Location near campus core
- Visiblity
- Outdoor areas

WEAKNESSES
- Access
- Adaptability
- Health & Safety - heaters
- Thermal Comfort
- Indoor Air Quality
- Circulation Space
- Visibility of all areas

OPPORTUNITIES
- Fix immediately for safety and health
- Increase security, provide viewing areas
- Create strong interaction environment for students and parents
- Small size of facility allows for inexpensive renovation
- Create an inviting facility that visually and spatially connects the interior and exterior

RISKS OF NON-ACTION
- Possible safety risk
- Condition may cause decreased usage by students and their children due to condition
- Parenting skill levels decrease
- Lower achievement rates for the next generation
- Children are provided for in less than a safe and healthy environment

CLASS | TYPE OF ROOM | SQUARE FOOTAGE | NUMBER OF ROOMS | AVERAGE ROOM SIZE | STATIONS | AVERAGE ASSIGNABLE SQ. FT.
A2 | CLASS LABORATORY | 4,190 | 7 | 598.57 | 86 | 48.72
B1 | CLASS LABORATORY SERV | 245 | 2 | 122.5 | 4 | 48.72
F1 | FACULTY OFFICE | 497 | 4 | 124.25 | 4 | 124.25

ASSIGNABLE SQUARE FOOTAGE | 4,932
TOTAL SQUARE FOOTAGE | 6,922
EFFICIENCY | 71.25%

HISTORY
This facility was originally built with concrete masonry in 1959 and remodeled in 1974. The facility has cmu interior walls that limits flexibility.

FUTURE OUTLOOK
Adults are returning to the College for skill enhancement and new career opportunities. As the average college age increases so does the likelihood of students needing access to high quality affordable childcare.

Demand for programs that educate and support parents to raise their families in emotionally healthy ways so that their children can thrive personally, socially and academically is increasing.

FLOOR PLAN - EXISTING

Early Childhood Development Center

VICINITY MAP

2011 Facility Master Plan
Student Center, Administration

STRENGTHS
- Location is central to campus
- Interior finishes are in good condition

WEAKNESSES
- Recent additions/renovations addressed interior finishes but neglected the building envelope and some functional aspects of the building layout
- Boiler system and exterior glazing are original components of the building
- Facility lacks a fire alarm and automatic sprinkler system
- Student lounge is undersized, underutilized and lacks access to natural daylight

OPPORTUNITIES
- Relocating the student lounge would increase usable office/student services space
- Addition of fire alarm/sprinkler system as life safety improvements
- Expand student services/administration as campus core is further developed
- Increasing student recreation opportunity will keep students on campus longer and increase interactions with peers and instructors

RISKS OF NON-ACTION
- Operational costs will continue to increase if building systems and envelope are not made more efficient
- Acoustics and thermal comfort effects performance and positive influences
- The disconnect of some student amenities may lead to underutilization
- Student retention and recruitment may decrease due to the lack of student recreation opportunities

CLASS	TYPE OF ROOM	SQUARE FOOTAGE	NUMBER OF ROOMS	AVERAGE ROOM SIZE	STATIONS	AVERAGEAssignable SQ FT
A1 | INTERACTIVE CLASSROOM | 774 | 1 | 774 | 40 | 19.35 |
H1 | MERRILL, B. FACILITY SERV. | 2,962 | 4 | 740.5 |
H1 | RECREATIONAL FACILITIES | 1,293 | 1 | 1,293 |
H1 | RECREATIONAL FACIL. SVC. | 35 | 1 | 35 |
H1 | LOUNGE | 581 | 1 | 581 |
H1 | STUDENT ASSISTANCE | 409 | 2 | 204.5 |
F1 | FACULTY OFFICE | 14,999 | 60 | 249.98 |
G2 | OFFICE | 150 | 1 | 150 |
G1 | CONFERENCE ROOMS | 854 | 3 | 284.67 |

ASSIGNABLE SQUARE FOOTAGE | 21,312 |
TOTAL SQUARE FOOTAGE | 32,153 |
EFFICIENCY | 66.0% |

HISTORY
The 2400 Building was constructed in 1959 and an addition/renovation was completed in the 1990s, although the renovation didn’t address some of the functional issues of the existing facility. Finishes and some function were upgraded in 2010. The boiler system and exterior finishes and glazing are original to the building.

FUTURE OUTLOOK
Although recent renovations improved the appearance of interior finishes, some current uses of the facility are incompatible with its original design. Functional layouts are still inconsistent with a Student Services and Administration building. The boiler system and building envelope are 52 years old and are inefficient.

The student lounge is a dark and small space that may be better placed in the ATEC Building (as an addition), near the cafeteria. This facility is recommended as a replacement project for the 2019 Biennium.
Smith Hall

1500

- **Fast Facts**: Business Education Zone 24,468 square feet
- **Year Built**: 1952
- **Recommendation**: Future Replacement Project
- **Prior Renovation**: 1991

STRENGTHS
- Houses computer labs and classrooms
- Houses Central Receiving & Ward Services (printshop)

WEAKNESSES
- Safety
- Accessibility
- Inefficient
- Inflexible
- Daylighting minimal
- Disengaged from campus core
- Layout does not lend to modern day instruction

OPPORTUNITIES
- Replace facility as a modern day computer science facility
- Relocate in the core of campus
- Create functional, sustainable facility that will attract and grow the computer science program at Big Bend
- Create effective adjacencies and interdisciplinary engagement

RISKS OF NON-ACTION
- Computer Science remains housed in a facility disengaged from the campus core
- Big Bend's ability to grow their computer science program is limited
- Beneficial interdisciplinary interactions are limited
- Business and industry demand for Computer Science Graduates is not met

HISTORY
This facility has served as a dining hall for the dormitory and as a classroom facility for instructional purposes. The new food service facility in the 1300 (SEC) facility has replaced the dining hall. Due to the condition of this facility and its inability to flex to accommodate modern day instructional methodologies, replacement is recommended.

FUTURE OUTLOOK
In the Big Bend service area, there is a strong need for graduates with computer science skills. The replacement of the 1500 facility will allow the college to develop a state-of-the-art computer science program located at the heart of the College Campus. Students to student and student to instructor exchanges will increase. Interdisciplinary exchanges will be more likely to occur.

The College may look at housing this program in the future Global Learning Opportunity Center.

CLASS

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIGNABLE SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GENERAL CLASSROOM</td>
<td>3,875</td>
<td>7</td>
<td>553.57</td>
<td>20.57</td>
<td>26.91</td>
</tr>
<tr>
<td>B2</td>
<td>CLASS LABORATORY</td>
<td>2,375</td>
<td>6</td>
<td>395.83</td>
<td>15</td>
<td>26.39</td>
</tr>
<tr>
<td>F1</td>
<td>FACULTY SERVICES</td>
<td>2,634</td>
<td>9</td>
<td>292.67</td>
<td>9</td>
<td>292.67</td>
</tr>
<tr>
<td>I1</td>
<td>CENTRAL SUPPORT</td>
<td>3,541</td>
<td>9</td>
<td>393.44</td>
<td>9</td>
<td>393.44</td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE: 12,425

TOTAL SQUARE FOOTAGE: 24,468

EFFICIENCY: 51.0%
Business & Liberal Arts
1600
Fast Facts: Administration, Student Services Zone
17,760 square feet
Year Built: 1985
Recommendation: Future Renovation Project
Prior Renovation: NA

STRENGTHS
- Exterior and interior finishes are in fair condition
- Facility provides classroom space at the core of campus
- Informal learning area

WEAKNESSES
- Masonry interior walls limit adaptability and expansion
- Hard interior finishes are uninviting and create acoustic issues
- Masonry construction limits upgrades to technology
- Some classrooms are small and configured poorly
- Space does not meet current instruction needs
- Thermal temperature varies greatly from one area of the building to another
- Some classrooms are so unwinding that they are not used

OPPORTUNITIES
- Provide modern, adaptable classroom space that integrates technology
- Integrate a Resource Learning Center into the facility
- Capitalize on location at campus core in the development of a sustainable, walkable campus
- Increase classroom size by strategically adding on to the exterior
- The development of the campus core will increase demand for modern, adaptable classroom space

RISKS OF NON-ACTION
- Not providing more modern classroom space as the campus core develops will lead to a deficiency in classroom space
- Anticipated increases in enrollment without a proportional increase in classroom space will increase course wait lists and translate to student retention problems
- Inability to provide a high level of modern day educational opportunities

HISTORY
The 1600 Building was constructed in 1985 with no major renovations since completion. It is of concrete masonry construction and similar interior partitions limit its adaptability and future expansion. HVAC and electrical systems, while still in serviceable condition, are in need of upgrades and/or replacement.

FUTURE OUTLOOK
As the main classroom facility for humanities and social sciences on campus it is essential that the facility feature modern day instruction attributes. Technology and interdisciplinary interaction is a must. Instructors are strongly desiring enhanced technology in all classrooms. The positive use of lecture capture has created a need for recording of all classes. This facility needs to be kept at the forefront of the technology movement.
Allied Health

1700

Fast Facts: Nursing Zone
24,464 square feet
Year Built: 1952
Recommendation: Renovation
/Replacement Project
Prior Renovation: 1995

STRENGTHS
- Interior finishes are in good condition
- Location is near the center of campus
- Incorporates informal learning spaces
 - Offers an abundance of faculty office space

WEAKNESSES
- Narrow spaces and structure limits adaptability
 - Accessibility, safety and code issues
 - Poor Acoustics, floor plan does not meet program requirements, poor overall efficiency
 - Access to water does not meet program need
 - Poor lighting and electrical service inadequate
 - Ventilation in basement insufficient
 - HVAC system in need of replacement
 - Space inadequate for program use and growth
 - Boiler in basement supporting other facilities

OPPORTUNITIES
- Classroom and lab space designed to meet program and future program requirements
 - Meet current safety and AHA Codes
 - Provide informal space to encourage interactions between students and students and staff
 - Provide space for community connectivity
 - Create inspiring space that shows the program to potential students and the community
 - Locate IT in more effective location
 - Provide space for in demand specialty programs to emerge

RISKS OF NON-ACTION
- Increased operational costs as the 60 year-old building continues to age
 - Growth in program demand will drive students to colleges with more inviting and more technologically updated facilities
 - Inability to provide in-demand specialty programs such as physical therapy may drive students to other campuses
 - Life safety issues will persist without accessibility improvements to the basement

HISTORY
The 1700 Building was constructed in 1952 and was last renovated in 1995. It is constructed of concrete and concrete masonry. The structural grid limits its adaptability and creates narrow interior spaces. The campus technology department occupies two basement spaces separated by a mechanical pit, neither of which meet current accessibility requirements.

FUTURE OUTLOOK
Nursing is a growing program for the College with strong demand for trained professionals in the service district. They are currently producing as many students as the surrounding area can provide clinical experiences for. Waiting lists are substantial and interest in specialty programs is high. The College would like to expand its programs to offer specialty programs such as physical therapy. Staff is struggling to offer a high level of service in classrooms that are long and narrow and labs with poor electrical service, limited lighting and no access to water. Additionally, poor HVAC systems are causing low thermal comfort.
Advanced Technologies Education Center

STRENGTHS
- Modern facility with multi-use conference spaces
- Provides event space for the service district
- Integrates technology throughout
- Provides a library, computer lab, and group study spaces

WEAKNESSES
- Additional student services such as a student lounge are not featured

OPPORTUNITIES
- Expand and consolidate student services by relocating the student lounge to the ATEC facility
- Increase student satisfaction with the College atmosphere and amenities
- Increase student services and amenities as a recruitment tool

RISKS OF NON-ACTION
- Student utilization of informal gathering spaces such as the student lounge may remain low
- Student satisfaction with the College environment may trend lower

CLASSES

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STUDENTS PER WEEK</th>
<th>HOURS PER WEEK</th>
<th>CLASSROOM SCHEDULING EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GENERAL CLASSROOM</td>
<td>5,375</td>
<td>6</td>
<td>895.83</td>
<td>162</td>
<td>33.18</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>CLASS LABORATORY</td>
<td>1,438</td>
<td>2</td>
<td>719</td>
<td>65</td>
<td>22.12</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>LIBRARY</td>
<td>15,809</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>MEDIA PRODUCTION</td>
<td>1,724</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDY ROOMS</td>
<td>1,108</td>
<td>8</td>
<td>138.5</td>
<td>36</td>
<td>30.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEETING ROOMS</td>
<td>7,536</td>
<td>7</td>
<td>1,076.57</td>
<td>360</td>
<td>20.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD FACILITIES</td>
<td>11,552</td>
<td>10</td>
<td>1,155.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1, G2</td>
<td>ADMINISTRATION</td>
<td>4,591</td>
<td>21</td>
<td>218.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXHIBITION</td>
<td>4,000</td>
<td>1</td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSIGNABLE SQUARE FOOTAGE</td>
<td>53,123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL SQUARE FOOTAGE</td>
<td>66,935</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>79.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLOOR PLAN - EXISTING

VICINITY MAP

HISTORY
Built in 2004, the ATEC facility offers Grant County a conferencing center. It also serves as the campus library and food service venue.

FUTURE OUTLOOK
The ATEC Building is a unique facility for the College. It offers a conference center and is a major component in drawing the surrounding communities to campus. It is proposed to relocate the student lounge found in the 1400 Building to ATEC to further consolidate student amenities.
Fine Arts

1900

Fast Facts: Arts Zone
13,568 square feet
Year Built: 2009
Recommendation: None
Prior Renovation: NA

STRENGTHS
- Modern facility with spaces for ceramics, drawing, painting, classrooms and a gallery.
- Good integration of technology and space for networking equipment.
- Solid structure designed and built to last.

WEAKNESSES
- Narrow corridor and classroom spaces.

OPPORTUNITIES
- Expand fine arts programs to attract and retain students.
- Existing facility allows for the college to host art fairs and showcase their program to the surrounding community.

RISKS OF NON-ACTION
- Facility is constructed of concrete masonry units (CMU) and features technology throughout. Additional features include natural daylighting, lab space, classrooms, and informal gathering and demonstration areas.

FUTURE OUTLOOK
This facility is in new condition and should serve the college's art department for the foreseeable future. The display areas and areas for community engagement are strong and will allow the college to engage with the community, showcase its program and grow.

HISTORY
Facility is constructed of concrete masonry units (CMU) and features technology throughout. Additional features include natural daylighting, lab space, classrooms, and informal gathering and demonstration areas.

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIGNABLE SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GENERAL CLASSROOM</td>
<td>2,520</td>
<td>3</td>
<td>840</td>
<td>60</td>
<td>42</td>
</tr>
<tr>
<td>C1</td>
<td>CLASS LABORATORY</td>
<td>5,260</td>
<td>5</td>
<td>1,052</td>
<td>71</td>
<td>74.09</td>
</tr>
<tr>
<td>E1</td>
<td>INFORMAL/RECEPT./DEMON.</td>
<td>1,277</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>ADMINISTRATION</td>
<td>347</td>
<td>3</td>
<td>115.67</td>
<td>3</td>
<td>115.67</td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE: 9,404
TOTAL SQUARE FOOTAGE: 13,568
EFFICIENCY: 69.3%
DeVries Activity Center

2000

Fast Facts: Athletics, Gym Zone
44,458 square feet
Year Built: 1981
Recommendation: Future COP Project
Prior Renovation: 2006

STRENGTHS
- Size

WEAKNESSES
- Indoor Air Quality
- HVAC - No air conditioning
- Condition of pipes and fixtures
- Accessibility
- Exterior does not fit with college culture
- Space doesn’t allow for student demand of amenities

OPPORTUNITIES
- Replace facility with a Recreational Center that serves both Students and Community
- Increase recreational opportunities for students and community
- Relocate in Athletic Zone

RISKS OF NON-ACTION
- Decreased connectivity with community
- Students attend colleges with more amenities
- College Athletic program loses its reputation

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIGNABLE SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GENERAL CLASSROOM</td>
<td>1,158</td>
<td>2</td>
<td>584</td>
<td>51</td>
<td>22.90</td>
</tr>
<tr>
<td>H3</td>
<td>ATHLETIC/PE SERVICE</td>
<td>5,641</td>
<td>17</td>
<td>331.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>ATHLETIC</td>
<td>18,222</td>
<td>6</td>
<td>3,037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>ATHLETIC SEATING</td>
<td>594</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>ACADEMIC/STAFF</td>
<td>788</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE: 26,413
TOTAL SQUARE FOOTAGE: 44,458
EFFICIENCY: 59.4%

HISTORY
Built in 1981, out of concrete and concrete masonry units. The facility is in need of upgrades to the HVAC system and replacement of fixtures throughout.

FUTURE OUTLOOK
Many students choose BBCC because of the athletics department. Facilities need to be upgraded in order to properly serve students. Demand for additional treadmills and weight equipment was clear in a recent student survey.
Aviation Flight Training Center

Fast Facts:
- **Location:** Aviation Zone
- **Size:** 11,564 square feet
- **Year Built:** 1955
- **Recommendation:** None
- **Prior Renovation:** 2004

STRENGTHS
- Location
- Condition
- Floor plan fits program

WEAKNESSES
- Disengaged from campus core

OPPORTUNITIES
- Facility meets the needs of the program
- Adjacencies with Aviation Maintenance

RISKS OF NON-ACTION
- None

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIGNABLE SQ. FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>INDIVIDUAL CLASS LAB</td>
<td>263</td>
<td>1</td>
<td>263</td>
<td>20</td>
<td>13.15</td>
</tr>
<tr>
<td>D1</td>
<td>NON SCHED CLASS LAB</td>
<td>2,246</td>
<td>4</td>
<td>561.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>CLASS LABORATORY SERV</td>
<td>2,183</td>
<td>1</td>
<td>2,183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>ACADEMIC/STAFF</td>
<td>3,446</td>
<td>24</td>
<td>143.58</td>
<td>24</td>
<td>143.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASSIGNABLE SQUARE FOOTAGE</th>
<th>8,138</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL SQUARE FOOTAGE</td>
<td>11,564</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>70.4%</td>
</tr>
</tbody>
</table>

HISTORY
The original structure was built in 1955. In 1995 and in 2004 the building received a complete renovation.

FUTURE OUTLOOK
The renovated facility is in great condition and meeting program needs. As the program grows and complimentary programs grow such as Aviation Maintenance the College may look for ways to create more student-to-student and student-to-instructor interactions.

FLOOR PLAN - EXISTING

VICINITY MAP
Aircraft Hangar

3100

Fast Facts:
Aviation, Power Plant & Air Frame Zone
30,251 square feet
Year Built: 1956
Recommendation: Replacement project
Prior Renovation: 1992

STRENGTHS
- Facility has large, open space to house the College's aviation training fleet.
- Location next to Building 3000 Aviation

WEAKNESSES
- The original design, although ideal for aircraft storage, is incompatible with its additional use as an aircraft maintenance shop.
- Exterior and interior finishes are in need of immediate attention/repair.
- The high ceiling height is inefficient for heating/cooling.
- Metal/millwork levels do not comply with current accessibility requirements.
- No fire suppression system

OPPORTUNITIES
- Consolidation in a new facility will reduce operational costs and improve program integration.
- Maintenance spaces can be designed to meet functional needs and be adapted to changes in technology.
- Modern facilities will help attract/retain collaborations with area industries.

RISKS OF NON-ACTION
- Operational costs of the 56-year-old building will continue to be high, further stretching campus maintenance budgets.
- Deferred maintenance may lead to unsafe conditions, lack of fire suppression system is an ongoing risk.
- Functional and technological needs of aircraft maintenance will become increasingly difficult to meet in an inefficient, aging facility.
- Possible partnerships and economic growth opportunities may not be realized.

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIGNABLE SQ. FT.</th>
<th>STUDENTS PER WEEK</th>
<th>HOURS PER WEEK</th>
<th>CLASSROOM SCHEDULING EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>NON SCHED CLASS LAB</td>
<td>3,923</td>
<td>1</td>
<td>3,923</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>CLASS LAB SERVICE</td>
<td>21,186</td>
<td>10</td>
<td>2,118.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>ACADEMIC/STAFF</td>
<td>224</td>
<td>1</td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE: 25,333
TOTAL SQUARE FOOTAGE: 30,251
EFFICIENCY: 83.7%

HISTORY
The 3100 Building was constructed in 1956 as part of Larson Air Force Base and was utilized for heavy aircraft storage. It was renovated in the 1970's to house the College's aviation fleet and maintenance shops. The facility is steel framed with metal roofing and siding.

FUTURE OUTLOOK
The age, condition, and size of this facility has stretched operational budgets to the point of deferring maintenance. Consolidation of the aviation programs into a single facility would reduce these costs. Therefore, the 3100 Building is recommended for replacement as part of a new Aircraft, Airframe and Maintenance facility.

The current facility is in need of a fire suppression system due to the storage of aircraft.
Aviation Maintenance Technology

Fast Facts:
- **3200**
- Frame Zone
- 27,592 square feet
- Built: 1956
- Recommendation: Replacement project
- Prior Renovation: 1992

STRENGTHS
- Contains a large proportion of open, usable lab space accommodating multiple uses.
- Good proximity to runway and other airfield amenities.

WEAKNESSES
- The original design and construction are functionally incompatible with its current use as a Technical Education facility.
- Difficult to integrate technology and adapt to new teaching methods.
- Mezzanine levels do not comply with current accessibility requirements.
- Exterior and interior finishes are in need of immediate attention/repair.

OPPORTUNITIES
- Classroom and lab space can be increased to accommodate more students and program growth.
- A replacement facility will provide for improved integration of technology and satisfy future program needs.
- Student success and retention will increase with improved learning environments.

RISKS OF NON-ACTION
- Operational costs will continue to climb as the 56-year-old building continues to age, further stretching campus maintenance budgets.
- Prospective students may be drawn to other colleges with more technically advanced programs.
- The functional and technological needs of the program will not be fully met in a facility ill-adapted to renovation.

HISTORY
- An original component of the Larson Air Force Base, the 3200 building was built in the 1950’s to house large bomber aircraft. A 1992 remodel converted the space into the aircraft, airframe, and powerplant maintenance building for the aviation program.

FUTURE OUTLOOK
- The age, condition, and size of this and other technical education facilities on campus have stretched operational budgets to the point of deferring maintenance. Consolidation of similar programs into a single facility would reduce these costs. Therefore, this building is recommended as a replacement project as part of a new aircraft, airframe, and maintenance facility.

Floor Plan - Existing

Classroom and Lab Space

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>AVERAGE ASSIGNABLE SQ. FT</th>
<th>STUDENTS PER WEEK</th>
<th>HOURS PER WEEK</th>
<th>CLASSROOM SCHEDULING EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>STUDY ROOM</td>
<td>850</td>
<td>2</td>
<td>425</td>
<td>65.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>CLASS LAB SERVICE</td>
<td>3,625</td>
<td>6</td>
<td>604.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>CLASS LABORATORY</td>
<td>15,464</td>
<td>4</td>
<td>3,866</td>
<td>186.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>ACADEMICS/STAFF</td>
<td>451</td>
<td>2</td>
<td>225.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>CAMPUS STORAGE</td>
<td>1,371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assignable Square Footage: 21,761

Total Square Footage: 27,592

Efficiency: 78.9%
Automotive Technology 3300

Fast Facts: Technical Education Zone
31,682 square feet
Year Built: 1956
Recommendation: Replacement project - Immediate Need
Prior Renovation: 1992

STRENGTHS
- Contains a large proportion of open, usable lab space
- Universal space that accommodates multiple uses

WEAKNESSES
- The original design and construction is incompatible with its current use as a Technical Education facility
- Mezzanine levels do not meet current accessibility requirements
- Exterior and interior finishes are in need of immediate attention/repair
- The ceiling height is inefficient for heating/cooling

OPPORTUNITIES
- New classroom and laboratory space could be designed specific to program functional and technological needs
- Consolidate lab spaces with other technical programs to give students exposure to other skills and programs
- Ensure student success through full integration and exposure to the college environment and experience

RISKS OF NON-ACTION
- Operational costs will continue to climb as the building continues to age, further stretching operational budgets
- The program will continue to be segregated from the core of campus and students will be disconnected from vital student services and academic programs
- Functional and technological needs of this progressive program will not be fully realized
- Students may choose colleges with better facilities, updated technology and nicer amenities

HISTORY
Constructed in 1956, the 3300 Building was an original part of Lanier Air Force Base and housed heavy aircraft. Other than an upgrade to the boiler system in 2000, minimal renovations have been completed.

FUTURE OUTLOOK
Due to its age, condition and size, the 3300 Building would be more costly to renovate than replace. The facility’s original design is incompatible with its use as a technical education facility. It is recommended for immediate replacement.

Locating it in a new Professional and Technical Education Center (PTEC) at the core of campus will ensure the program has the facilities to provide a quality learning environment. This location will also ensure that students are fully integrated into the college experience while receiving access to vital academic programs and student services.
Welding Technology

3400

Fast Facts: Technical Education Zone
6,580 square feet
Year Built: 1955
Recommendation: Replacement project
Immediate need
Prior Renovation: 1995

STRENGTHS
- The Welding program is experiencing continued growth in enrollment
- The building has some open, flexible lab space

WEAKNESSES
- The current space is undersized to accommodate program growth
- The facility is segregated from the campus core
- Exterior and interior finishes are in need of immediate attention/repair
- Original design is incompatible with a technical education program

OPPORTUNITIES
- New classroom and laboratory space could be designed specific to program functional needs, adaptations in technology, and enrollment growth
- Consolidate lab space with other technical programs to give students exposure to other skills and programs
- Locating a new facility closer to the campus core will give students more exposure to campus amenities and student services

RISKS OF NON-ACTION
- Operational costs will continue to increase as the facility continues to age, further stretching maintenance budgets
- As enrollment continues to rise, the current space will struggle to meet the functional and technological needs of the program
- The program will continue to be segregated from the core of campus and students will be removed from vital student services and academic programs

HISTORY
The 3400 building was constructed in 1956 and repurposed as a welding laboratory in the 1970's. Upgrades to the air handling system were made to better accommodate welding activities.

FUTURE OUTLOOK
The program continues to experience growth in enrollment, making the current facility overcrowded. The age of the building would make renovation more costly than replacement. This facility is recommended for immediate replacement. Relocating to a new Professional Technical Education Center at the campus core would afford the program the modern lab and classroom space it needs to serve its growing enrollment. This location will also ensure students are fully integrated into the college experience and provide them access to vital student services and academic programs.

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIG. SQ. FT</th>
<th>STUDENTS PER WEEK</th>
<th>HOURS PER WEEK</th>
<th>CLASSROOM SCHED. EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>NON SCHED. CLASS LAB</td>
<td>647</td>
<td>1</td>
<td>647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>CLASS LAB SERVICE</td>
<td>378</td>
<td>5</td>
<td>75.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>CLASS LABORATORY</td>
<td>4,494</td>
<td>1</td>
<td>4,494</td>
<td>36</td>
<td>124.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>ACADEMIC/STAFF</td>
<td>225</td>
<td>1</td>
<td>225</td>
<td>2</td>
<td>112.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE 5,744
TOTAL SQUARE FOOTAGE 6,580
EFFICIENCY 87.3%
Maintenance Mechanics Technology

Facts: Technical Education Zone
- 4,848 square feet
- Year Built: 1955
- Recommendation: Replacement project
- Immediate need
- Prior Renovation: NA

Strengths:
- Facility contains some open, adaptable classroom and lab space

Weaknesses:
- Facility contains 56 year-old plumbing systems and lacks a dedicated electrical system
- Restroom facilities do not meet current accessibility requirements
- Exterior and interior finishes are in need of immediate attention/replacement
- The original design and construction is incompatible with its current use as a Technical Education facility

Opportunities:
- Consolidate lab space with other technical programs to give students exposure to other skills and programs
- Locate a new PTEC facility closer to the campus core to give students more exposure to campus amenities and student services
- Ensure student success through full integration and exposure to the college environment and experience

Risks of Non-Action:
- Operational costs will continue to escalate as the 56 year-old facility continues to age
- The functional and technological needs of the program will not be fully met in a facility ill-adapted to changes in technology and teaching methodologies
- The program will continue to be segregated from the campus core and students will be removed from vital student services and academic programs

Table:

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGE ASSIGNABLE SQ. FT.</th>
<th>STUDENTS PER WEEK</th>
<th>HOURS PER WEEK</th>
<th>CLASSROOM SCHEDULING EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>CLASS LABORATORY SERV</td>
<td>335</td>
<td>1</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>CLASS LABORATORY</td>
<td>4,008</td>
<td>3</td>
<td>1,336</td>
<td>38</td>
<td>105.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>ACADEMIC/STAFF</td>
<td>126</td>
<td>1</td>
<td>126</td>
<td>1</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assignable Square Footage: 4,469
Total Square Footage: 4,848
Efficiency: 92.2%

History:
- The 3500 building was constructed in 1955 and has had minimal maintenance and renovation work since. The facility's plumbing system is original to the building and it lacks a dedicated electrical system. The restroom facilities do not meet current accessibility requirements. Exterior and interior finishes have exceeded their useful lifecycles and are in need of immediate attention and repair.

Future Outlook:
- In its current condition, the building is not in serviceable condition and would be more costly to renovate than replace. The facility's original design and use are incompatible with a technical education program. Therefore, it is recommended for immediate replacement. Ideally it will be housed as a component of a new Professional and Technical Education Center.
Industrial Electrical Technology

3600

Fast Facts: Technical Education Zone
- **5,847 square feet**
- **Year Built:** 1985
- **Recommendation:** Replacement project
 - **Immediate need**
 - **Prior Renovation:** 1995

STRENGTHS
- The facility has ample open lab space and adequate classroom space.

WEAKNESSES
- The original design of the building limits its ability to function as a technical education facility.
- Exterior and interior finishes are beyond their usable lifespan.
- Building envelope is inefficient for heating/cooling.
- Location is segregated from campus core.

OPPORTUNITIES
- New classroom and lab space could be designed to fit specific program functions.
- Consolidation in a new facility with other technical programs to give students exposure to additional skills.
- Ensure student success through full integration and exposure to the college environment.

RISKS OF NON-ACTION
- Continued escalation of operational costs as the building continues to age.
- Continued segregation of the program from the campus core and distant from academic and student services.
- Functional and technical needs of program will fall behind industry training needs.
- Students attend other colleges due to the condition of the facility.

CLASS

<table>
<thead>
<tr>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>AVERAGE ASSIGNABLE SQ. FT.</th>
<th>STUDENTS PER WEEK</th>
<th>HOURS PER WEEK</th>
<th>CLASSROOM SCHEDULING EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>CLASS LABORATORY</td>
<td>2155</td>
<td>2</td>
<td>1077.5</td>
<td>42</td>
<td>25.65</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>CLASS LABORATORY</td>
<td>512</td>
<td>1</td>
<td>512</td>
<td>24</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>CLASS LABORATORY SVC</td>
<td>106</td>
<td>1</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>NON SCHED COMPUTER</td>
<td>532</td>
<td>1</td>
<td>532</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J5</td>
<td>ACADEMIC OFFICE</td>
<td>183</td>
<td>1</td>
<td>183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>ACADEMIC/STAFF</td>
<td>377</td>
<td>2</td>
<td>189</td>
<td>2</td>
<td>189</td>
<td></td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE: 3,865

TOTAL SQUARE FOOTAGE: 5,847

EFFICIENCY: 66.1%

HISTORY
Built in 1985, the 3600 building is a concrete masonry building with a wood framed roof. Electrical and HVAC systems were upgraded in the 1990's.

FUTURE OUTLOOK
Due to its age and condition, the 3600 building would be more costly to renovate than replace. The exterior and interior finishes have aged past their useful lifecycles and the building envelope is inefficient. Its isolation from the campus core is a detriment to the program’s continued success. It is therefore recommended as a replacement project. Ideally it will be integrated into the new Professional & Technical Education Center.

FLOOR PLAN - EXISTING

VICINITY MAP
Paint and Carpenter Shop

Fast Facts:
- Maintenance Zone
- 4,606 square feet
- Year Built: 1955
- Recommendation: Replacement - consolidate in future replacement project
- Prior Renovation: NA

STRENGTHS
- Location is away from campus traffic

WEAKNESSES
- Size
- Condition

OPPORTUNITIES
- Consolidate in future replacement project

RISKS OF NON-ACTION
- The condition is not a good reflection of the campus culture
- Damages the image of the college
- Limits ability to grow
- Creates potential safety health problems

HISTORY
This facility originally served as an Air Force Ammunition Bunker. It is constructed of concrete walls and a concrete roof. The facility was built in 1955 and the college began using it in 1970.

FUTURE OUTLOOK
Consolidating this facility in a future renovation project will allow the college to start creating a more inviting campus atmosphere.

FLOOR PLAN - EXISTING

VICINITY MAP

CLASS | **TYPE OF ROOM** | **SQUARE FOOTAGE** | **NUMBER OF ROOMS** | **AVERAGE ROOM SIZE** | **STATIONS** | **AVERAGEAssignable SQUARE FOOTAGE** | **TOTAL SQUARE FOOTAGE** | **EFFICIENCY** | **STUDENTS PER WEEK** | **HOURS PER WEEK** | **CLASSROOM SCHEDULING EFFICIENCY**
---|---|---|---|---|---|---|---|---|---|---|---|---
II | SHOP AREA | 4,000 | 5 | 800 | | 4,606 | | 86.8% | | | |

ASSIGNABLE SQUARE FOOTAGE
4,606

TOTAL SQUARE FOOTAGE
4,606

EFFICIENCY
86.8%
Automotive Technology Classrooms
Irrigation Lab

4100

STRENGTHS
- Interior finishes

WEAKNESSES
- Exterior deteriorated
- Floor plan
- Inflexible
- Lighting
- Acoustics
- No program adjacencies
- Inefficient technology infrastructure
- No room for collaborative and outreach opportunities

OPPORTUNITIES
- Relocate into future PTEC
- Create an industry training classroom
- Create a demonstration area that allows students to showcase their work
- Create an infrastructure that allows for today's technology and is adaptable and upgradeable to tomorrows
- Bring students into an environment that maximizes student exposure, exchanges and campus life

RISKS OF NON-ACTION
- Students may not learn the necessary skills to compete in today's job market
- Students may choose other colleges
- Collaborative opportunities with area business and industry may not evolve
- Economic growth possibilities may not evolve
- Student pride may decrease
- Campus life and culture may decrease

HISTORY
The facility was originally constructed in 1955 and remodeled in 2000 for the Fine Arts Program. The facility now houses the Automotive Classroom.

FUTURE OUTLOOK
Adjusting to the new automotive trends like hybrids and advanced diagnostics requires more classroom time. It is essential that the automotive classroom be reflective of a modern day learning environment. Being able to record and play back instruction will be essential for the students. Additionally, classrooms must be flexible and able to adapt to meeting the need of industry certifications and seminars. Locating the automotive program closer to campus in a "state of the art" facility will allow for increased business and industry outreach and new collaborative opportunities.

CLASS | TYPE OF ROOM | SQUARE FOOTAGE | NUMBER OF ROOMS | AVERAGE ROOM SIZE | STATIONS | AVERAGE ASSIGNABLE SQ. FT.
A1 | CLASSROOMS, GENERAL | 1,732 | 2 | 866 | 65 | 26.65
C3 | CLASS LABORATORY SERV | 295 | 2 | 147.5 |
C3 | CLASS LABORATORY | 1,404 | 2 | 702 | 39 | 40.41
F1 | ACADEMIC/STAFF | 360 | 2 | 180 | 2 | 180

ASSIGNABLE SQUARE FOOTAGE | 3,791
TOTAL SQUARE FOOTAGE | 4,860
EFFICIENCY | 78.0%
Security, Maintenance

4200

Facts: Maintenance Zone
Square Feet: 9,312
Year Built: 1955
Recommendation: Replacement
Prior Renovation:

STRENGTHS
- Location

WEAKNESSES
- Thermal comfort
- Security issues with restricted air space
- Poor lighting
- Uninviting
- Acoustics
- Technology infrastructure
- Exterior
- Adaptability

OPPORTUNITIES
- Consolidate in future replacement project
- Combine all facility and maintenance operations under one roof
- Create a facility that compliments the campus
- Improve campus maintenance capabilities

RISKS OF NON-ACTION
- Increased utility usage
- Lower employee morale

CLASS	TYPE OF ROOM	SQUARE FOOTAGE	NUMBER OF ROOMS	AVERAGE ROOM SIZE	AVERAGE ASSESSABLE SQ. FT.
T1 | SHOP FACILITIES | 4,629 | 9 | 514
T1 | ADMIN OFFICE | 141 | 1 | 141
T1 | CONFERENCE ROOM | 394 | 1 | 394 | 7 | 56.29

HISTORY
This facility was built in 1955. It features metal framing and siding. The building has outlived its useful life and is housing the College’s Maintenance and Operations.

FUTURE OUTLOOK
It is recommended that this building be consolidated with Building 4000 Carpenter and Print Shops in a future replacement project with Aviation Maintenance.

Through strategically replacing deteriorated facilities that have outlived their useful life the college can decrease its utility usage, decrease its overall square footage and create a more inviting campus atmosphere.
Philips Hall

Fast Facts: Student Housing Zone
Square Feet: 25,737
Year Built: 1963
Recommendation: Replacement Project
- Other funding sources
Prior Renovation: NA

STRENGTHS
- It is rare for community colleges to have dormitories on campus
- Clean and functional
- Provides housing for summer camps and special events

WEAKNESSES
- Condition
- Finishes need upgrades
- Uninviting exterior and interior
- Boiler located in 1,700 Building
- Shared Bathrooms
- Single pane glazing
- Not eligible for State funding

OPPORTUNITIES
- Opportunity for private investors to assist in replacing dormitories
- Locate closer to recreational/athletic zone
- Attract students who need housing
- Host summer camps for area K-12 or special programs
- Provide atmosphere more in line with that of the traditional 4-year college experience

RISKS OF NON-ACTION
- Increase in maintenance costs and utility usage
- Students look for other housing opportunities
- Decrease in food service utilization
- Decrease in partnerships and collaborative opportunities

CLASS	TYPE OF ROOM	SQUARE FOOTAGE	NUMBER OF ROOMS	AVERAGE ROOM SIZE	STATIONS	AVERAGE ASSIGNED SQ. FT.
J6 DORMATORIES | 17,464 | 74 | 230 | 76 | 230
J6 LOUNGE | 1,350 | 3 | 450 |
J6 LOCKER ROOMS | 1,600 | 4 | 400 |

ASSIGNABLE SQUARE FOOTAGE: 0
TOTAL SQUARE FOOTAGE: 25,737
EFFICIENCY: N/A

HISTORY
The College hosts two concrete masonry unit (CMU) dormitories that were originally built in 1963. In 1994 ADA upgrades were incorporated to allow for accessible entrances, restrooms and sleeping quarters.

FUTURE OUTLOOK
The dorms provide a place for aviation students and others to reside on campus. Big Bend is known for its aviation programs and attracts students from across the state and country.

As more students choose to enroll to study at community college, the dorms will become more attractive to those wanting the college experience.

Partnering with a private company to build and manage a new dormitory or apartments on campus is a possibility. Additionally, the college’s food service program, in combination with its planned recreational area, will create an inviting campus atmosphere.
Viking Hall

5000

Fast Facts: Student Housing Zone
Square Feet: 25,737
Year Built: 1963
Recommendation: Replacement Project - Other funding source.
Prior Renovation: NA

STRENGTHS
- It is rare for community colleges to have dormitories on campus
- Clean & functional
- Provides housing for summer camps and special events

WEAKNESSES
- Condition
- Finishes need upgrades
- Uninviting exterior and interior
- Boiler located in 1700 Building
- Shared Bathrooms
- Single pane glazing
- Not eligible for State funding

OPPORTUNITIES
- Opportunity for private investors to assist in replacing dormitories
- Locate closer to recreational/athletic zone
- Attract students who need housing
- Host summer camps for area K-12 or special programs
- Provide atmosphere more in line with that of the traditional 4-year college experience

RISKS OF NON-ACTION
- Increase in maintenance costs and utility usage
- Students look for other housing opportunities
- Decrease in food service utilization
- Decrease in partnerships and collaborative opportunities

CLASS	**TYPE OF ROOM**	**SQUARE FOOTAGE**	**NUMBER OF ROOMS**	**AVERAGE ROOM SIZE**	**STATIONS**	**AVERAGE ASSESSABLE SQ. FT.**
J6 | DORMITORY | 17464 | 74 | 230 | 76 | 230
J6 | LOUNGE | 1350 | 3 | 450 |
J6 | LOCKER/SHOWER | 1600 | 4 | 400 |

ASSIGNABLE SQUARE FOOTAGE | 0
TOTAL SQUARE FOOTAGE | 25,737
EFFICIENCY | NA

HISTORY
The College hosts two concrete and concrete masonry unit (cmu) dormitories that were originally built in 1963. In 1994 ADA upgrades were incorporated to allow for accessible entrances, restrooms and sleeping quarters.

FUTURE OUTLOOK
The dorms provide a place for aviation students and others to reside on campus. Big Bend is known for its aviation programs and attracts students from across the state and country.

As more students choose to start their education at community college the dorms will become more attractive to those wanting the college experience.

Partnering with a private company to build and manage a new dormitory or apartments on campus is a possibility. Additionally, the college’s food service program, in combination with its planned recreational area, will create an inviting campus atmosphere.
BBCC Opportunity Center
7700

Fast Facts: Opportunity, Diversity Zone
Square Feet: BBCC - 8,894 GCEDC - 1,122
Year Built: Unknown
Recommendation: Renovations
Prior Renovation: Unknown

STRENGTHS
- Provides space for the Opportunity Center
- Provides space for Grant County Economic Development Council on campus

WEAKNESSES
- Expensive to maintain
- Thermal comfort
- Acoustics
- Infrastructure inflexible and not upgradable
- Maze
- Odd sized spaces

OPPORTUNITIES
- Place in Future Global Learning Opportunity Center
- Increase engagement with community
- Provide modern day learning environments and technology

RISKS OF NON-ACTION
- Economic development may choose to re-locate
- No place to house Opportunity Center operations
- Foundation effectiveness decreased
- Progressive pedagogies unrealized
- Global Learning opportunities unrealized

HISTORY
This facility is an old church located on the Big Bend Community College Campus. It houses Basic Skills, English as a Second Language, WorkFirst and Grant County Economic Development Council.

FUTURE OUTLOOK
Incorporating the operations of this facility into the future Global Learning Opportunity Center would allow the college to move closer to achieving its goal of providing an outreach center that features educational opportunities. Creating a facility that honors all cultures, teaching styles and methods and promotes international understanding will allow Big Bend to provide students with the skillsets they need to compete in the global workforce.

<table>
<thead>
<tr>
<th>CLASS</th>
<th>TYPE OF ROOM</th>
<th>SQUARE FOOTAGE</th>
<th>NUMBER OF ROOMS</th>
<th>AVERAGE ROOM SIZE</th>
<th>STATIONS</th>
<th>AVERAGEAssignable SQUARE FT</th>
<th>STUDENTS PER WEEK</th>
<th>HOURS PER WEEK</th>
<th>CLASSROOM SCHEDULING EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GENERAL CLASSROOM</td>
<td>2,190</td>
<td>4</td>
<td>548</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>COMPUTER LABS</td>
<td>1,924</td>
<td>1</td>
<td>1,924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>FACULTY OFFICE</td>
<td>649</td>
<td>3</td>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1, B3, B5</td>
<td>CLASS LABORATORY SERV</td>
<td>736</td>
<td>6</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSIGNABLE SQUARE FOOTAGE: 6,429
TOTAL SQUARE FOOTAGE: 8,894
EFFICIENCY: 61.3%
PRIORITIZED APPROACH
The facility master plan is based on prioritizing the construction of facilities according to need. A plan has been created that seamlessly develops the campus core by creating new facilities to replace those that have outlived their useful life. This approach has been underway since the development of the Grant County Advanced Technology Education Center (ATEC) and the creation of the campus parkway. These two projects are the start of the college’s effort to define and develop the campus edge and border.

CAMPUS LAYOUT
The next step in creating a strong core is to consolidate five outdated facilities located at the edge of campus into a state of the art Professional Technical Education Center (PTEC) to be located at the front door of campus. This new facility will create an inviting campus entrance and fully integrate the technical education program with college life. For years professional technical education has been located on the outskirts of campus, isolated from student activities, resources and services. Moving these facilities into the campus core will bring the college one step closer to realizing their goal of creating an inviting, cohesive college community.

SITE
We encourage the following site and facility boundaries:

- Building placements should shield parking lots and other back of the house items from the interior of campus
- Back of the house items should also be shielded from public view
- Clustering of development within the campus core – this approach encourages walking, creates campus boundaries, allows for a variety of open spaces and preserves the perimeter for future growth, opportunities and partnerships
- Buildings should be orientated towards the campus core and encourage use of walkways
- Coordinate the placement of shared facilities to ease transition and maximize usage of outdoor space
- Create public gathering spaces such as courtyards, art displays, recreational areas & amphitheaters
- Develop a network of open spaces that facilitate reflective, informal and formal learning
- Use landscaping to enhance the campus setting
- Strategically place lighting, landscaping and walkways to increase safety and security
- Standardize landscaping – use native habitat as much as possible
- Make the campus inviting and create a strong sense of arrival
- Make the most of the expansive landscape but place buildings strategically to create a strong campus environment
- Orientate buildings to maximize passive and active solar technology
- Features should be appropriately scaled, constructed of high-quality materials and well designed
- Entrances should be reflective of the college’s character and vision.
- Compliment the adjacent buildings
- The main entrance should be dominant over other entrances on campus

GATEWAYS & ENTRANCES
Gateways and entrances into campus should use the following guidelines:

- Benches should be placed and oriented to provide refuge and comfort but not impede access or circulation
- All benches, lighting, bollards, recycling bins and waste receptacles should be consistent
- Water features are encouraged in visually prominent and/or “special” locations as they contribute to campus character and its sustainability. They may include both water-recycling fountains and stormwater management facilities. Future plans include a water feature at the main entrance in the turn around area.
- Sculptural elements are encouraged in appropriate public areas as they enhance the building and site design

WAY FINDING
Comprehensive way finding should play an important role in the completion of the master plan. Building and site directional signage should provide clear, understandable direction to all students, faculty, and visitors as they visit and move throughout the campus.

- A special emphasis should be made to ensure compliance with all federal, state and local signage requirements. A well thought out way finding and signage plan can be used to develop design character and individuality to the college campus.

SECURITY AND SAFETY
Big Bend is currently working with a safety and security consultant to identify and begin administering the top five things they can do to increase campus security. One item identified is the installation of security telephones strategically throughout campus. Other items identified include increased lighting and the possible hiring of 24 hour security.

PUBLIC SPACES
Pedestrian and community friendly design elements need to be incorporated throughout campus. Connections to the campus from parking areas and street crossings need to be carefully addressed. Informal and formal gathering areas should be placed to encourage spur of the moment interactions and a strong sense of community. Creating a campus that is inviting allows for recreational use and encourages community interaction. The following pedestrian and public space design elements are encouraged within campus:

- Benches should be placed and oriented to provide refuge and comfort but not impede access or circulation
- All benches, lighting, bollards, recycling bins and waste receptacles should be consistent
- Water features are encouraged in visually prominent and/or “special” locations as they contribute to campus character and its sustainability. They may include both water-recycling fountains and stormwater management facilities. Future plans include a water feature at the main entrance in the turn around area.
- Sculptural elements are encouraged in appropriate public areas as they enhance the building and site design

Design Standards
INTERIOR DESIGN ELEMENTS

To promote student, faculty and community interaction, different sizes and types of gathering places are essential throughout the campus and within the buildings. Interior gathering spaces should be provided in each building and enhanced with moveable furnishings to allow for multiple configurations and activities.

- The need for adaptable, flexible, and multi-functional rooms has been strongly expressed during meetings with faculty and staff at the college. Creating rooms that are adaptable to the constant changes in technology is critical to the sustainability of the college. Flexible and functional classrooms enable instructors and students to work together in a variety of learning environments.
- Future buildings are envisioned to have spaces that are designed to be thermally, visually, and acoustically comfortable. Creating environments that promote interaction between students, staff, instructors and the community is highly desirable. Environments that actively engage students and lead to small and large group conversations outside the classroom will greatly enhance the learning experience.
- The location of faculty offices in all buildings is critical in fostering student and instructor interactions. Designs should allow for easy student interactions. Each new building should plan for faculty offices, informal learning areas and classrooms to be designed to maximize student, instructor and community interactions.
- Informal learning areas provide thoughtful common spaces for social interactions. Hallways and corridors should be thought of as social areas. Small alcove spaces can be used for small group conversations. Larger areas should provide comfortable and flexible seating. White boards for idea generation, wireless service, power and proper lighting. Strategic placement of LCD screens and presentation equipment allow for informal group discussions and mini symposiums.
- Creating interactive areas provide high program visibility that creates high traffic and is popular with students and instructors.

All classrooms should contain:
- Lighting – high performance zone control
- Projection units
- Wall-mounted LCD monitor
- Document camera
- Laptop input
- Networked A/V monitoring/control
- Dataport for portable video-conferencing
- Flexible Data/Tech infrastructure for easy upgrades/adaptability
- Portable technology capabilities - Wireless network

Enhanced Interactive Media Classrooms should contain:
- All items listed above
- Mobile LCD monitor
- Smart white boards
- Electronic flip-chart wall
- Student response electronics

Lecture Classrooms should contain:
- All items in the above two
- Remote cameras with pan/tilt/zoom capabilities in fixed locations
- Auto flow camera
- Dimmable stage lighting
- Wireless and wired mics and audience mics
- Fixed seating – raised – full ADA access

Core design elements should include:
- Orientation to the sun with visual connections to the exterior
- Maximize natural daylight, high performance lighting controls
- Utilize low VOC materials, high performance HVAC strategies and systems, and durable low maintenance and efficient materials.
- Water efficient fixtures, natural ventilation, and mass notification systems

EXTERIOR DESIGN ELEMENTS

- Consistent in architectural styles/pattern language to match existing campus facilities and material
- Use of sustainable materials/construction practices
- Orientation and placement of new facilities (solar orientation, maximizing views, daylighting and campus core)
- Proportion of buildings in keeping with human scale
- Following local, state and federal building requirements; including accessibility, zoning and codes
- Incorporate elements that lend themselves towards efficiency
- Emergency vehicle & fire access
Space Utilization - Design Standards

General Classroom

USE (Functional Description)

Educational Support

ADJACENCY (Functional Relationship)

Adjacent Classrooms and Laboratories

AREA (Dimensional Requirements)

Net Program Area 900 - 1,500 sf, depending on program need

Min. Dimensions Varies by program or building

Ceiling Height 10'-0"

NARRATIVE:

The classroom is the platform for effective instruction and active learning. A simple room with space for tables and chairs is no longer adequate in motivating a student towards academic success. The classroom must be adaptable to changing teaching methodologies and flexible to accommodate different group dynamics. This flexibility should allow for instructor-led learning and for student-to-student collaborations with the emphasis on student-centered learning. Technology will be integrated allowing for presentations with projection screens and whiteboards as well as support for portable technology such as laptops and tablet computers.

This design standard aims to provide guidance in the design and development of new classroom space as well as the renovation of existing classrooms to best accommodate the above goals. Some guiding design principles include:

- Provide maximum flexibility for technology installation
- Provide open floor space for multiple configurations of student workspace
- Provide flexible, movable furnishings
- Allow for clear, unobstructed views to the front of the space
- Integrate technology with ease of access for future upgrades
- Provide infrastructure that supports portable technology
- Access to natural ventilation and daylight
- Provide acoustical separation from adjoining spaces

GENERAL CLASSROOM (960 SQUARE FEET)

Instructor to Student Configuration

- Audio/visual/data/lighting equipment
- Whiteboards
- Ceiling mounted projector
- Ceiling mounted projection screen
- Flexible, movable furnishings
- Portable technology support
- Instructor station

GENERAL CLASSROOM (960 SQUARE FEET)

Student to Student Configuration

Computer Resource Center

USE (Functional Description)
Instruction/Education and Educational Support

ADJACENCY (Functional Relationship)
Adjacent Classrooms and Laboratories

AREA (Dimensional Requirements)
Net Program Area 900 - 1,500 sf, depending on program need
Min. Dimensions Varies by program or building
Ceiling Height 10'-0"

NARRATIVE:
The computer resource center is a vital link in support of effective instruction. These spaces must accommodate continual, progressive changes in technology and support systems. While the need for specialized computer rooms for certain programs will remain constant, increases in student ownership of computers will change the composition of the traditional computer resource center. These centers may become more virtual and less dependent on dedicated space and may take the form of informal gathering spaces. Therefore, new and renovated computer resource centers should be designed as flexible spaces able to accommodate changing uses.

Traditional and informal computer resource center space should be planned for in all new classroom and laboratory facilities as well as the renovation of existing buildings. Design considerations for computer resource centers include:

- Provide maximum flexibility for technology installation
- Provide flexible, movable furnishings
- Provide spaces for both individual and collaborative study
- Integrate technology with ease of access for future upgrades
- Provide infrastructure that supports portable technology
- Provide access to natural ventilation and daylight
- Provide acoustical separation from adjoining spaces

COMPUTER LAB
(1100 SQUARE FEET)
Traditional Configuration
- Audio/visual/data/lighting equipment
- Whiteboards
- Ceiling mounted projector
- Ceiling mounted projection screen
- Flexible, movable furnishings
- Instructor station
- Portable technology support
- Natural ventilation/daylight
- Networked computer monitor
- Lounge furniture

COMPUTER LAB
(SIZE VARIES)
Informal Configuration
Informal Learning / Resource Center

Space Utilization - Design Standards

Informal Learning / Resource Center

USE (Functional Description)

ADJACENCY (Functional Relationship)

AREA (Dimensional Requirements)

Educational Support

Adjacent Classrooms, Laboratories, Faculty Offices

Net Program Area

Varies by program or building

Min. Dimensions

Varies by program or building

Ceiling Height

10'-0"

Narrative:

Resource Centers are community learning environments. The centers should provide spaces for both individual study and engagement in collaborative group discussions with a focus on student-centered learning. The space is adaptable to multiple uses such as lectures, conferences, meetings, seminars and webinars, and tutoring. Faculty offices should be located in close proximity to Resource Centers to encourage faculty-student interactions. Technology will be integrated to allow for presentations with projection screens, smart boards and white boards. Infrastructure support for portable technology such as laptops and tablet computers will be a valuable amenity for the Resource Center.

It is envisioned that Resource Centers will be strategically located throughout campus in the design of all new classroom and laboratory facilities as well as planned renovations of existing buildings. Some guiding design principles may include:

- Provide maximum flexibility for technology installation
- Movable partition walls for adaptable-use space
- Provide flexible, movable furnishings
- Integrate technology with ease of access for future upgrades
- Provide infrastructure that supports portable technology
- Provide task specific lighting
- Access to natural ventilation and daylight
- Provide acoustical separation from adjoining spaces

- Help desk/reception
- Individual study carrels
- Group discussion
- Group study
- Copy/data
- Quiet learning/conference
- Resource Laboratory
- Group discussion/support center
- Audio/visual/data/lighting equipment
- Whiteboards
- Ceiling mounted projector
- Ceiling mounted projection screen
- Movable partition wall
Space Utilization - Design Standards

Dean's Office
- 150 Square Feet Each
- Desk
- File cabinet
- Office chair
- Guest chair
- Bookshelf
- Natural daylight

Faculty Office
- 120 Square Feet Each
- Desk
- File cabinet
- Office chair
- Guest chair
- Bookshelf
- Natural daylight

Adjunct Faculty Office Pod
- 80 Square Feet Each
- Desk
- File cabinet
- Office chair
- Bookshelf
- Natural daylight
- Partial-height wall

Faculty Offices

USE (Functional Description)

Educational Support

ADJACENCY (Functional Relationship)

Adjacent Classrooms, Laboratories and Informal Learning/Resource Centers

AREA (Dimensional Requirements)

Net Program Area
- 150 sf for each Dean's office
- 120 sf for each faculty office
- 80 sf for each adjunct faculty office

Min. Dimensions
- Varies by program or building

Ceiling Height
- 10'-0"

NARRATIVE:
Faculty offices provide space to administer the teaching and research activities of a given program. They are also envisioned to be places where faculty can provide support, counseling and advice to their students relative to their progression through their coursework. These educational support spaces include Dean's offices, faculty offices and adjunct faculty offices.

Faculty offices will be an integral part of the design of all new classroom and laboratory facilities and will continue to be included in the planned renovations of existing buildings. Faculty offices should be strategically located in close proximity to informal gathering spaces, resource centers, and other spaces where faculty-student encounters can occur. Some guiding design principles may include:

- Provide maximum flexibility for technology installation
- Acoustical and visual separation from adjoining spaces for privacy
- Provide adjacency to other educational support spaces with similar function (i.e., administration, conference, breakrooms, workrooms, recycling)
- Provide adjacency to spaces that allow for faculty-student interactions
- Access to natural ventilation and daylight
- Provide open, adaptable space (part-time faculty offices)
- Integrate technology with ease of access for future upgrades
- Provide infrastructure that supports portable technology
Space Utilization - Design Standards

Conference / Seminar

USE (Functional Description)
- **Educational Support**

ADJACENCY (Functional Relationship)
- **Adjacent Classrooms, Laboratories**
- Administration, Faculty Offices and Informal Learning / Resource Centers

AREA (Dimensional Requirements)
- **Net Program Area** 500 sf, depending on program need
- **Min. Dimensions** Varies by program or building
- **Ceiling Height** 10'-0"

NARRATIVE:
The conference/seminar room is a multi-use space with the flexibility to accommodate a wide range of campus meetings and events. Furnishings can be rearranged for collaborative-based meetings, seminars, faculty training and student advising. Technology will be integrated allowing for presentations with projection screens and white boards as well as support for portable technology such as laptops and tablet computers.

In order to maximize space utilization, these conference/seminar rooms should be responsive to current campus needs while also adapting to changes in use over time. Design considerations include:

- Provide maximum flexibility for technology installation
- Provide flexible, movable furnishings
- Provide adjustable lighting
- Integrate technology with ease of access for future upgrades
- Provide infrastructure that supports portable technology
- Provide access to natural ventilation and daylight
- Provide acoustical separation from adjoining spaces

CONFERENCE/SEMINAR ROOM (500 SQUARE FEET)
Collaborative Configuration
- Audio/visual/data/lighting equipment
- Whiteboards
- Ceiling mounted projector
- Ceiling mounted projection screen
- Flexible, movable furnishings
- Portable technology support
- Access to natural daylight

CONFERENCE/SEMINAR ROOM (500 SQUARE FEET)
Seminar Configuration

PLANNED PROJECTS

RECOMMENDATIONS

“In 2010 Big Bend spent 17% of its operating budget on facility maintenance. In 2009 they spent 16%. Of the 34 Community and Technical Colleges in Washington State, Big Bend has the highest operating and maintenance obligation. It is important to note that Big Bend serves one of the most economically challenged and diverse student populations in the State. Spending a disproportional amount on maintenance directly affects student services.”

CURRENT CONDITIONS

The college campus sits on 153 Acres and consists of 21 facilities receiving state funding and three self maintained facilities. Two of the college’s self maintained facilities are dormitories and the third, owned by the Foundation, houses the Opportunity Learning Center.

Of the 24 facilities on campus, 19 have outlived their useful life. Only three facilities offer learning environments that reflect Big Bend’s and the Washington State Board for Community and Technical Colleges’ learning environment recommendations.

More directly, Big Bend’s campus is in disrepair and in need of systematic replacement. RGU conducted a campus and facility assessment in November 2010 and found the following:

- Poor aesthetics - dated military facilities
- Limited fire protection
- Limited ADA accessibility
- Lifeless and dull interior and exterior finishes
- Deteriorating facilities
- 50+ year-old facilities with no historical significance or character
- Buildings spread far apart - no sense of campus core/campus community
- Limited access to technology
- Infrastructures are not capable of receiving technology upgrades without creating trip hazards and unsightly data wires stringing from walls to teacher stations
- Renovations and additions over the years have created a maze effect in many of the facilities
- Limited access to informal study, collaborative gathering areas and computer labs
- Space and disconnected campus
- Poor adjacencies

The following is evident in classroom and lab space:

- Crowded conditions
- Poor acoustics
- Poor lighting, limited natural daylighting, extreme thermal fluctuations, and poor indoor air quality
- Dated and nonexistent technology
- Odd shaped and sized rooms, limiting student centered collaborative, interactive and modern teaching methods

The above barriers challenge Big Bend’s ability to meet its Mission and End Statements. Creating an inviting student-centered educational environment that encourages community and business engagement is central to the vision of the College.

Additionally, in 2010 Big Bend spent 17% of its operating budget on facility maintenance. In 2009 they spent 16%. Of the 34 Community and Technical Colleges in Washington State, Big Bend has the highest operating and maintenance obligation. It is important to note that Big Bend serves one of the most economically challenged and diverse student populations in the State. Spending a disproportional amount on maintenance directly affects student services. Systematic replacement of obsolete facilities will allow Big Bend to decrease operating expenses and reallocate funding to more critical areas.

KEY RECOMMENDATIONS

The Consultant Team recommends developing the campus core by strategically replacing obsolete facilities located on the campus edge. By relocating these facilities into the campus core the College can create a more inviting and welcoming atmosphere that maximizes adjacencies and efficiencies. Simultaneously they can begin developing outdoor areas to encourage student, staff, instructor, community and business and industry interactions and gatherings.

Creating a campus environment that people enjoy and go out of their way to be part of is vital to the health of the college. As a community college, Big Bend strives to offer educational, cultural and athletic events and resources. To effectively serve as the hub of the community, Big Bend must develop a collaborative campus that is inviting, easy to navigate and representative of community needs.

Technology upgrades, consistent landscaping and wayfinding are needed to create an effective exterior and interior campus environment. The following is a recommended list of projects:

1. Bring professional technical education into the campus core through consolidation of five buildings.
2. Develop/renovate the Allied Health Nursing Center into a modern day facility that is representative and instills pride
3. Bring Adult Basic Education and Workforce Training into the campus core
4. Develop a Global Learning Opportunity Center to meet the challenges of global education and competition
5. Create a strong campus border and edge - make a statement that you have arrived
6. Develop outdoor gathering and reflection areas
7. Expand community recreational areas and facilities
8. Improve way finding- work with area partners to develop theme
9. Create a strong sense of arrival at main entrances
10. Develop a strong and sustainable technology infrastructure

2011 Facility Master Plan
<table>
<thead>
<tr>
<th>Biennium</th>
<th>Project</th>
<th>Category</th>
<th>Strategic Plan/End Statements</th>
<th>Project History</th>
<th>Other Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-2017</td>
<td>#1 Priority - PTEC – Professional Technical Education Center (Replacement of buildings) #1300, 3400, 3500, 3600, 4100</td>
<td>X</td>
<td>• E-2 Access</td>
<td>This project has been the College’s number one priority for going on ten years. Each priority has funded several projects. The facilities are among the most costly in the SERTC. The College is in a better condition and the college’s ability to provide a high quality education in five technical education programs. Students do not have easy access to student services and learning resources.</td>
<td>Apply for funding as soon as possible
Look for partnerships
Increase collaborative programs with K-12
Uplift facility in emergency only – await funding (repairs not cost effective)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-3 Partnerships</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-4 Student Achievement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-5 Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-6 Cultural Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#2 Priority - 1300 Allied Health</td>
<td>X</td>
<td>• E-2 Access</td>
<td>This program used to be housed 1/2 mile away from the campus core. The current location offers beneficial programmatic and relationship adjacency but still inadequately houses the program. Current classrooms are narrow, and without modern day technology.</td>
<td>Apply for funding as soon as possible
Look for partnerships & collaborations
Uplift facility in emergency only – await funding (repairs not cost effective)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-3 Partnerships</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-4 Student Achievement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-5 Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-6 Cultural Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#3 Priority - 1300 A Child Care</td>
<td>X</td>
<td>• E-2 Access</td>
<td>This facility has several possible safety hazards. Heating needs to be addressed as soon as possible. Currently staff has hazards blocked off by furniture.</td>
<td>Facility needs major renovation or replacement
Look for private funding opportunities
Look for grant opportunities
Look at using motor works</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-3 Partnerships</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-4 Student Achievement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-5 Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-6 Cultural Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New/Upgrade – Athletic Field House, Soccer Field And Tennis Courts</td>
<td>X</td>
<td>• E-2 Access</td>
<td>Students have identified the athletic program as one of the main reasons they choose to attend Big Bend. Developing the soccer field, improving the tennis courts and creating an athletic field house will allow the college to offer great facilities and connect with the community. The college has zoned this area for athletics and has developed a strategic plan to relocate all athletics facilities into this zone over the next 10-15 years.</td>
<td>Apply for funding after other priorities are achieved
Look for partnerships and collaboration opportunities
Research and apply for grants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-3 Partnerships</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-4 Student Achievement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-5 Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-6 Cultural Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-2019</td>
<td>#4 Priority – Aircraft Hangar, Aviation Maintenance, And Maintenance Replacement Project</td>
<td>X</td>
<td>• E-2 Access</td>
<td>The Aviation Maintenance Program and Hangars are operating in less than ideal conditions. The facilities are dilapidated and costly to maintain. Creating a facility that will house both the Aviation Maintenance program and act as a hangar for the Aviation program will allow the college to streamline its facilities and increase efficiencies. Additionally, military aviation programs have recently received state funding for facility improvements. To remain competitive Big Bend must upgrade their facilities.</td>
<td>Apply for funding after other priorities are achieved
Look for partnerships and collaboration opportunities
Research and apply for grants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-3 Partnerships</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-4 Student Achievement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-5 Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-6 Cultural Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#5 Priority - Global Learning Opportunity Center</td>
<td>X</td>
<td>• E-2 Access</td>
<td>Facility is changed from the campus core and creates a barrier to students having access to Student Services and Learning Resources. As Big Bend s’s learning program grows so will the need for a centralized testing and resource center. This facility will become a one stop resource for all those wishing to learn more about the educational opportunities available and different educational methods. It will allow the College to connect with both educational programs and methods. The need to educate students to compete in a global economy is rapidly increasing.</td>
<td>Apply for funding after other priorities are achieved
Look for partnerships and collaboration opportunities
Research and apply for grants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-3 Partnerships</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-4 Student Achievement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-5 Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-6 Cultural Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#500 Science, Math And Engineering</td>
<td>X</td>
<td>• E-2 Access</td>
<td>Facility acts as a one stop resource for student services. Although the facility has received a major renovation it is less than ideal for being the front face of the campus. As other needs are met this facility should move up on the priority list. Perhaps Student Services and Administration could be incorporated into the Global Learning Opportunity Center with Student Recreation and the Student Store being housed in a future addition to the #500 GLOTC Facility.</td>
<td>Apply for funding after other priorities are realized
Look for partnerships and collaboration opportunities
Research and apply for grants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-3 Partnerships</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-4 Student Achievement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-5 Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• E-6 Cultural Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-2021</td>
<td>#600 Computer Science</td>
<td>X</td>
<td>See Above</td>
<td>Currently housed in a 2005 Army Base facility that is in need of replacement.</td>
<td>Combine classrooms to create larger learning environments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See Above</td>
<td>Many nice features but offers small classrooms. Adaptability is limited and ability to upgrade technology is also limited.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#600 Business And Liberal Arts Facility</td>
<td>X</td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#600 Activity Center and Gymnasium</td>
<td>X</td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021-2023</td>
<td>#600 Student Center and Administration Building</td>
<td>X</td>
<td>See Above</td>
<td>Facility acts as a one stop resource for student services. Although the facility has received a major renovation it is less than ideal for being the front face of the campus. As other needs are met this facility should move up on the priority list.</td>
<td>Apply for funding after other priorities are realized
Look for partnerships and collaboration opportunities
Research and apply for grants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See Above</td>
<td>Perhaps Student Services and Administration could be incorporated into the Global Learning Opportunity Center with Student Recreation and the Student Store being housed in a future addition to the #600 GLOTC Facility.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#600 Student Recreational Area Addition</td>
<td>X</td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#600 Athletic Soccer Dome</td>
<td>X</td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#600 Early Childhood Development Center</td>
<td>X</td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#600 Student Housing</td>
<td>X</td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#600 Performing Arts Center</td>
<td>X</td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See Above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2011 Facility Master Plan
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFESSIONAL TECHNICAL EDUCATION CENTER</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLIED HEALTH</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EARLY CHILDHOOD DEVELOPMENT CENTER</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATHLETIC FIELD HOUSE</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCCER FIELDS & TENNIS COURTS</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS IDENTIFIED BY FACILITY CONDITION REPORT</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRCRAFT, AIRFRAME, AND MAINTENANCE</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLOBAL LEARNING OPPORTUNITY CENTER</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIENCE, MATH & ENGINEERING</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTRAL RECEIVING</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS IDENTIFIED BY FACILITY CONDITION REPORT</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTER SCIENCE</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUSINESS & LIBERAL ARTS</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECREATIONAL & ATHLETIC CENTER</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS IDENTIFIED BY FACILITY CONDITION REPORT</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDENT CENTER (ATEC), ADMINISTRATION,</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATHLETIC SOCCER DOME</td>
<td>PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS IDENTIFIED BY FACILITY CONDITION REPORT</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EARLY CHILDHOOD DEVELOPMENT CENTER</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDENT HOUSING</td>
<td>PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERFORMING ARTS CENTER</td>
<td>PRP - PRE-DESIGN</td>
<td>DESIGN</td>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS IDENTIFIED BY FACILITY CONDITION REPORT</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND
- **Replacement**: Indicates projects that will require a project request proposal prior to pre-design.
- **Renovation**: Indicates projects that will require a project request proposal prior to pre-design.
- **Minor Repair**: Indicates projects that will require a project request proposal prior to pre-design.
- **Other / C.O.P.**: Indicates projects that will require a project request proposal prior to pre-design.
LEGEND

1000 - WORKFIRST
1100 - WALLENSTEIN PERFORMING ARTS CENTER
1200 - SCIENCE, MATH, ENGINEERING
1300x - EARLY CHILDHOOD DEVELOPMENT CENTER
1500 - CHILD CARE CENTER
1400 - STUDENT CENTER, ADMINISTRATION
1500 - CENTRAL RECEIVING & WAREHOUSE SERVICES (PRINT SHOP)
1600 - BUSINESS & LIBERAL ARTS
1700 - ALLIED HEALTH & BIG BEND TECHNOLOGY
1800 - LIBRARY & GRANT COUNTY ADVANCED TECHNOLOGIES EDUCATION CENTER
2000 - FINE ARTS
2100 - PETER D. DEVERIES ACTIVITY CENTER
2500 - AVIATION FLIGHT TRAINING CENTER
2300 - AIRCRAFT HANGAR
2200 - AVIATION MAINTENANCE TECHNOLOGY
2320h - AMT ENGINE RUN STATION
3300 - AUTOMOTIVE TECHNOLOGY
4000 - MAINTENANCE
4100 - AUTOMOTIVE TECHNOLOGY CLASSROOM & IRRIGATION LAB
4200 - SECURITY & MAINTENANCE
4500 - STORAGE & MAINT GARAGE
5000 - PHILIPS HALL
6000 - VIKING HALL
7700 - RBCF FOUNDATION OPPORTUNITY CENTER
PTEC - PROFESSIONAL TECHNICAL EDUCATION CENTER
GLOC - GLOBAL LEARNING OPPORTUNITY CENTER
FA - AIRCRAFT AIRFRAME & MAINTENANCE
SF/TC - SOCCER FIELDS AND TENNIS COURTS
FH - FIELD HOUSE & LOCKER ROOMS
CS - COMPUTER SCIENCE
RAC - RECREATIONAL & ATHLETIC CENTER

MEDIUM TERM NEEDS - 2019-2021 BIENNIAL
BIG BEND COMMUNITY COLLEGE - MOSES LAKE, WASHINGTON
Professional, Technical Education Center

Recommendation: Replacement project for 2015 biennium.

PROGRAM SPACES
- AUTOMOTIVE TECHNOLOGY LAB
- HVAC TECHNOLOGY LAB
- INDUSTRIAL ELECTRICIAN LAB
- COMMERCIAL/RESIDENTIAL ELECTRICIAN LAB
- WELDING TECHNOLOGY LAB
- MAINTENANCE MECHANIC LAB
- FABRICATION TECHNOLOGY LAB
- ENGINEERING DRAFTING LAB
- INDUSTRY TRAINING LAB
- (2) TOOL ROOMS
- (10) ENHANCED CLASSROOMS
- DEAN’S OFFICE
- ADMINISTRATION
- (18) FACULTY OFFICES
- (12) PT FACULTY OFFICES
- CONFERENCE ROOM
- (2) WORKROOMS
- (2) BREAKROOMS
- (2) RECYCLING ROOMS
- (2) STAFF RESTROOMS
- (4) RESTROOMS
- (2) LOCKER ROOMS
- (4) SHOWER ROOMS
- LOBBY / DEMONSTRATION AREA

LEGEND
- LABORATORY / COMPUTER LAB
- CLASSROOM
- ADMINISTRATION, FACULTY
- OTHER/SUPPORT
- LOBBY / DEMONSTRATION / CIRCULATION
- RECYCLING
Allied Health

1700

Nursing Zone

Recommendation: Renovation project for 2015 biennium.

MAIN FLOOR PROGRAM SPACES

- (2) NURSING LABORATORIES
- (2) NURSING CLASSROOMS
- MEDICAL TECHNOLOGY LABORATORY
- MEDICAL ASSISTANT LABORATORY
- MECHANICAL/ELECTRICAL
- LOBBY / INFORMAL LEARNING
- (10) OFFICES
- CONFERENCE
- RECYCLING
- (5) PT FACULTY OFFICES
- ADMINISTRATION
- DEAN'S OFFICE
- STAFF RESTROOM/SHOWER
- WORKROOM/BREAKROOM
- (2) RESTROOMS
- (2) SHOWER ROOMS
- JANITOR
- DATA

LEGEND

LABORATORY
ENHANCED CLASSROOM
STUDENT LOUNGE
LOBBY/INFORMAL LEARNING
TESTING CENTER
ADMINISTRATION / FACULTY
RECYCLING
OTHER/SUPPORT
CIRCULATION

UPPER FLOOR PROGRAM SPACES

- FITNESS LABORATORY
- OCCUPATIONAL LABORATORY
- OCCUPATIONAL CLASSROOM
- RESOURCE LABORATORY
- TESTING CENTER
- AUTO TUTORIAL LABORATORY/COMPUTER LAB
- MECHANICAL/ELECTRICAL
- STUDENT LOUNGE
- CONFERENCE
- RECYCLING
- (6) FACULTY OFFICES
- STAFF RESTROOM/SHOWER
- (2) RESTROOMS
- (2) SHOWER ROOMS
- JANITOR
- DATA
Global Learning Opportunity Center

Recommendation: Growth project for 2019 biennium.

MAIN FLOOR PROGRAM SPACES
- COMPUTER LAB
- TUTORING CENTER / (3) CONFERENCE ROOMS
- LEARNING SHOWCASE
- (5) ENHANCED CLASSROOMS
- (3) ENHANCED DISTANCE LEARNING CLASSROOMS
- (2) CONFERENCE ROOMS (VIDEO CAPABLE)
- (4) MEETING / LECTURE
- INFORMAL LEARNING
- LOBBY / DEMONSTRATION
- (10) OFFICES
- CONFERENCE
- RECYCLING
- (13) PT FACULTY OFFICES
- ADMINISTRATION
- DEAN’S OFFICE
- STAFF RESTROOM
- WORK ROOM
- BREAKROOM
- (2) RESTROOMS
- (2) SHOWER ROOMS
- JANITOR

LEGEND
- COMPUTER LAB
- ENHANCED DISTANCE LEARNING CLASSROOM
- MEETING / LECTURE
- INFORMAL LEARNING / LEARNING SHOWCASE
- TESTING CENTER
- ADMINISTRATION / FACULTY
- RECYCLING
- OTHER/SUPPORT
- LOBBY / DEMONSTRATION / CIRCULATION
- TUTORING CENTER / CONFERENCE

UPPER FLOOR PROGRAM SPACES
- TESTING CENTER
- (2) ENHANCED CLASSROOMS
- (3) ENHANCED DISTANCE LEARNING CLASSROOMS
- INFORMAL LEARNING
- (2) DEAN’S OFFICES
- (20) OFFICES
- (19) PT FACULTY OFFICES
- (2) RECYCLING
- (2) CONFERENCE
- (2) WORK ROOM
- (2) BREAKROOM
- (2) STAFF RESTROOMS
- (2) RESTROOMS
- (2) SHOWER ROOMS
- JANITOR

FLOOR PLANS - SCHEMATIC